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The “Smart Walking” Monte Carlo algorithm is examined. In general, due to a bias imposed by the
interbasin trial move, the algorithm does not satisfy detailed balance. While it has been shown that
it can provide good estimates of equilibrium averages for certain potentials, for other potentials the
estimates are poor. A modified version of the algorithm, Smart Darting Monte Carlo, which obeys
the detailed balance condition, is proposed. Calculations on a one-dimensional model potential, on
a Lennard-Jones cluster and on the alanine dipeptide demonstrate the accuracy and promise of the
method for deeply quenched systems. 2801 American Institute of Physics.
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I. BACKGROUND for the ensemble of states for distinguishable particles,

. . N -1 N -1
In recent years, a variety of algorithms have been devel- B d UG d
oped to address the problem of “broken ergodicity” in the Q(B)= kHl Ax J dre” 0= kll M| Z(B),

simulation of complex many body system®ne of the more (1)
promising classes of methods is based on the ‘“simulated
tempering” Monte Carlo methotithe class can be thought Where A= (h?g/2zm)*? is the thermal de Broglie wave-

to include multicanonical, parallel tempering, J-walking?  léngth for a particle of mass, U(r) is the potential en-
and g-jumpin§~8 Monte Carlo. Simulations based on such €rgy. andZ(ﬁ) is the confi.gu.ration integrql. In the inherent
methods employ two or more Monte Carlo walkers at a seStructure picture of statistical mechanics, proposed by
ries of higher temperaturesr on a modified potential sur- Stillinger and Webef, the dN dimensional configuration
face where the sampling efficiency is greater than that at théPace is decomposed as a set of basins of attraction. Any
temperature of physical interest. By an exchange of walkerB0int in configurational spacéexcluding maxima, saddle

(in a way that satisfies detailed balanci is possible to  Points, and ridggswill be mapped by a steepest descent to a
improve the sampling for the computation of thermostatisti-MnimMum on the potential surface. Labeling the basiaad

cal averages at the temperatdee on the potential surfage C2lling B; the regions of configuration space which form ba-
of interest. One shortcoming of such methods is that th&iNS Of attraction draining to thih minimum located aR;
distribution of walkers must sample energetic distributionsCf €nergyU;, the configuration integral may be written

with a significant overlap in probability so that the exchange

)1/2

of walkers between temperaturés potential surfacgsoc- Z(B)zz Zi(ﬁ)zz f dre AU, 2
curs with reasonable probability. This problem can be acute ! tUB
in the simulation of deeply quenched systems. The potential energy in théth basin can be written

Consider, for example, a peptide or protein at low tem- 1] LA, ;
perature. A number of conformational “basins” may con- (D=t 40(r) leading to
tribute to the thermostatistical average properties such as the
equilibrium distribution of solvent molecules in vacancies of
the protein. It is highly desirable to be able to compute the
relative free energies of the “quenched states” of the systenThese are exact expressions for the configuration integrals.
without simulating a manifold of states connecting in energyAlternatively, we can write the partition function as
the quenched state distributions.

An alternative approach, discussed in this work, involves _ _ar.
the direct exchange of walkers using “displacement” moves QA EI exfl — BFil. @

constructed from a set of low energy configurations of the

system. To be more precise, consider the partition functiofVhereFi is the Helmholtz free energy of thiéh basin. A
method that couples local sampling of the badksogether

with a convenient means of transportation between all the

dpPresent address: Department of Chemistry and Chemical Biology, Harvar, ; ;
University, Cambridge, Massachusetts 02138, Basins would constitute a good approach towards the sam

YAuthor to whom correspondence should be addressed. PH@iig:353- pling_ of the available configuration space. That is the object
6816; electronic mail: straub@bu.edu of this study.

