
JOURNAL OF CHEMICAL PHYSICS VOLUME 114, NUMBER 16 22 APRIL 2001
Smart Darting Monte Carlo
Ioan Andricioaeia) and John E. Straubb)

Department of Chemistry, Boston University, Boston, Massachusetts 02215

Arthur F. Voter
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 18 September 2000; accepted 2 February 2001!

The ‘‘Smart Walking’’ Monte Carlo algorithm is examined. In general, due to a bias imposed by the
interbasin trial move, the algorithm does not satisfy detailed balance. While it has been shown that
it can provide good estimates of equilibrium averages for certain potentials, for other potentials the
estimates are poor. A modified version of the algorithm, Smart Darting Monte Carlo, which obeys
the detailed balance condition, is proposed. Calculations on a one-dimensional model potential, on
a Lennard-Jones cluster and on the alanine dipeptide demonstrate the accuracy and promise of the
method for deeply quenched systems. ©2001 American Institute of Physics.
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I. BACKGROUND

In recent years, a variety of algorithms have been de
oped to address the problem of ‘‘broken ergodicity’’ in th
simulation of complex many body systems.1 One of the more
promising classes of methods is based on the ‘‘simula
tempering’’ Monte Carlo method;2 the class can be though
to include multicanonical,3 parallel tempering,4 J-walking,5

and q-jumping6–8 Monte Carlo. Simulations based on su
methods employ two or more Monte Carlo walkers at a
ries of higher temperatures~or on a modified potential sur
face! where the sampling efficiency is greater than that at
temperature of physical interest. By an exchange of walk
~in a way that satisfies detailed balance!, it is possible to
improve the sampling for the computation of thermostati
cal averages at the temperature~or on the potential surface!
of interest. One shortcoming of such methods is that
distribution of walkers must sample energetic distributio
with a significant overlap in probability so that the exchan
of walkers between temperatures~or potential surfaces! oc-
curs with reasonable probability. This problem can be ac
in the simulation of deeply quenched systems.

Consider, for example, a peptide or protein at low te
perature. A number of conformational ‘‘basins’’ may co
tribute to the thermostatistical average properties such as
equilibrium distribution of solvent molecules in vacancies
the protein. It is highly desirable to be able to compute
relative free energies of the ‘‘quenched states’’ of the sys
without simulating a manifold of states connecting in ene
the quenched state distributions.

An alternative approach, discussed in this work, involv
the direct exchange of walkers using ‘‘displacement’’ mov
constructed from a set of low energy configurations of
system. To be more precise, consider the partition func

a!Present address: Department of Chemistry and Chemical Biology, Har
University, Cambridge, Massachusetts 02138.

b!Author to whom correspondence should be addressed. Phone:~617! 353-
6816; electronic mail: straub@bu.edu
6990021-9606/2001/114(16)/6994/7/$18.00

Downloaded 14 May 2001 to 128.197.30.139. Redistribution subject to A
l-

d

-

e
rs

-

e
s
e

te

-

he
f
e
m
y

s
s
e
n

for the ensemble of states forN distinguishable particles,

Q~b!5S )
k51

N

Lk
dD 21E dre2bU(r )5S )

k51

N

Lk
dD 21

Z~b!,

~1!

whereLk5(h2b/2pmk)
1/2 is the thermal de Broglie wave

length for a particle of massmk , U(r ) is the potential en-
ergy, andZ(b) is the configuration integral. In the inheren
structure picture of statistical mechanics, proposed
Stillinger and Weber,9 the dN dimensional configuration
space is decomposed as a set of basins of attraction.
point in configurational space~excluding maxima, saddle
points, and ridges! will be mapped by a steepest descent to
minimum on the potential surface. Labeling the basinsi and
calling Bi the regions of configuration space which form b
sins of attraction draining to theith minimum located atRi

of energyUi , the configuration integral may be written

Z~b!5(
i

Zi~b!5(
i
E

Bi

dre2bU(r ). ~2!

