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Generalized Monte Carlo and molecular dynamics algorithms which provide enhanced sampling of
the phase space in the calculation of equilibrium thermodynamic properties is presented. The
algorithm samples trial moves from a generalized statistical distribution derived from a modification
of the Gibbs–Shannon entropy proposed by Tsallis. Results for a one-dimensional model potential
demonstrate that the algorithm leads to a greatly enhanced rate of barrier crossing and convergence
in the calculation of equilibrium averages. Comparison is made with standard Metropolis Monte
Carlo and the J-walking algorithm of Franz, Freeman and Doll. Application to a 13-atom
Lennard-Jones cluster demonstrates the ease with which the algorithm may be applied to complex
molecular systems. ©1997 American Institute of Physics.@S0021-9606~97!52045-9#
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I. BACKGROUND

The ergodic hypothesis states that the time average o
observable equals the phase-space average. However
cause of the finiteness of the simulation time, trajector
starting in different regions of the phase space may resu
distinct time averages. Statistical theories of chemical s
tems are often faced by such problems of ‘‘nonergodicit
or ‘‘broken ergodicity.’’

Computer simulations of chemical reaction dynam
have demonstrated that the assumptions of statistical the
are often not met. For microcanonical~constant energy! re-
actions, in the KAM regime the reacting system may
‘‘nonergodic,’’ due to impermeable barriers~invariant tori1!
which limit the region of phase space a trajectory may
plore, or ‘‘quasiregular,’’ due to semipermeable partitio
~vague tori2 or cantori3! which can greatly reduce the rate
travel through phase space. A statistical rate theory, wh
assumes that the phase space of the entire reaction reg
accessible to any reactant regardless of its initial state,
greatly underestimate the reaction rate.4

The breakdown of statistical rate theory extends into
canonical ~constant temperature! ensemble. An
N-dimensional reaction system may be divided into a re
tion coordinate andN-1 nonreactive coordinates. In the r
gime of fast intramolecular vibrational relaxation~IVR!, the
rate of energy equipartitioning between nonreactive coo
nates and the reaction coordinate is fast compared with
reaction time scale and the reaction system is effectiv
N-dimensional. Due to damping of the nonreactive mode
a change in the nonlinear coupling between modes, the
of energy exchange between a nonreactive mode and
reaction coordinate can become slower than the reaction
In this regime of ‘‘slow IVR,’’ nonreactive modes are effec
tively eliminated from the reaction system and the dime
sionality of the reaction system is reduced. This dynam
effect has been shown to lead to a significant decrease in
reaction rate in the energy diffusion regime.5,6

Calculation of equilibrium properties can be effected
similar ways. Nonergodicity can subvert the ergodic hypo
J. Chem. Phys. 107 (21), 1 December 1997 0021-9606/97/107(21
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esis~the indecomposable character of the measure! and av-
erages derived from molecular dynamics computer simu
tion may differ greatly from the predictions of a statistic
theory. However, the solution is straightforward. Using no
molecular dynamics or Monte Carlo~MC! simulation it is
possible to effectively sample nonergodic systems.7

Exploring systems whose phase space is partitioned
‘‘broken ergodicity’’ is a much greater challenge. Broke
ergodicity results when the time scale for measuremen~a
simulation or experimental average! is shorter than an impor
tant relaxation time scale for the system. In such cases
average which is calculated effectively ‘‘breaks’’ into sum
of subaverages. Each subaverage is taken over a subset
phase space. The problem is acute in complex disorde
systems where the potential energy surface is rugged
regions of configurational space may be separated by en
barriers which are much greater than the thermal energy.
many systems of interest, such as proteins and glasses
time scale for functionally important motions greatly excee
that of molecular dynamics simulation.8 Enhanced sampling
algorithms which increase the frequency of barrier cross
allowing for an accelerated search of phase space are e
tial if reliable equilibrium averages are to be computed.