Zi(,B):efﬁuijg_dre*“i“(r). 3
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II. SMART WALKING MONTE CARLO 20 T . . . . T T

In a Monte Carlo simulation, we hope to generate the
equilibrium Boltzmann distribution of states

1

p(r)= Tﬂ)exq BU(r)]. (5
However, for many systems of interest, high energetic barri-
ers separate basins on the potential surface. This can make it
difficult for the Monte Carlo walk to move between basins
and sample the equilibrium distribution of states. This prob-
lem is referred to as “broken ergodicity*”

An effective approximate algorithm known as “Smart
Walking” Monte Carlo has been proposed to address this
problem!® This S-walking algorithm is a variation on the
J-walking Monte Carlo of Frantz, Freeman, and Ddi.the  FIG. 1. The three-parabola potential. At high temperatures, the central well
S-walking algorithm, there are two types of moves. Oneis only rarely visited.
move is of the normal Metropolis MC type. Trial moves
occur with a probabilityT(r—r’) = constant within a local
region and zero otherwise. Since the trial move distribution  gy(r—R;)=exd — B(U(R;)—U(r))]. (13)
is symmetric,T(r—r’)=T(r'—r), the acceptance probabil-
ity that generates the Boltzmann distribution is

However, since the trial move distribution is a function of
the jumping temperature, and this bias is not corrected in the

p=min[1q(r—r")], (6)  S-walk acceptance probability, there is no guarantee that the
equilibrium Boltzmann distribution is sampled by the
where S-walk.
T(r'=r)p(r’) We would like to be able to generate the S-walk accep-
q(r—r')=————"=exg —B(U(r")—U(r))]. tance probability for the jump moves from the condition of
T(r—r")p(r) o microscopic reversibility,
Moves generated with this acceptance probability are de- q(rHRi):M_ (12
signed to give effectivéocal sampling within basins of the T(r—Ry)p(r)

potential energy surface. From here on we will use the teryye want to balance the probability of movimg-R; with

“walker” to describe the point in configuration space that is that of movingR,—r. However, using a jump move it is

moving during the simulation. o only possible to move to ainimumof a basin. Therefore,
A second type of move used in S-walking is a “Jump” the trial moveR;—r is not allowed unless is a basin mini-

move designed to transport the walker between basins sepgmym. It follows that in general microscopic reversibility is
rated by significant energetic barriers, thereby facilitating,ot satisfied.
global sampling. The trial move distribution for the “jump”
moves is taken to be the sg®;} of minima of the potential
energy basins, obtained by quenching the Boltzmann distrip!!- ONE-DIMENSIONAL EXAMPLE
uted phase points at the elevated temperafyreEach mini- We can demonstrate this point by considering a potential
mum may be found multiple times with the relative numbercomposed of three parabolas,
of occurrences being proportional to the partition function )
; i ; Ko(x+ &)= if x<—x*
for that basin for the case of adequate sampling. That is,
Ux)=1 kix? if  —x*<x<x* (13)
T(r—r")=20 wi(By) 3(r' = Ry), ® ka(x—§)2 if x>x*,
as shown in Fig. 1.

whereR; is the position of the minimum of thiéh basin and Let us assume good local sampling in the wells and that

Zi(By) broken ergodicity ensures that the only means of transporta-
wi(B;)= Z(5,) (9 tion between wells is by a jump to a minimum from the
’ distribution generated at the higher temperafliye In order
is the probability of visiting theth basin at temperaturg; . for the average of a physical property to be correct, one
The sum of the weights is unity. requires that the total “time” spent in the each basin be
In S-walking, the trial “jump” moves are accepted with proportional toZ;(3). However, in a general S-walk simu-
probability lation, if the simulation is of adequate length, the period

o _ actually spent in each well is proportional Ze( 3;) .
Py=min[10,(r—r7)], (10 At very high temperature¥;, the probability of the ran-
where dom walker is much greater to the left and to the right of the

Downloaded 14 May 2001 to 128.197.30.139. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



6996 J. Chem. Phys., Vol. 114, No. 16, 22 April 2001 Andricioaei, Straub, and Voter

15 T T T ; the reverse move is not possiliienless the original state is
148} 1 itself at a minimun. In this section we present a new
146 | ] method based on a combination @) the Smart Walking

scheme and2) the use of displacement vectors connecting
14.4 | i minimum energy configurations, based on an idea employed
14.2 + . i 11,12 i i i -
A SW — calculated prgwously. The re§ult|ng algorithm is shown to obey de
% 14t . tailed balance. The gist of the method is to perform, among
Visslh o o - gqo_d local sampling moves, jumps not exactI)_/ to the local
\ \ minimum of another basin, but from and to suitably chosen
13.6 | . . L
corrected exact small neighborhoods around such minima. As shown below,
1341 7] this can be done in such a way that detailed balance is
132+ 1 achieved.
13 . . ‘ . The Smart Darting method can be formulated as follows.
0 50 100 o 150 200 250 In the process of some search metlioigh temperature MC,