The potential energy in theith basin can be written
U(r )5Ui1D iU(r ) leading to

Zi~b!5e2bUiE
Bi

dre2bD iU(r ). ~3!

These are exact expressions for the configuration integ
Alternatively, we can write the partition function as

Q~b!5(
i

exp@2bFi #, ~4!

where Fi is the Helmholtz free energy of theith basin. A
method that couples local sampling of the basinsBi together
with a convenient means of transportation between all
basins would constitute a good approach towards the s
pling of the available configuration space. That is the obj
of this study.

rd
4 © 2001 American Institute of Physics
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II. SMART WALKING MONTE CARLO

In a Monte Carlo simulation, we hope to generate
equilibrium Boltzmann distribution of states

r~r !5
1

Z~b!
exp@2bU~r !#. ~5!

However, for many systems of interest, high energetic ba
ers separate basins on the potential surface. This can ma
difficult for the Monte Carlo walk to move between basi
and sample the equilibrium distribution of states. This pro
lem is referred to as ‘‘broken ergodicity.’’1

An effective approximate algorithm known as ‘‘Sma
Walking’’ Monte Carlo has been proposed to address
problem.10 This S-walking algorithm is a variation on th
J-walking Monte Carlo of Frantz, Freeman, and Doll.5 In the
S-walking algorithm, there are two types of moves. O
move is of the normal Metropolis MC type. Trial move
occur with a probabilityT(r→r 8)5constant within a local
region and zero otherwise. Since the trial move distribut
is symmetric,T(r→r 8)5T(r 8→r ), the acceptance probabi
ity that generates the Boltzmann distribution is

p5min@1,q~r→r 8!#, ~6!

where

q~r→r 8!5
T~r 8→r !r~r 8!

T~r→r 8!r~r !
5exp@2b~U~r 8!2U~r !!#.

~7!

Moves generated with this acceptance probability are
signed to give effectivelocal sampling within basins of the
potential energy surface. From here on we will use the te
‘‘walker’’ to describe the point in configuration space that
moving during the simulation.

A second type of move used in S-walking is a ‘‘jump
move designed to transport the walker between basins s
rated by significant energetic barriers, thereby facilitat
global sampling. The trial move distribution for the ‘‘jump’
moves is taken to be the set$Ri% of minima of the potential
energy basins, obtained by quenching the Boltzmann dis
uted phase points at the elevated temperatureTJ . Each mini-
mum may be found multiple times with the relative numb
of occurrences being proportional to the partition functi
for that basin for the case of adequate sampling. That is

T~r→r 8!5(
i

wi~bJ!d~r 82Ri !, ~8!

whereRi is the position of the minimum of theith basin and

wi~bJ!5
Zi~bJ!

Z~bJ!
~9!

is the probability of visiting theith basin at temperatureTJ .
The sum of the weights is unity.

In S-walking, the trial ‘‘jump’’ moves are accepted wit
probability

pJ5min@1,qJ~r→r i !#, ~10!

where
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qJ~r→Ri !5exp@2b~U~Ri !2U~r !!#. ~11!

However, since the trial move distribution is a function
the jumping temperature, and this bias is not corrected in
S-walk acceptance probability, there is no guarantee that
equilibrium Boltzmann distribution is sampled by th
S-walk.

We would like to be able to generate the S-walk acc
tance probability for the jump moves from the condition
microscopic reversibility,

q~r→Ri !5
T~Ri→r !r~Ri !

T~r→Ri !r~r !
. ~12!

We want to balance the probability of movingr→Ri with
that of movingRi→r . However, using a jump move it is
only possible to move to aminimumof a basin. Therefore
the trial moveRi→r is not allowed unlessr is a basin mini-
mum. It follows that in general microscopic reversibility
not satisfied.