An important property of the sampling distribution
that it should include a significantly enhanced probability
making long range moves or simply visiting barrier region
In systems such as proteins and glasses, it is difficult to m
nonlocal moves which lead to thermodynamically importa
regions of phase space. A number of advances in Mo
Carlo methodology which address the problem of brok
ergodicity9 have been reported in recent years. Rossky, D
and Friedman10 proposed the use of Brownian dynamics a
smart way of doing Monte Carlo simulations. Cao and Be
have developed an ‘‘anti-force bias’’ Monte Carlo method11

Anti-force bias Monte Carlo encourages the system to m
toward minima in a convex region of the potential surface,
over barriers in a nonconvex region of the potential surfa
The algorithm accelerates barrier crossing which may be
infrequent event. Frantz, Freeman and Doll12 have proposed
9117)/9117/8/$10.00 © 1997 American Institute of Physics
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9118 I. Andricioaei and J. E. Straub: Monte Carlo and molecular dynamics
the J-walking method which uses a high temperature MC
to generate trial moves. At high temperatures, barriers m
be crossed easily, overcoming problems of broken ergo
ity. The trial moves are accepted so as to compute aver
at a lower temperature of interest. The J-walking method
a related method of Ferrenberg and Swendsen13 have been
employed by Tsai and Jordan to examine phase change
small rare gas and water clusters.14 Multicanonical Monte
Carlo15 and cluster move methods16 have been developed t
address problems of critical slowing down associated w
phase transitions. These methods have also found some
cess in simulations of biomolecular systems17 with moderate
associated computational overhead.

In this paper we present an enhanced sampling algori
based on the generalized thermodynamics proposed
Tsallis.18 The algorithm generates a Monte Carlo wa
through a well-defined generalized statistical distribution.
appropriately weighted average allows us to calculate e
librium thermodynamic averages for the Gibbs–Boltzma
canonical ensemble. This generalized Monte Carlo algori
is compared with standard Monte Carlo, and the J-walk
algorithm of Franz, Freeman and Doll.12 Application to a
one-dimensional model potential and a 13-atom cluster m
eled by Lennard-Jones interactions demonstrates the
hancement in sampling and efficiency in the computation
equilibrium thermodynamic averages.

II. GENERALIZED MONTE CARLO ALGORITHM

In this section we present a short introduction to t
Tsallis statistical mechanics. Equilibrium distributions a
derived and a Monte Carlo algorithm for sampling these d
tributions is defined. The properties of the algorithm and
general feature of enhanced frequency of barrier crossing
described in detail.

A. Tsallis statistics and generalized Monte Carlo
methods

In the generalized statistical mechanics proposed
Tsallis, the ‘‘generalized entropy’’ for an N-body system
defined as18,19

Sq5
k

q21E pq~rN!~12@pq~rN!#q21!drN, ~1!

whereq is a real number andSq tends to the Gibbs–Shanno
entropyS52k*p(rN)lnp(rN)drN whenq51. To derive the
configurational probability distribution function the genera
ized entropy is extremized subject to the constraints

E pq~rN!drN51, E @pq~rN!#qU~rN!drN5Uq , ~2!

where U(rN) is the potential energy. The probability of
point in configuration space is found to be

pq~rN!5
1

Zq
@12~12q!bU~rN!#1/~12q!, ~3!

where
J. Chem. Phys., Vol. 107, N
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Zq5E @12~12q!bU~rN!#1/~12q!drN ~4!

is the generalized configurational partition function.
We have proposed a Monte Carlo algorithm based on

acceptance probability

p5minF1,S pq~rnew
N !

pq~rold
N !

D qG . ~5!

This algorithm has been used to sample an equilibrium
tribution proportional to@pq(rN)#q in the conformational op-
timization of a tetrapeptide.20 It was found that whenq.1
the search of conformational space was greatly enhan
over standard Metropolis Monte Carlo methods. In this p
per, we explore the use of this algorithm for the computat
of equilibrium thermodynamic averages.

Note that by defining the effective potential

Ū5
q

b~q21!
ln@12~12q!bU# ~6!

the Monte Carlo acceptance probability Eq.~5! can be writ-
ten in the familiar form

p5min@1,exp~2bDŪ !#. ~7!

The standard Metropolis Monte Carlo method correspond
the q51 limit in which case the probability of accepting
new configuration of the system is

p5min@1,exp~2bDU !#, ~8!

whereDU5U(rnew
N )2U(rold

N ).
In the remainder of this section, we explore the prop

ties of the Tsallis statistical Monte Carlo algorithm and
related molecular dynamics method.

B. Detailed balance and equilibrium averages

Equilibrium average properties are calculated using
statistical weighting of the probabilitypq(rN) of Eq. ~3!
raised to the power ofq as required by the generalized st
tistical mechanics. The average of an observableO is defined
by the so-called ‘‘q-expectation value’’

^O&q5E @pq~rN!#qO~rN!drN. ~9!