5 g-jumping MC? etc), pick configurations from which to per-
FIG. 2. The dependence of the average mean square position at a thernﬁrm steepest descents on the potential energy surface, gen-

energy of T=0.1 (in reduced energy unitsas a function of the jumping . L. ..
temperaturd ;. At high jumping temperatures, the S-walk is biased towards €7atiNg a seRi}i—12 ... m Of M distinct local minimum

the outermost wells. The contribution from the central well is underesti-configurations. From this set of minima construdi(M

mated and the average exceeds the exact value. Correcting the S-walking 1) displacement vectors, or “darts,” of the type
MC method eliminates the bias and produces results that are in good agree-

ment with the exact average. Dij=Rj—R;,i#]},i,j=1,2,... M. (15

Also, choose a real number. Then define ane-sphere
two energy barriers. The central parabola is very seldom visaround each element of the &},

|t(_ad._Th|_s cqrrupts the S-V\_/alk average since the t_rlal move S.(R)={r|lIr—R/<e. (16)
distribution introduces a bias, dependentn that is not
corrected by the acceptance probability. For efficient sampling, the value efshould be chosen small

A numerical study of this potential employing the in the following sense. The difference in the potential energy
S-walk algorithm yielded an average fof different than the  of any configuration within ang,(R;) and the configuration
exact average. The parameters were chosen such that tRe of the local minimum of that-sphere should be much
finite energy barriers are equal to 9 energy unigs=ék, less than the thermal energy of a degree of freedom. Loosely
=9k,=1). ForT;=100 andT=0.1 the result is too large speaking,e should be smaller than the size of the smallest
by 20%. ForT;=10 000 andl = 0.1 the result is too large by catchment basin. The strict requirement eris that it be
60%. small enough that no two spheres overlap the sampling

This can have catastrophic repercussions, especially frocedure presented here requires modificatiburing the
the “physics” happens exactly in this middle region. The habitual Monte Carlo sampling done locally within a basin,
sampling in the peripheral regions will be wasted. check, with probabilityP, whether the current configuration

In principle, one can correct the average calculated by is in ane-sphere and do one of the following two things:
the S-walking algorithm by including the correct state-by- (1) If it is, say, r € S.(Ry), then randomly pick another
state configuration integrals into the acceptance criterion ihocal minimum, say, thdth one, and jump to th&.(R))
such a way as to undo the incorrect biasing of each state, ssphere by the translation,
that Eq.(8) becomes fr+Dy. (17

T(I’—>I")=E Zi(B)o(r' —Ry). (14)  Accept or reject the move according to the Boltzmann crite-
! rion.

In the simple one-dimensional example of the three pa- (2) If r is outside anye-sphere, thercount againthe
rabola potential, this is easily accomplished because one cairrent configuratiorr (i.e., reject an implicitly attempted
analytically compute the necessary correction ratios. Th¢ump alongD,, because it would land outside tlesphere
corrected average of the squared position for several valuder minimum ). The remainder of the simulation steps, on
of the upper temperaturE; is shown in Fig. 2, for the case the average a fraction-1P of them, are local MC steps
of the three parabola model. However, in general, one wildrawn from a uniform distribution and accepted or rejected
not know partition functions for each state at the temperatur@ccording to the Boltzmann criterion.
of interest,T. For this algorithm, one can prove that detailed balance is
guaranteed and the exact average of any configuration-
dependent property over the accessible space is obtained.
Two key issues determine the detailed balance. The first is

We have seen that the main drawback of the Smarthe fact that the trial probability to pick the displacement
Walking algorithm is the breakdown of microscopic revers-vectorD,, to go from thekth e-sphere to thdth one equals
ibility. If, in the evolution of the Markov chain, the system the trial probability to pick the displacement vecy, for
goes from one microscopic state to a minimum energy statehe reverse step. The second issue is that the trial probability

IV. SMART DARTING MONTE CARLO
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FIG. 3. The square double well potential. z

FIG. 4. Probability density function for the square double well potential.
The thick line is the correct density, while the dotted line results from