III. ONE-DIMENSIONAL EXAMPLE

We can demonstrate this point by considering a poten
composed of three parabolas,

U~x!5H k2~x1j!2 if x,2x*

k1x2 if 2x* <x<x*

k2~x2j!2 if x.x* ,

~13!

as shown in Fig. 1.
Let us assume good local sampling in the wells and t

broken ergodicity ensures that the only means of transpo
tion between wells is by a jump to a minimum from th
distribution generated at the higher temperatureTJ . In order
for the average of a physical property to be correct, o
requires that the total ‘‘time’’ spent in the each basin
proportional toZi(b). However, in a general S-walk simu
lation, if the simulation is of adequate length, the peri
actually spent in each well is proportional toZi(bJ).

At very high temperaturesTJ , the probability of the ran-
dom walker is much greater to the left and to the right of t

FIG. 1. The three-parabola potential. At high temperatures, the central
is only rarely visited.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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two energy barriers. The central parabola is very seldom
ited. This corrupts the S-walk average since the trial mo
distribution introduces a bias, dependent onTJ , that is not
corrected by the acceptance probability.

A numerical study of this potential employing th
S-walk algorithm yielded an average forx2 different than the
exact average. The parameters were chosen such tha
finite energy barriers are equal to 9 energy units (j54,k1

59,k251). For TJ5100 andT50.1 the result is too large
by 20%. ForTJ510 000 andT50.1 the result is too large by
60%.

This can have catastrophic repercussions, especial
the ‘‘physics’’ happens exactly in this middle region. Th
sampling in the peripheral regions will be wasted.

In principle, one can correct the average calculated
the S-walking algorithm by including the correct state-b
state configuration integrals into the acceptance criterion
such a way as to undo the incorrect biasing of each state
that Eq.~8! becomes

T~r→r 8!5(
i

Zi~b!d~r 82Ri !. ~14!

In the simple one-dimensional example of the three
rabola potential, this is easily accomplished because one
analytically compute the necessary correction ratios. T
corrected average of the squared position for several va
of the upper temperatureTJ is shown in Fig. 2, for the cas
of the three parabola model. However, in general, one
not know partition functions for each state at the tempera
of interest,T.

IV. SMART DARTING MONTE CARLO

We have seen that the main drawback of the Sm
Walking algorithm is the breakdown of microscopic reve
ibility. If, in the evolution of the Markov chain, the system
goes from one microscopic state to a minimum energy st

FIG. 2. The dependence of the average mean square position at a th
energy ofT50.1 ~in reduced energy units! as a function of the jumping
temperatureTJ . At high jumping temperatures, the S-walk is biased towa
the outermost wells. The contribution from the central well is undere
mated and the average exceeds the exact value. Correcting the S-wa
MC method eliminates the bias and produces results that are in good a
ment with the exact average.
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the reverse move is not possible~unless the original state i
itself at a minimum!. In this section we present a ne
method based on a combination of~1! the Smart Walking
scheme and~2! the use of displacement vectors connecti
minimum energy configurations, based on an idea emplo
previously.11,12The resulting algorithm is shown to obey d
tailed balance. The gist of the method is to perform, amo
good local sampling moves, jumps not exactly to the lo
minimum of another basin, but from and to suitably chos
small neighborhoods around such minima. As shown bel
this can be done in such a way that detailed balance
achieved.

The Smart Darting method can be formulated as follow
In the process of some search method~high temperature MC,
q-jumping MC,6 etc.!, pick configurations from which to per
form steepest descents on the potential energy surface,
erating a set$Ri% i 51,2, . . . ,M of M distinct local minimum
configurations. From this set of minima constructM (M
21) displacement vectors, or ‘‘darts,’’ of the type

Di j 5Rj2Ri ,iÞ j ,i , j 51,2, . . . ,M . ~15!

Also, choose a real numbere. Then define ane-sphere
around each element of the set$Ri%,

Se~Ri !5$r uir2Ri i,e%. ~16!