Consistently, the detailed balance condition is written as

@pq~x!#qW~x→x8!5@pq~x8!#qW~x8→x!, ~10!

whereW(x→x8) is an element of the transition matrix.
The walk generated by Eq.~5! will sample the configu-

ration space according to the distribution@pq(rN)#q. For
most potentials, the moments ofpq(rN) are well-defined and
finite. In contrast, for certain values ofq and a harmonic
potential, the distributionpq(rN) can have infinite variance
and higher moments. Still, this is of no practical concern
the simulation since a reweighting of the contribution of ea
phase point is performed~see Section II D! to obtain mo-
ments of the Gibbs–Boltzmann distribution. However, for
q the distribution@pq(rN)#q is well-behaved for a harmonic
o. 21, 1 December 1997
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9119I. Andricioaei and J. E. Straub: Monte Carlo and molecular dynamics
potential. This is important in the simulation of chemic
systems where at low temperature the potential energy ne
minimum is often effectively harmonic.

C. Dependence on the statistical distributions on the
zero of energy

In contrast to our expectations developed in the Gibb
Boltzmann statistical mechanics, in theqÞ1 regime, the
relative probability of two states depends on the choice
the zero of energy.18 For example, for a constant potenti
shift e

pq~rnew
N !

pq~rold
N !

5F12~12q!b~U~rnew
N !1e!

12~12q!b~U~rold
N !1e!

G 1/~12q!

, ~11!

Eq. ~11! can be rewritten as

pq~rnew
N !

pq~rold
N !

5F12~12q!b8U~rnew
N !

12~12q!b8U~rold
N !

G 1/~12q!

, ~12!

where the potential shifte has been absorbed in an effecti
temperature such that

1

b8
5

1

b
2~12q!e. ~13!

In the q51 limit of Gibbs–Boltzmann statistics, the effec
tive temperature equals the standard temperature. Other
the potential shift has the effect of shifting the temperature
which the distribution is computed. For our purposes,
take e to be an adjustable parameter which, like the acc
tance ratio, may be optimized for a Monte Carlo run.

One might think that the larger the value ofq ~meaning
a broader distribution function! the better for the enhance
ment of the phase space sampling. However, there
weaker dependence on q of the acceptance probabiltiy. Aq
goes to infinity, the acceptance saturates

lim
q→`

pq
q~rnew

N !

pq
q~rold

N !
5

U~rold
N !

U~rnew
N !

. ~14!

This is reflected in the numerical simulation of a one dime
sional potential discussed in a subsequent section.

D. Exact calculation of equilibrium averages by Tsallis
statistical Monte Carlo method

Our enhanced sampling algorithm will be used to cal
late standard, Gibbs–Boltzmann equilibrium thermodynam
averages over a trajectory which samples the generalized
tistical distribution. The equilibrium average over configur
tion space for a given mechanical propertyA(rN) in the Tsal-
lis statistics is defined by theq-expectation value using Eq
~9! as

^A&q5
1

Zq
qE A~rN!@12~12q!bU~rN!#q/~12q!drN. ~15!

Using this definition, the equilibrium thermodynamic ave
age ofA in the q51 canonical ensemble may be written
J. Chem. Phys., Vol. 107, N
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^A&15K Ae2bU~rN!

@12~12q!bU~rN!#q/~12q!L
q

3K e2bU~rN!

@12~12q!bU~rN!#q/~12q!L
q

21

. ~16!

Using this expression, the standardq51 equilibrium average
properties may be calculated over a trajectory which sam
the Tsallis statistical distribution forqÞ1.

E. J-walking Monte Carlo and the histogram method

In the J-walking algorithm, a Monte Carlo trajectory
generated at a temperature 1/b. With a probability (1
2PJ), a move is generated uniformly in a limited regio
leading to a change in potential energy ofDU. The move is
accepted with a probability

p5min@1,exp~2bDU !#. ~17!

With a probabilityPJ , a ‘‘jump’’ move is randomly selected
from an equilibrium Boltzmann distribution generated at
higher temperature 1/bJ . The acceptance probability for th
jump is

p5min@1,exp~~bJ2b!DU !#. ~18!