.. omitting the double counting when the walker is outside argphere.
for a local MC step that moves the walker from a point®" 2 uble counting W Walker s outside afmsp

inside ane-sphere to a point outside that sphere is the same

as for the reverse move, i.e., {PP) times what it would be \ye count again, with probabilit®, points out ofe-spheres. It

in a walk restricted to local moves. To give insight in the jg easy to extend the proof to nonflat, one-dimensional po-

details of the scheme, consider a simple example of a onNggntials and further to multiple dimensions.

dimensional potential made of square wells. Three-parabola model results are shown in Fig. 5, where
Say a random walk is performed in the double squargye represent the average of the position squared at different

well potential, temperatures, compared with the exact result obtained by

. analytical integration. For this example, the S-walking MC

0 if XE_[O'S]U[4’5] (18 results stand outside the bounds of the plot.

« otherwise It is worth discussing the design of the Smart Darting

o . Monte Carlo approach from the point of view of computa-
shown in Fig. 3. We assume a small bias that makes thgona| efficiency. Conceptually, the following procedure

centers of the two segments the local minima. Choose 2,414 be simpler than the one discussed so far, in that it
=5-4=2-1. There are two displacement vecto,  gjiminates thee-spheres and the associated rejection of null
(shown in Fig. 3, and —D. They are used for interwell 665 First, construct the set (M — 1) darts represent-
transitions, only betweefl,2] and[4,5]. The rules of the g hoth forward and reverse moves between all pairs of
walk are: minima. At each step, with probabilit, choose one of
(1) If xe[0,1), the walker moves locally with probability theseM(M—1) darts at random, without regard to the cur-
1—P; the rest of the time, i.e., with probabilitp, it rent position of the walker. Accept or reject this jump with
does not move and the position is counted again; the usual Metropolis probablllty This giVQS a valid MC walk
(2) If xe[1,2], the walker moves locally with probability With unbiased trial move probabiliti¢d:we have simply ex-
1-P, or is transported to the other well with probability

U(x)=

P; T T
(3) If xe(2,3], see(l); 14.15 |
(4) If xe[4,5], see(2). 141k ]
It is easy to see, by writing down the master equation, 14.05 -
that 1—- P is the correct weighting for the local moves out of Ll |
the regions complementary to tlespheres. Only then is the A

detailed balance obeyed. If this is not accounted for, then the ~ ™13.95 | :
erroneous distribution plotted in Fig. 4 is obtained. v
That this is so can be seen when taking into consider-

ation two pointsxe[1,2] andx’ €[0,1] (see Fig. 3 within 13.85 1

A of each other. Herd& is the maximum displacement of a

local Monte Carlo move. The probability to move froario

x" isW(x—x')=(1—P)/A. Since, in the reverse movejs 13.75 x . s L I

accessible fromx’ only by a local moveW(x’—x) would 0 02 04 06 08 !

equal 1A and detailed balance would fail to hold. Thus we o

see that the walker should move out>df not always, but FIG. 5. The dependence of the average mean square position, in the poten-
. L ' tial of the three-parabola model, as a function of the temperatugener-

with pl’p.bablhty 1-P, a_nd1 f_OI’ reason?_Of Cons_er_vatlon Of ated using Smart Darting Monte Carftine with circles overlapped with

probability, has to stay i’ with probability P. This is why  the exact theoretical depender(centinuous ling

Downloaded 14 May 2001 to 128.197.30.139. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