For efficient sampling, the value ofe should be chosen sma
in the following sense. The difference in the potential ene
of any configuration within anySe(Ri) and the configuration
Ri of the local minimum of thate-sphere should be muc
less than the thermal energy of a degree of freedom. Loo
speaking,e should be smaller than the size of the small
catchment basin. The strict requirement one is that it be
small enough that no two spheres overlap~or the sampling
procedure presented here requires modification!. During the
habitual Monte Carlo sampling done locally within a bas
check, with probabilityP, whether the current configuratio
r is in ane-sphere and do one of the following two things

~1! If it is, say, rPSe(Rk), then randomly pick anothe
local minimum, say, thelth one, and jump to theSe(Rl)
sphere by the translation,

r→r1Dkl . ~17!

Accept or reject the move according to the Boltzmann cr
rion.

~2! If r is outside anye-sphere, thencount againthe
current configurationr ~i.e., reject an implicitly attempted
jump alongDkl because it would land outside thee-sphere
for minimum l ). The remainder of the simulation steps, o
the average a fraction 12P of them, are local MC steps
drawn from a uniform distribution and accepted or rejec
according to the Boltzmann criterion.

For this algorithm, one can prove that detailed balanc
guaranteed and the exact average of any configurat
dependent property over the accessible space is obta
Two key issues determine the detailed balance. The firs
the fact that the trial probability to pick the displaceme
vectorDkl to go from thekth e-sphere to thelth one equals
the trial probability to pick the displacement vectorDlk for
the reverse step. The second issue is that the trial probab

mal
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for a local MC step that moves the walker from a po
inside ane-sphere to a point outside that sphere is the sa
as for the reverse move, i.e., (12P) times what it would be
in a walk restricted to local moves. To give insight in th
details of the scheme, consider a simple example of a o
dimensional potential made of square wells.

Say a random walk is performed in the double squ
well potential,

U~x!5H 0 if xP@0,3#ø@4,5#

` otherwise
~18!

shown in Fig. 3. We assume a small bias that makes
centers of the two segments the local minima. Choosee
55245221. There are two displacement vectors,D
~shown in Fig. 3!, and 2D. They are used for interwel
transitions, only between@1,2# and @4,5#. The rules of the
walk are:

~1! If xP@0,1), the walker moves locally with probabilit
12P; the rest of the time, i.e., with probabilityP, it
does not move and the position is counted again;

~2! If xP@1,2#, the walker moves locally with probability
12P, or is transported to the other well with probabili
P;

~3! If xP(2,3#, see~1!;
~4! If xP@4,5#, see~2!.

It is easy to see, by writing down the master equati
that 12P is the correct weighting for the local moves out
the regions complementary to thee-spheres. Only then is th
detailed balance obeyed. If this is not accounted for, then
erroneous distribution plotted in Fig. 4 is obtained.

That this is so can be seen when taking into consid
ation two points,xP@1,2# andx8P@0,1# ~see Fig. 3! within
D of each other. HereD is the maximum displacement of
local Monte Carlo move. The probability to move fromx to
x8 is W(x→x8)5(12P)/D. Since, in the reverse move,x is
accessible fromx8 only by a local move,W(x8→x) would
equal 1/D and detailed balance would fail to hold. Thus w
see that the walker should move out ofx8 not always, but
with probability 12P, and, for reasons of conservation
probability, has to stay inx8 with probabilityP. This is why

FIG. 3. The square double well potential.
Downloaded 14 May 2001 to 128.197.30.139. Redistribution subject to A
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we count again, with probabilityP, points out ofe-spheres. It
is easy to extend the proof to nonflat, one-dimensional
tentials and further to multiple dimensions.

Three-parabola model results are shown in Fig. 5, wh
we represent the average of the position squared at diffe
temperatures, compared with the exact result obtained
analytical integration. For this example, the S-walking M
results stand outside the bounds of the plot.