By allowing jumps chosen from a high temperature distrib
tion, the J-walking algorithm encourages trajectories to ov
come barriers which would be infrequently scaled at
lower sampling temperature.

As noted by Tsai and Jordan, the special case of
J-walking algorithm when the jump probabilityPJ51 is
equivalent to the single histogram method of Ferrenberg
Swendsen.13 Thermodynamic averages at a given tempe
ture 1/b may be calculated from a Monte Carlo trajecto
generated at a higher temperature 1/bJ . For example, if the
average ofA(rN) over a high temperature trajectory atbJ is

^A&bJ
5

1

ZbJ

E A~rN!exp~2bJU~rN!!drN, ~19!

then the equilibrium thermodynamic average ofA at b is14

^A&b5^Ae~bJ2b!U~rN!&bJ
^e~bJ2b!U~rN!&bJ

21. ~20!

The key to an effective algorithm of the histogram/
walking variety is to identify the optimal balance of the tim
spent in thermodynamically important basins of conform
tion spaceversustime spent in thermodynamically unimpo
tant ~high energy barrier! regions of the potential that ar
useful for traveling between basins. Choosing too low a sa
pling temperature 1/bJ will not overcome ‘‘broken ergodic-
ity’’ or lead to enhanced barrier crossing. Choosing too h
an effective temperature will bias the Monte Carlo wa
away from the thermodynamically most important regions
phase space. Therefore, we can expect to identify an opt
choice ofbJ and PJ which leads to the most rapid compu
tation of equilibrium averages.

We adopt a protocol similar to that of the J-walkin
algorithm to implement with the Tsallis statistical Mon
o. 21, 1 December 1997
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9120 I. Andricioaei and J. E. Straub: Monte Carlo and molecular dynamics
Carlo. We dub it ‘‘q-jumping.’’ With probability Pq , we
randomly sample from configurations distributed accord
to the Tsallis statistical distribution. With probability
2Pq we sample according to the Gibbs–Boltzmann dis
bution. When the move is suggested from theq.1 distribu-
tion, it is accepted with the probability

p5minF1,e2bDUS pq~rold
N !

pq~rnew
N !

D qG . ~21!

The rest of the time, the acceptance probability is giv
by Eq.~8!. The proof of detailed balance is straightforwar
Denoting byTq(x→x8) the probability to suggest a mov
andAq(x→x8) the probability to accept it, for a givenq, the
transition matrixWq(x→x8)5Tq(x→x8)Aq(x→x8) and we
have

Pqp~x!Wq~x→x8!1~12Pq!p~x!W1~x→x8!

5Pqp~x8!Wq~x8→x!1~12Pq!p~x8!W1~x8→x!,
~22!

where Tq(x→x8)5(1/Zq
q)(12(12q)bU(x8))q/(12q) when

q.1 andTq(x→x8)51/D whenq51, Aq(x→x8) is given
by Eq.~21! for q.1 andAq(x→x8) is given by Eq.~8! for
q51. Thus configuration space will be sampled according
the Gibbs distribution at temperature 1/b.

F. Generalized molecular dynamics

As an alternative to MC sampling, one may sample
Tsallis probability distribution using an MD-based alg
rithm. For a given potential energy functionU(rN), the cor-
responding generalized statistical probability distributi
which is generated by the generalized Monte Carlo algorit
is Pq(rN)5@pq(rN)#q. Consider the generalized distributio
Pq(rN) to be generated in the Gibbs–Boltzmann canon
ensemble (q51) by an effective potentialW q(rN;b) which
is defined as

Pq~rN!5exp~2bW q~rN;b!! ~23!

such that whenq51, W (rN;b)5U(rN). For qÞ1, the ef-
fective potential will depend on temperature as well as
coordinates.

Given this effective potential, it is possible to define
constant temperature molecular dynamics algorithm s
that the trajectory samples the distributionPq(rN). The
equation of motion takes on a simple and suggestive for

mk

d2r k

dt2
52¹ rk

Ū52¹ rk
U~rN!q@12~12q!bU~rN!#21

~24!

for a particle of massmk and positionr k and Ū defined by
Eq. ~6!.

