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Generalized Monte Carlo and molecular dynamics algorithms which provide enhanced sampling of
the phase space in the calculation of equilibrium thermodynamic properties is presented. The
algorithm samples trial moves from a generalized statistical distribution derived from a modification

of the Gibbs—Shannon entropy proposed by Tsallis. Results for a one-dimensional model potential
demonstrate that the algorithm leads to a greatly enhanced rate of barrier crossing and convergence
in the calculation of equilibrium averages. Comparison is made with standard Metropolis Monte
Carlo and the J-walking algorithm of Franz, Freeman and Doll. Application to a 13-atom
Lennard-Jones cluster demonstrates the ease with which the algorithm may be applied to complex
molecular systems. €997 American Institute of Physids$§0021-9607)52045-9

. BACKGROUND esis(the indecomposable character of the megsanel av-

. i ) erages derived from molecular dynamics computer simula-
The ergodic hypothesis states that the time average of &fyy may differ greatly from the predictions of a statistical

observable equals the phase-space average. However, Bgaory However, the solution is straightforward. Using noisy

cause of the finiteness of the simulation time, trajectories, iccular dynamics or Monte CariC) simulation it is
starting in different regions of the phase space may result irﬁossible to effectively sample nonergodic systéms.

distinct time averages. Statistical theories of chemical sys- Exploring systems whose phase space is partitioned by
tems are often faced by such problems of “nonergodicity”“broken ergodicity” is a much greater challenge. Broken

or “broken ergO(_:ilcny.. . . .__ergodicity results when the time scale for measurentant
Computer simulations of chemical reaction dynamics_. : . . )
: e -simulation or experimental avergge shorter than an impor-
have demonstrated that the assumptions of statistical theories . .
ant relaxation time scale for the system. In such cases the

are often not met. For microcanonio@onstant energyre- S . .
R oy average which is calculated effectively “breaks” into sums

actions, in the KAM regime the reacting system may be )
“nonergodic,” due to impermeable barriefswariant torf) of subaverages. Each subaverage is taken over a subset of the

which limit the region of phase space a trajectory may ex_phase space. The problem 's acute in compl_ex disordered
plore, or “quasiregular,” due to semipermeable partitionsSYStems where the potential energy surface is rugged and
(vague tor or cantor?) which can greatly reduce the rate of '€91ons of configurational space may be separated by energy
travel through phase space. A statistical rate theory, whicffa'iers which are much greater than the thermal energy. For
assumes that the phase space of the entire reaction regionf&ny Systems of interest, such as proteins and glasses, the
accessible to any reactant regardless of its initial state, ma§Kne scale for functionally important motions greatly exceeds
greatly underestimate the reaction rate. at of molecular dynamics simulatiSrEnhanced sampling

The breakdown of statistical rate theory extends into thégorithms which increase the frequency of barrier crossing
canonical (constant temperature ensemble.  An Z%”O\.Nlng- for an aggelgrated search of phase space are essen-
N-dimensional reaction system may be divided into a reactial if reliable equilibrium averages are to be computed.
tion coordinate andN-1 nonreactive coordinates. In the re-  An important property of the sampling distribution is
gime of fast intramolecular vibrational relaxati¢ivR), the that it should include a significantly enhanced probability of
rate of energy equipartitioning between nonreactive coordiaking long range moves or simply visiting barrier regions.
nates and the reaction coordinate is fast compared with thé systems such as proteins and glasses, it is difficult to make
reaction time scale and the reaction system is effectivelyjionlocal moves which lead to thermodynamically important
N-dimensional. Due to damping of the nonreactive mode, ofégions of phase space. A number of advances in Monte
a change in the nonlinear coupling between modes, the rafearlo methodology which address the problem of broken
of energy exchange between a nonreactive mode and tifgodicity have been reported in recent years. Rossky, Doll
reaction coordinate can become slower than the reaction ratand Friedmat? proposed the use of Brownian dynamics as a
In this regime of “slow IVR,” nonreactive modes are effec- smart way of doing Monte Carlo simulations. Cao and Berne
tively eliminated from the reaction system and the dimen-have developed an “anti-force bias” Monte Carlo mettdd.
sionality of the reaction system is reduced. This dynamicaAnti-force bias Monte Carlo encourages the system to move
effect has been shown to lead to a significant decrease in tHeward minima in a convex region of the potential surface, or
reaction rate in the energy diffusion regimg. over barriers in a nonconvex region of the potential surface.