It is worth discussing the design of the Smart Darti
Monte Carlo approach from the point of view of comput
tional efficiency. Conceptually, the following procedu
would be simpler than the one discussed so far, in tha
eliminates thee-spheres and the associated rejection of n
moves. First, construct the set ofM (M21) darts represent
ing both forward and reverse moves between all pairs
minima. At each step, with probabilityP, choose one of
theseM (M21) darts at random, without regard to the cu
rent position of the walker. Accept or reject this jump wi
the usual Metropolis probability. This gives a valid MC wa
with unbiased trial move probabilities;11 we have simply ex-

FIG. 4. Probability density function for the square double well potent
The thick line is the correct density, while the dotted line results fro
omitting the double counting when the walker is outside anye-sphere.

FIG. 5. The dependence of the average mean square position, in the p
tial of the three-parabola model, as a function of the temperatureT, gener-
ated using Smart Darting Monte Carlo~line with circles! overlapped with
the exact theoretical dependence~continuous line!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



t
w

a

a

ay
re
us
t

th
au
s
ro

m
tly
th
rs

r

re
k-

is
e
po
e
fo
e
a
he
u

e

te
us
tio

th

it
T

at
yp

bl
n
o

one
, a
ing

in a

m-

os-
e by
ra-
was

is
de-

elf-

y-
ven
ase
ergy
en-

’

r

tive

, it
hase

tric
rlo
the
hus
ng
-

nt
due
e

sult
er-
all
ra-

6998 J. Chem. Phys., Vol. 114, No. 16, 22 April 2001 Andricioaei, Straub, and Voter
tended the normal list of possible moves to include the se
dart moves. It is not an efficient procedure, however, for t
reasons. Selecting randomly from all the darts will give
dart that originates in the current state only a fraction (1/M )
of the time. AsM becomes large, this is a serious problem,
most dart jumps will be rejected. Second, even when
‘‘proper’’ dart ~one that originates in the present basin! is
chosen, the probability that the jump will be accepted dec
with increasing distance from the basin minimum. The c
ation of thee-sphere solves both of these problems. Beca
all e-spheres are the same size and the darts connec
centers, every point in one sphere maps~via darts! onto an
equivalently located point in every other sphere. Thus,
trial probabilities for the forward and reverse jumps are
tomatically matched for jumps originating within sphere
and are zero for points outside any sphere. The second p
lem is addressed by limiting the size ofe, as discussed
above. So, in the procedure proposed above, the 1/M ineffi-
ciency is eliminated, but the procedure is slightly more co
plicated. It requires determining if the walker is presen
within a sphere and double counting of positions outside
spheresP fraction of the time. Moreover, if the walker ente
a new basin purely by local moves~as might happen at high
temperatures!, this must be recognized, because the walke
now entering the proximity of a differente-sphere. For large
M, efficient implementation of this monitoring may requi
neighbor-listing of the minima or some other form of boo
keeping, to prevent frequent searches over allM minima.

A method similar in spirit with the one we presented
the Jumping Between Wells method,13 which uses the sam
paradigm of generating good thermal averages once im
tant low-energy conformations are known. While it has be
successful for the calculations of free energy differences
small organic molecules, the JBW method lacks the conc
of the e-sphere and jumping is allowed from any configur
tion. As a result, it is expected to perform poorly as t
complexity of the potential energy surface increases, beca
jumping from points far from low energy minima will b
rejected with a large probability, as discussed above.

V. APPLICATION TO LENNARD-JONES CLUSTERS

We have applied the method of Smart Darting Mon
Carlo to the calculation of thermodynamic averages of cl
ters of atoms. In this section we describe the implementa
of the algorithm and the results obtained.