The effective force derived from the effective potent
W (rN) has a number of interesting properties. It is of t
form Fq(rN;b)52¹ rk

Ū5F1(rN)aq(rN;b) where F1(rN)
is the ‘‘exact’’ force for standard molecular dynamics (q
51) andaq(rN;b) is a scaling function which is unity whe
q51 but can otherwise have a strong effect on the dynam
J. Chem. Phys., Vol. 107, N
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Assume that the potential is defined to be a posit
function. In the regimeq.1, the scaling functiona(rN,b) is
largest near low lying minima of the potential. In barri
regions, where the potential energy is large, the scaling fu
tion a(rN,b) is small. This has the effect of reducing th
magnitude of the force in the barrier regions. Therefore
particle attempting to pass over a potential energy bar
will meet with less resistance whenq.1 then whenq51. At
equilibrium, this leads to more delocalized probability dist
butions with an increased probability of sampling barrier
gions. This argument demonstrates that whenq.1 the gen-
eralized molecular dynamics or Monte Carlo trajectories w
cross barriers more frequently and explore phase space m
efficiently.

G. Proof of sampling distribution by the
Kolmogorov–Smirnov test

We want to demonstrate that the generalized M
method samples the Tsallisian distribution. To do this,
employed the Kolmogorov–Smirnov test. We chose a h
monic potential, with temperatureT51 andq52. The the-
oretical cumulative probability distribution can be obtain
by integration of the probability in Eq.~23! for a harmonic
oscillator. Using 1000 samples equidistantly sampled from
104 step simulation, the significance level of agreement
tween the analytical distribution and that generated by so
tion of Eq. ~24! was higher than 99.5%. A plot of the cumu
lative probability distribution obtained by the generaliz
MD simulation can be seen in Fig.1. The overlapped th
retical cumulative probability distribution is almost indistin
guishable.

FIG. 1. The cumulative probability distribution generated by the generali
MD algorithm using the effective potential agrees well with the analyti
distribution.
o. 21, 1 December 1997
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9121I. Andricioaei and J. E. Straub: Monte Carlo and molecular dynamics
III. A MODEL POTENTIAL

In this section the properties developed in the previo
section are explored for the case of a one-dimensional m
potentialU(x) defined as

U~x!5x22ae2b~x12!2
2ce2d~x22!2

2 f e2g~x23!2
1e,

~25!

wheree is a constant potential shift that will make certa
that the potential energy has positive values only. This
ergy function consists of four minima imposed on a h
monic background potential~see Fig. 2!. We have used the
parametersa5 f 515,b5c510,d5g53. The heights of the
barriers separating the four minima vary greatly.

A. Tsallis statistical distributions and Monte Carlo
walks

The generalized statistical distributions shown in Fig
are compared with the standardq51 distribution. Forq
.1 the distribution shows a significantly higher relati
probability of being in the barrier region relative to th
minima. This feature manifests itself during a Monte Ca
walk in a much higher frequency of barrier crossing. Fig
shows a Monte Carlo walk forq51 which is characterized
by infrequent hopping. Forq52, the trajectory is much more
delocalized as would be predicted for a jump diffusion p
cess generated by a random sampling of the Tsallis statis
distribution.

B. Optimizing an algorithm

Throughout this study we employ as an indicator of t
optimal values of the parameters the ergodic measure.
ergodic measure estimates the rate of self-averaging in
equilibrium MC or MD calculation.21,22,8Self-averaging is a
necessary but not a sufficient condition for the ergodic
pothesis to be satisfied. The rate of self-averaging for a gi
property is expected to be proportional to the rate of ph
space sampling. We have chosen to use the potential en
metric defined for two independent trajectoriesa andb. We
define the ‘‘move average’’ over the Monte Carlo trajecto
of the potential energyU for the j th particle along thea
trajectory aftern moves as

uj
a~n!5

1

(k
nw~r k

N!(k

n

w~r k
N!U j~r k

N!. ~26!

w(r k
N) is a weighting factor for any property at a given p

sition on thekth stepr k
N . For a Metropolis Monte Carlo run

the weighting factor is unity. For a generalized Monte Ca
run the weighting factor is given by Eq.~16!. The ergodic
measure is then defined as the sum overN particles

dU~n!5
1

N(
j

@uj
a~n!2uj

b~n!#2. ~27!

For an ergodic system ifn→`, thendU(n)→0. By analogy
with molecular dynamics, for largen we expect the form of
the convergence to be23
J. Chem. Phys., Vol. 107, N
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dU~n!5dU~0!
1

DUn
, ~28!

where DU is a rate for self-averaging ofU over the two
independent trajectories.