6998 J. Chem. Phys., Vol. 114, No. 16, 22 April 2001 Andricioaei, Straub, and Voter

tended the normal list of possible moves to include the set ofesponding to the rotation and translation of the cluster, one
dart moves. It is not an efficient procedure, however, for twoatom was fixed at the origin of the coordinate system, a
reasons. Selecting randomly from all the darts will give asecond atom was constrained to move on a line containing
dart that originates in the current state only a fractio()L/ the first atom, and a third atom was constrained to move in a
of the time. AsM becomes large, this is a serious problem, aglane containing this line.
most dart jumps will be rejected. Second, even when a The number of minima increases rapidly with the num-
“proper” dart (one that originates in the present basim  ber of atoms in the cluster. Hoare and Pdiave cataloged
chosen, the probability that the jump will be accepted decaythe configurations of small clusters. An 8-atom cluster pos-
with increasing distance from the basin minimum. The cre-sesses 8 minima, which we have found and stored for use by
ation of thee-sphere solves both of these problems. Becausthe algorithm. Connecting these minimum energy configura-
all e-spheres are the same size and the darts connect thiens thus creates 56 darts. The reduced temperature was
centers, every point in one sphere mdps dart3 onto an  0.05.
equivalently located point in every other sphere. Thus, the To measure the extent to which the phase space is
trial probabilities for the forward and reverse jumps are ausampled we have computed the ergodic measure, whose de-
tomatically matched for jumps originating within spheres,pendence on the simulation time gives the rate of self-
and are zero for points outside any sphere. The second probveraging in an equilibrium calculatidn Self-averaging is a
lem is addressed by limiting the size ef as discussed necessary, but not sufficient, condition for the ergodic hy-
above. So, in the procedure proposed above, thk ih&ffi- pothesis to be satisfied. The rate of self-averaging for a given
ciency is eliminated, but the procedure is slightly more com-property is expected to be proportional to the rate of phase
plicated. It requires determining if the walker is presentlyspace sampling. We have chosen to use the potential energy
within a sphere and double counting of positions outside thas the property whose average is calculated for two indepen-
sphered fraction of the time. Moreover, if the walker enters dent trajectoriesx and 8. We define the “move average”
a new basin purely by local movéas might happen at high over the Monte Carlo trajectory of the potential enetgjfor
temperatures this must be recognized, because the walker ighe jth particle along ther trajectory aftem moves as
now entering the proximity of a differertsphere. For large L0
M, efficient implementation of this monitoring may require gy N
neighbor-listing of the minima or some other form of book- ) (M= ; Uirio- 20
keeping, to prevent frequent searches oveiMalinima. ) ) i

A method similar in spirit with the one we presented is The ergodic measure is then defined as the sum Biver
the Jumping Between Wells meth&tiwhich uses the same particles,
paradigm of generating good thermal averages once impor- 1
tant low-energy conformations are known. While it has been ~ dy(n)= Nz [ufi(n)—uf(n)]2. (22)
successful for the calculations of free energy differences for )
small organic molecules, the JBW method lacks the concefftor an ergodic system, if—«, thend(n)—0. For largen
of the e-sphere and jumping is allowed from any configura-we expect the form of the convergence to be diffusfve,
tion. As a result, it is expected to perform poorly as the
complexity of the potential energy surface increases, because =D, n (22)
jumping from points far from low energy minima will be dy(n) v

rejected with a large probability, as discussed above. where D, is a rate for self-averaging dfl over the two

independent trajectories. We associate rapid and effective
V. APPLICATION TO LENNARD-JONES CLUSTERS sampling of phase space with a large valueDqf. The
We have applied the method of Smart Darting MonteChO'Ce of the potential energy metric is arbitrary. However, it
. . has been shown to be a good measure of the extent of phase
Carlo to the calculation of thermodynamic averages of clus-

ters of atoms. In this section we describe the implementatior%pace sampling in a vanety of_systei'ﬁs. .
The results are shown in Fig. 6, where the energy metric

of the algorithm and the results obtained. L .
. . . . is displayed as a function of the number of Monte Carlo
We model the interaction between pairs of atoms in the : . . .
. steps; the plot is the result of averaging over 10 runs with the
cluster by the Lennard-Jones potential, - . .
same two initial basins but different random seeds, and thus
1 2 different evolution in configurational space. The darting
V(r)= e (19 probability is P=0.1. In Fig. 7, the continuous line repre-
sents a typical “time” series of the Euclidean distance of
where the energy unit is the well depth and the length unit ishe current configuration from the minimum of the current
the separation between two atoms when at equilibrium. Tdasin in which the last dart landed. The tallest peaks are due
prevent the “vaporization” of atoms during simulations at to “darting.” They are followed by a rapid decrease of the
high temperatures, we added a confining potential of the typéistance to the local minimum.
(r/ro),?° wherer, is larger than the size of the minimum To address the problem of the dependence of the result
configuration of the cluster. This confinement has negligibleon the number of minima we have also calculated the aver-
effect on the energetics of the “condensed” configurationsage internal energy of the cluster not only by constructing all
of the clusters. To eliminate the six degrees of freedom corthe darts between all the eight minimum energy configura-
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FIG. 8. The average potential energy for the 8-atom cluster in the following