We model the interaction between pairs of atoms in
cluster by the Lennard-Jones potential,

V~r !5
1

r 12
2

2

r 6
, ~19!

where the energy unit is the well depth and the length un
the separation between two atoms when at equilibrium.
prevent the ‘‘vaporization’’ of atoms during simulations
high temperatures, we added a confining potential of the t
(r /r 0),20 where r 0 is larger than the size of the minimum
configuration of the cluster. This confinement has negligi
effect on the energetics of the ‘‘condensed’’ configuratio
of the clusters. To eliminate the six degrees of freedom c
Downloaded 14 May 2001 to 128.197.30.139. Redistribution subject to A
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responding to the rotation and translation of the cluster,
atom was fixed at the origin of the coordinate system
second atom was constrained to move on a line contain
the first atom, and a third atom was constrained to move
plane containing this line.

The number of minima increases rapidly with the nu
ber of atoms in the cluster. Hoare and Pal14 have cataloged
the configurations of small clusters. An 8-atom cluster p
sesses 8 minima, which we have found and stored for us
the algorithm. Connecting these minimum energy configu
tions thus creates 56 darts. The reduced temperature
0.05.

To measure the extent to which the phase space
sampled we have computed the ergodic measure, whose
pendence on the simulation time gives the rate of s
averaging in an equilibrium calculation.15 Self-averaging is a
necessary, but not sufficient, condition for the ergodic h
pothesis to be satisfied. The rate of self-averaging for a gi
property is expected to be proportional to the rate of ph
space sampling. We have chosen to use the potential en
as the property whose average is calculated for two indep
dent trajectoriesa and b. We define the ‘‘move average’
over the Monte Carlo trajectory of the potential energyU for
the jth particle along thea trajectory aftern moves as

uj
a~n!5

1

n (
k

n

U j~r k
N!. ~20!

The ergodic measure is then defined as the sum oveN
particles,

dU~n!5
1

N (
j

@uj
a~n!2uj

b~n!#2. ~21!

For an ergodic system, ifn→`, thendU(n)→0. For largen
we expect the form of the convergence to be diffusive,16

dU~0!

dU~n!
5DUn, ~22!

where DU is a rate for self-averaging ofU over the two
independent trajectories. We associate rapid and effec
sampling of phase space with a large value ofDU . The
choice of the potential energy metric is arbitrary. However
has been shown to be a good measure of the extent of p
space sampling in a variety of systems.17

The results are shown in Fig. 6, where the energy me
is displayed as a function of the number of Monte Ca
steps; the plot is the result of averaging over 10 runs with
same two initial basins but different random seeds, and t
different evolution in configurational space. The darti
probability is P50.1. In Fig. 7, the continuous line repre
sents a typical ‘‘time’’ series of the Euclidean distanceDs of
the current configuration from the minimum of the curre
basin in which the last dart landed. The tallest peaks are
to ‘‘darting.’’ They are followed by a rapid decrease of th
distance to the local minimum.

To address the problem of the dependence of the re
on the number of minima we have also calculated the av
age internal energy of the cluster not only by constructing
the darts between all the eight minimum energy configu
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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tions, but also by leaving out a number of the minima, ch
sen at random. Figure 8 presents the results when two,
and all eight minima are used in the construction of the d
ing vectors. Even if the exclusion of some of the minima s
gives the average around the correct result, one expects
in general applications of this method a sufficient number
the thermodynamically significant conformational states
at hand. We also plot in this figure the average energy for
case of the Smart Walking algorithm10 using all 8 minima.
The slightly different value of this thermodynamic average
due to the breakdown of detailed balance.

VI. APPLICATION TO ALANINE DIPEPTIDE

We have performed tests on the alanine dipepti
N-acetylalanyl-N-methylamide~AcAlaNHMe!, a model sys-
tem used extensively in theoretical studies of the conform
tional equilibrium in proteins. The peptide is on one ha
small enough to allow thermodynamical18 and quantum
mechanical19 calculations, and on the other hand has ba
bone configurations which are prototypical for the polype
tide backbone of proteins.

FIG. 6. The ergodic measure for the Smart Darting MC~shown with circles!
and for the standard MC~shown with diamonds!.