Throughout this study, we associate rapid and effect
sampling of phase space with a large value ofDU . The
choice of the potential energy metric is arbitrary. However

FIG. 2. ~a! The one-dimensional model potential is drawn with a heavy li
The normalized equilibrium probability distributions are displayed over
model potential forq52 andq51 for the model potential. The Boltzman
distribution corresponds toq51. ~b! Probability distributions forq52 at
different temperatures. Note that even at the low temperature, the rel
probability of being in the barrier region as opposed to the well region
significantly greater whenq.1 and does not level off with increasing tem
perature.
o. 21, 1 December 1997
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9122 I. Andricioaei and J. E. Straub: Monte Carlo and molecular dynamics
has been shown to be a good measure of the extent of p
space sampling in a variety of systems. For the Monte C
algorithms studied, we vary the parameters of the algorit
to determine the optimal parameter set which maximi
DU .

For all Monte Carlo algorithms there is the acceptan
ratio which can be optimized. For the histogram/J-walki
algorithm with fixed PJ , the sampling temperature 1/bJ

should be optimized. One of the problems of the J-walk
algorithm is the lack ofa priori knowledge of the higher
temperature distributions. For the generalized Monte Ca
algorithm, the two additional parameters~1! the potential
energy shifte and ~2! the parameterq should be optimized.
In this work, we take the optimal value of any parameter
the algorithm to be that which maximizesDU— the rate of
self-averaging of the thermodynamic potential energy.

In Fig. 4 the generalized diffusion coefficientDU is
shown to have a clear maximum as a function of the step
for the MC protocol. The optimal choice of the time step c
be derived from an exploratory plot of this kind. Similarl
the potential energy shifte ~see Fig. 6! and the parameterq
~see Fig. 5! may be optimized by maximizingDU .

In general, we expect correlations inDU between the
values ofDx, e and q and an iterative optimization is bes
performed. However, due to the simple behavior ofDU on
each parameter, the correlation between parameters is

FIG. 3. Time series for Monte Carlo runs generated with~a! q51 and~b!
Tsallis statistical Monte Carlo (q52). The number of barrier crossings an
extent of conformation space explored is significantly greater forq52. The
qualitative features are the same for walks generated by the genera
molecular dynamics algorithm.
J. Chem. Phys., Vol. 107, N
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FIG. 4. The potential energy metric diffusion coefficientDU generated by
generalized Monte Carlo forq52 as a function of the MC maximum ste
Dx for the one-dimensional model potential. The optimal value ofDx is that
which maximizes the diffusion coefficientDU and the rate of self-averaging
of the potential energy. Each point’s ordinate represents the average slo
the inverse metric calculated over 100 pairs of initial conditions. In e
pair, one initial condition starts in the right well, the other in a left well.

FIG. 5. The potential energy metric diffusion coefficientDU generated by
generalized Monte Carlo forq52 as a function of the Tsallis ‘‘q’’ param-
eter for the one-dimensional model potential. The optimal value of ‘‘q’’ is
that which maximizes the diffusion coefficientDU and the rate of self-
averaging of the potential energy. Note the saturation of the diffusion c
ficient, paralleling the saturation of the acceptance in Eq.~ 5! for increasing
q.
o. 21, 1 December 1997
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9123I. Andricioaei and J. E. Straub: Monte Carlo and molecular dynamics
pected to be weak which allows for a rapid convergence
set of optimal parameter values. In accordance with Eq.~13!
the temperature dependence ofDU is expected to behave a
the dependence on potential shifte. This is seen in Fig. 6.

IV. APPLICATION TO A 13-ATOM CLUSTER

We have applied the algorithm to a cluster of 13 atom
The potential is pairwise additive, each pair interaction c
sisting of a Lennard-Jones potential expressed in ene
units of the well depth and length units of the pair equil
rium distance

V~r !5
1

r 12
2

2

r 6
, ~29!

where r is the interatomic distance. To confine the ato
during the conjugate gradient search, we have also adde
the Lennard-Jones pairwise interaction a confining bound
potential of the type (r /r 0)a, wherer 055. Because of the
shape of such a confinement, it has a negligible effect on
small interatomic distances. We have chosen a value oa
520.