cases, from top to bottom, respectively, using the Smart Darting method

when only 2 of the minima considerétbp, thick ling, when only 5 of the

minima are consideredotted ling, with all 8 minima consideredthin

line), and using the Smart Walking method with all 8 minima considered

tions, but also by leaving out a number of the minima, cho-Pottom: rare dotted line

sen at random. Figure 8 presents the results when two, five,
and all eight minima are used in the construction of the dart-
ing vectors. Even if the exclusion of some of the minima still

FIG. 6. The ergodic measure for the Smart Darting idBown with circleg
and for the standard MGhown with diamonds

We have used the CHARMM force field with the ver-

ives the average around the correct result. one expects t siPn 19 parameter set in vacuum. The conformational distri-
g 9 : P tion of the alanine dipeptide in vacuum is dominated by

in general applications of this method a sufficient number ot o CONfigurationsC eq and Crag, and we have used these

the thermodynamically significant conformational states are o conformations to create tHewo) darts. In order to de-

athand. We also plot in this figure the average energy for th%cribe the conformational sampling efficiency, we have used

case of the Smart Walking algorititfhusing all 8 minima. , . g

The slightly different value of this thermodynamic average isthe nonponged force metric, which has been originally used

due 1o the breakdown of detailed balance for proteing’ and has been proven to be a good measure of
' ergodicity for such systems. The nonbonded force metric is

similar to the energy metric used for the cluster, except that

VI. APPLICATION TO ALANINE DIPEPTIDE the self-averaging quantity is now the force coming from the

We have performed tests on the alanine dipeptidenonbonded interactions of the peptide. That is, we calculate,

N-acetylalanyl-N-methylamidéAcAlaNHMe), a model sys-  for two trajectoriesa and B, the move average
tem used extensively in theoretical studies of the conforma-
tional equilibrium in proteins. The peptide is on one hand
small enough to allow thermodynamittland quantum
mechanicaf calculations, and on the other hand has back-The nonbonded force metric is defined as the average over
bone configurations which are prototypical for the polypep-the number of particles of the mean square difference of the
tide backbone of prOtEinS. two move averages,

l n
Fi(m=1 2 Fi(r). (23

1
de(n) =5 2 [Ff(m) = FfmI% (24
For an ergodic system, we again expett(n)—0 as
n—oo,

Figure 9 shows the force metric as a function of the
Monte Carlo sweeps for regular MC vs Smart Darting MC.
The temperature was=200 K, the darting probabilityP,
=0.1 and we have used a value 1.5 A. At this low
temperature, the peptide faces a rugged energy landscape
with barriers that cannot be overcome using standard Monte
Carlo in the time scale of our simulations.

As

0.5+ §

VIl. DISCUSSION

0 1 1 1 1
0 2000 4000, 6000 000 10000
n (hundreds of I\/P cycles

Due to its importance for condensed phase simulation, a
FIG. 7. The distance of the current position from the position of the mini- host of methods have been de.VISed. to calculate eqU|I|br|um
mum of the last basin at low temperature, when the assumption that inter@V€rages by an enhanced configurational space search of sys-

basin moves occur only by darting is true. tems suffering from broken ergodicity. There exists a num-
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1.2 . . . ' T variation of the potential energy is much less than the ther-
mal energy. The only strict requirement enis that the
1¥ 1 spheres do not overlap, or the sampling rules must be modi-
fied.
0.8 The advantage of this method, relative to other tech-
niqgues such as simulated tempering, parallel tempering,
;é 0.6 1 J-walking or g-jumping Monte Carlo is that one is relieved
of the burden of connecting states with overlapping distribu-
0.4 tions created by a manifold of temperatures or deformed po-
tential energy surfaces. As such, the algorithm is particularly
0.2h Vata s eassatiRiResassseas well suited for the simulation of deeply quenched systems
2 such as peptides, proteins, or spin systems at low tempera-
0 : e N ture.
0 50 n (tﬁggsandésoof MCQg}gcles)%O 300
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FIG. 9. The nonbonded force ergodic measure computed during simulations ; ;
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