Calculation of equilibrium properties can be effected inThe algorithm accelerates barrier crossing which may be an
similar ways. Nonergodicity can subvert the ergodic hypoth-infrequent event. Frantz, Freeman and Bdflave proposed
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the J-walking method which uses a high temperature MC run

to generate trial moves. At high temperatures, barriers may Zqu [1-(1—q)BU(rM) M1~ PgrN 4

be crossed easily, overcoming problems of broken ergodic- ) ) ) . _

ity. The trial moves are accepted so as to compute averagds the generalized configurational partition function.

at a lower temperature of interest. The J-walking method and W& have proposed a Monte Carlo algorithm based on the

a related method of Ferrenberg and Swenlfseave been acceptance probability

employed by Tsai and Jordan to examine phase changes in pq(r'n“ew) q

small rare gas and water clustéfsMulticanonical Monte p=min l,( N ) } 6)

Carlo'® and cluster move methotfshave been developed to Pa(T o)

address problems of critical slowing down associated withrhis algorithm has been used to sample an equilibrium dis-

phase transitions. These methods have also found some sutgbution proportional tc[pq(rN)]q in the conformational op-

cess in simulations of biomolecular systémsith moderate  timization of a tetrapeptid® It was found that whem> 1

associated computational overhead. the search of conformational space was greatly enhanced
In this paper we present an enhanced sampling algorithmver standard Metropolis Monte Carlo methods. In this pa-

based on the generalized thermodynamics proposed kyer, we explore the use of this algorithm for the computation

Tsallis’® The algorithm generates a Monte Carlo walk of equilibrium thermodynamic averages.

through a well-defined generalized statistical distribution. An  Note that by defining the effective potential

appropriately weighted average allows us to calculate equi-

librium thermodynamic averages for the Gibbs—Boltzmann U= LIn[l—(l—q),BU] (6)

canonical ensemble. This generalized Monte Carlo algorithm pla—-1)

is compared with standard Monte Carlo, and the J-walkinghe Monte Carlo acceptance probability E§) can be writ-

algorithm of Franz, Freeman and D&I.Application to a ten in the familiar form

one-dimensional model potential and a 13-atom cluster mod- _

eled by Lennard-Jones interactions demonstrates the en- P=min[1,exg—BAU)]. )

hancement in sampling and efficiency in the computation ofrhe standard Metropolis Monte Carlo method corresponds to
equilibrium thermodynamic averages. the g=1 limit in which case the probability of accepting a
new configuration of the system is

p=min[1,exg—BAU)], (8)

whereAU=U(rN.)—U(rh,).

In this section we present a short introduction to the  In the remainder of this section, we explore the proper-
Tsallis statistical mechanics. Equilibrium distributions areties of the Tsallis statistical Monte Carlo algorithm and a
derived and a Monte Carlo algorithm for sampling these disrelated molecular dynamics method.
tributions is defined. The properties of the algorithm and the
general feature of enhanced frequency of barrier crossing are

Il. GENERALIZED MONTE CARLO ALGORITHM

described in detail. B. Detailed balance and equilibrium averages
A. Tsallis statistics and generalized Monte Carlo Equilibrium average properties are calculated using a
methods statistical weighting of the probabilityoq(r'\‘) of Eq. (3)

raised to the power af as required by the generalized sta-

In the generalized statistical mechanics proposed byigiical mechanics. The average of an observable defined
Tsallis, the “generalized entropy” for an N-body system is by the so-called f-expectation value”

defined a¥¥*°

<O>q=f [pg(r™)190(r™M)drN. 9

. _ Consistently, the detailed balance condition is written as
whereq is a real number an§, tends to the Gibbs—Shannon

K
Sq=q_—1f Pa(r™M) (1 =[pg(r™)19 HdrN, (1)

entropyS=—Kk/p(r™)Inp(r™)drN wheng=1. To derive the [Pq(x) JTW(x—X") =[pa(x") JW(X' —X), (10
configurational probability distribution function the general- whereW(x—x') is an element of the transition matrix.
ized entropy is extremized subject to the constraints The walk generated by E@5) will sample the configu-

ration space according to the distributicﬁpq(rN)]q. For
f pg(rM)drN=1, f [pa(r™)19U(rMdrN=U,, (20  most potentials, the moments pf(r™) are well-defined and
finite. In contrast, for certain values af and a harmonic

where U(r") is the potential energy. The probability of a potential, the distributiop,(r™) can have infinite variance

point in configuration space is found to be and higher moments. Still, this is of no practical concern for
1 the simulation since a reweighting of the contribution of each
Pq(rN)= Z—[l—(l—q)BU(rN)]l’“*q), (3)  phase point is performetsee Section Il Dto obtain mo-
a ments of the Gibbs—Boltzmann distribution. However, for all
where g the distribution[pq(rN)]q is well-behaved for a harmonic
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potential. This is important in the simulation of chemical Ae AU
systems where at low temperature the potential energy neara (A),= 1= (1= PTINELER
minimum is often effectively harmonic. [1=(1=a)BU(rD] q

e AU -1
C. Dependence on the statistical distributions on the X [1—(1—q)BU(rN)¥@-a) ' (16)
zero of energy q
Using this expression, the standard 1 equilibrium average
“properties may be calculated over a trajectory which samples
%he Tsallis statistical distribution fay+ 1.