A. Low temperature dynamics

To show the breakdown of ergodicity at low temper
tures, we show in Fig. 7 the energy metric for our method
comparison with the normal Metropolis Monte Carlo. O
method consists of theq-jumping algorithm described earlie
with q52. The simulation was performed at a temperature
0.2 reduced units~Boltzmann’s constant is unity!.

The energy metric is computed by starting from tw
configurations that are different in the sense that conjug

FIG. 6. The potential energy metric diffusion coefficientDU generated by
generalized Monte Carlo forq52 as a function of the potential energy sh
e for the one-dimensional model potential. The optimal value ofe is that
which maximizes the diffusion coefficientDU and the rate of self-averagin
of the potential energy.
J. Chem. Phys., Vol. 107, N
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gradient minimization applied to each configuration leads
different minimized configurations. That is, the initial co
figurations were in different ‘‘catchment regions’’~or ‘‘ba-
sins of attraction’’!. In this range of temperature~0.2–0.4
reduced units! it is known that the argon clusters, for ex
ample, exist in a region of coexistence between liquid-l
and solid-like structures. The coexistence region is defi
by the temperature range bounded by the melting and fre
ing temperatures. The minimum energy geometry is
icosahedron. This so-called ‘‘magic number’’ cluster is
standard because it exhibits a large energy gap between
‘‘ground state’’ of potential energy and the ‘‘first-excited
state, and a time-scale difference exists between inter-
intrawell motions. As a consequence it has a sizeable co
istence region.

The q-jumping Monte Carlo algorithm provides fo
rapid convergence of the equilibrium average of the poten
energy while the standard Monte Carlo simulation sho
little or no convergence over the length of the runs. In t
case, theq-jumping MC algorithm is effective in overcoming
the broken ergodicity encountered at low temperatures.

B. Comparison of algorithms

In Fig. 8 we show the comparison of the rate of se
averaging of the potential energy for a 13-atom cluster us
the q-jumping and the J-walking MC methods. Theq-jump
method has a self-averaging rate roughly twice that of
J-walking algorithm. In the J-walking method, because
distributions at higher temperatures do not overlap with

FIG. 7. The convergence of the average potential energy in the case of a
temperature 13-atom cluster is shown forq-jumping Monte Carlo~lower
curve! and standard Metropolis Monte Carlo~upper curve!. There is essen-
tially no convergence for the standard Monte Carlo trajectories which
trapped in their initial basins. Theq-jumping Monte Carlo method is effec
tive in allowing for transitions between basins leading to rapid converge
of the average potential energy.
o. 21, 1 December 1997
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9124 I. Andricioaei and J. E. Straub: Monte Carlo and molecular dynamics
distributions at much lower temperatures, a stepwise
crease of temperature is used; configurations are stored a
higher temperature steps to be used for the lower tempera
steps. For the case of the 13-atom cluster, Frantzet al. used
temperatures of 50, 40, and 30 K to calculate equilibri
properties at 20 K. Following those authors, the J-walk
data presented for comparison are generated at the same
peratures. As seen in Fig. 2, the Tsallisian distributions ov
lap in the barrier region. Therefore, no intermediate stor
is needed. Theq-jump method has the advantage over t
J-walking method that no previously stored configuratio
are needed for intermediate q values. Only a single run
elevatedq is required to generate configurations for tr
‘‘jumps.’’ An advantage over the multicanonical Mont
Carlo algorithm15 is that theq-jumping method does not re
quire a previous estimation of the weight. For theq distribu-
tions the Tsallis weight is known. In instances where
delocalization~broadening! of the distribution function in the
Tsallis ensemble is not sufficient, additional temperature
crease can be performed.

FIG. 8. The inverse of the energy metric for the 13-atom cluster
q-jumping and the J-walking algorithm withPq5PJ50.1. Theq-jumping
Monte Carlo algorithm leads to a more rapid convergence of the therm
namic average with a smaller associated computational overhead.
J. Chem. Phys., Vol. 107, N
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V. CONCLUSION

We have presented algorithms to perform enhanced s
pling of phase space for systems which suffer from brok
ergodicity. One method is based on Monte Carlo, the ot
on molecular dynamics. Both algorithms sample phase sp
according to the generalized statistical distribution of Tsal
Because of the delocalized character of these distribut
for q.1, sampling of the phase space is greatly enhanc
This allows for fast convergence of the equilibrium avera
in the canonical ensemble when appropriate reweightin
performed, even if the sampling is done in the Tsallis sta
tical ensemble.
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