FIG. 7. The distance of the current position from the position of the m
mum of the last basin at low temperature, when the assumption that i
basin moves occur only by darting is true.
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We have used the CHARMM force field with the ve
sion 19 parameter set in vacuum. The conformational dis
bution of the alanine dipeptide in vacuum is dominated
two configurations,C7eq and C7aq, and we have used thes
two conformations to create the~two! darts. In order to de-
scribe the conformational sampling efficiency, we have u
the nonbonded force metric, which has been originally u
for proteins17 and has been proven to be a good measure
ergodicity for such systems. The nonbonded force metri
similar to the energy metric used for the cluster, except t
the self-averaging quantity is now the force coming from t
nonbonded interactions of the peptide. That is, we calcul
for two trajectoriesa andb, the move average

Fj
a~n!5

1

n (
k

n

Fj~r k
N!. ~23!

The nonbonded force metric is defined as the average
the number of particles of the mean square difference of
two move averages,

dF~n!5
1

N (
j

@Fj
a~n!2Fj

b~n!#2. ~24!

For an ergodic system, we again expectdF(n)→0 as
n→`.

Figure 9 shows the force metric as a function of t
Monte Carlo sweeps for regular MC vs Smart Darting M
The temperature wasT5200 K, the darting probabilityPJ

50.1 and we have used a value ofe51.5 Å. At this low
temperature, the peptide faces a rugged energy lands
with barriers that cannot be overcome using standard Mo
Carlo in the time scale of our simulations.

VII. DISCUSSION

Due to its importance for condensed phase simulatio
host of methods have been devised to calculate equilibr
averages by an enhanced configurational space search o
tems suffering from broken ergodicity. There exists a nu

-
r-

FIG. 8. The average potential energy for the 8-atom cluster in the follow
cases, from top to bottom, respectively, using the Smart Darting me
when only 2 of the minima considered~top, thick line!, when only 5 of the
minima are considered~dotted line!, with all 8 minima considered~thin
line!, and using the Smart Walking method with all 8 minima conside
~bottom, rare dotted line!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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ber of methods which efficiently identify collections of loc
minima, ranging from simple random generation of config
rations followed by local minimization,20 to more elaborate
propulsions over the saddles of the potential ene
surface.21 The method presented here is an implementa
of an exact~under reasonable assumptions! algorithm that
calculates thermodynamic averages over the available
figurational space, once its minima have been found.

The Smart Darting MC algorithm is effective in ove
coming broken ergodicity and providing accurate equil
rium averages. The local minimum configurations that fo
the center of thee-spheres, can, in principle, be generated
any number of ways including sampling from non-Gibb
Boltzmann distributions. Care must be taken, however
choosee small enough that trial jumps have a significa
probability of being accepted.

To achieve this efficiency, the size ofe can be deter-
mined in a number of ways. One way would be to perform
standard MC run at the temperature of interest and mea
the standard deviation of the position of the walker. Altern
tively, one could choose a random direction, plot the pot
tial energy dependence along that direction, and choosee as
an average of the length around minima along which

FIG. 9. The nonbonded force ergodic measure computed during simula
of the AcAlaNHMe dipeptide using the Smart Darting MC~shown with
crosses! and for the standard MC~shown with circles!.
Downloaded 14 May 2001 to 128.197.30.139. Redistribution subject to A
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e

variation of the potential energy is much less than the th
mal energy. The only strict requirement one is that the
spheres do not overlap, or the sampling rules must be m
fied.

The advantage of this method, relative to other te
niques such as simulated tempering, parallel temper
J-walking or q-jumping Monte Carlo is that one is relieve
of the burden of connecting states with overlapping distrib
tions created by a manifold of temperatures or deformed
tential energy surfaces. As such, the algorithm is particula
well suited for the simulation of deeply quenched syste
such as peptides, proteins, or spin systems at low temp
ture.
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