In contrast to our expectations developed in the Gibbs
Boltzmann statistical mechanics, in tlip#1l regime, the
relative probability of two states depends on the choice o
the zero of energy® For example, for a constant potential

shift e E. J-walking Monte Carlo and the histogram method

Pq(T hew [1-(1-q)BUrN,)+e ] a In the J-walking algorithm, a Monte Carlo trajectory is
N N ' generated at a temperatureBl/With a probability (1
r _(1—
Po(Toia) [ 1~ (1=)A(U(r5g) +€) —P,), a move is generated uniformly in a limited region
Eg. (11) can be rewritten as leading to a change in potential energyXfl. The move is
- , 1/(1—q) accepted with a probability
Po(Thew) _[ 1= (1= U(ri) | w2 o min{ Lexg— BAU)] a7
Po(fod | 1—(1—q)B'U(ry) ! ' '

. . , _ With a probabilityP;, a “jump” move is randomly selected
where the potential shii has been absorbed in an effective fom an equilibrium Boltzmann distribution generated at a
temperature such that higher temperature Bj,. The acceptance probability for the
1 jump is

g g e - p=min[ Lexp(B;— B)AU)]. (18
In the g=1 limit of Gibbs—Boltzmann statistics, the effec- By allowing jumps chosen from a high temperature distribu-
tive temperature equals the standard temperature. Otherwisgsn, the J-walking algorithm encourages trajectories to over-
the potential shift has the effect of shifting the temperature atome barriers which would be infrequently scaled at the
which the distribution is computed. For our purposes, welower sampling temperature.
take € to be an adjustable parameter which, like the accep- As noted by Tsai and Jordan, the special case of the
tance ratio, may be optimized for a Monte Carlo run. J-walking algorithm when the jump probabilitp;=1 is

One might think that the larger the value @fimeaning  equivalent to the single histogram method of Ferrenberg and
a broader distribution functiorthe better for the enhance- Swendsert? Thermodynamic averages at a given tempera-
ment of the phase space sampling. However, there is fre 1/3 may be calculated from a Monte Carlo trajectory
weaker dependence on ¢ of the acceptance probabiltigy As generated at a higher temperaturg@;l/ For example, if the
goes to infinity, the acceptance saturates average ofA(r") over a high temperature trajectory 8§ is

: pg(rﬁev): U(r5ig)
g»P(Toi) U,

This is reflected in the numerical simulation of a one dimen-then the equilibrium thermodynamic averagefofit 8 is'*
sional potential discussed in a subsequent section. _ N _ Ny
P q (A) g= (AP AUy | (A=A 1, (20)

1
(14 (A)g,= ZJ A(rMexp — BU(r))dr, (19
J

The key to an effective algorithm of the histogram/J-
walking variety is to identify the optimal balance of the time
spent in thermodynamically important basins of conforma-

Our enhanced sampling algorithm will be used to calcu+jon spaceversustime spent in thermodynamically unimpor-
late Standard, Gibbs—Boltzmann equilibrium thermodynamiQant (h|gh energy barriérregions of the potentia' that are
averages over a trajectory which samples the generalized stgseful for traveling between basins. Choosing too low a sam-
tistical distribution. The equilibrium average over configura-pjing temperature 4, will not overcome “broken ergodic-
tion space for a given mechanical propeitfr™) in the Tsal- ity or lead to enhanced barrier crossing. Choosing too high
lis statistics is defined by thg-expectation value using Eq. an effective temperature will bias the Monte Carlo walk

D. Exact calculation of equilibrium averages by Tsallis
statistical Monte Carlo method

(9) as away from the thermodynamically most important regions of
1 phase space. Therefore, we can expect to identify an optimal
<A>q:ﬁ A(rM[1—(1—q)BU(rN)]¥A-agrN, (15  choice of 8; and P which leads to the most rapid compu-
q

tation of equilibrium averages.
Using this definition, the equilibrium thermodynamic aver- We adopt a protocol similar to that of the J-walking
age ofA in the g=1 canonical ensemble may be written asalgorithm to implement with the Tsallis statistical Monte
J. Chem. Phys., Vol. 107, No. 21, 1 December 1997
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Carlo. We dub it ‘g-jumping.” With probability P,, we

q:r

randomly sample from configurations distributed according

to the Tsallis statistical distribution. With probability 1
— P, we sample according to the Gibbs—Boltzmann distri-
bution. When the move is suggested from ¢hel distribu-
tion, it is accepted with the probability

pq(r§|d)
Pq(T new

q

1,E’BAU(

p=min (21

The rest of the time, the acceptance probability is given

by Eq(8). The proof of detailed balance is straightforward.
Denoting byT4(x—x") the probability to suggest a move
andA,(x—x") the probability to accept it, for a give the
transition matrixWy(x—x") =Tq(x—X")Aq(x—x") and we
have

PaP(X)Wy(Xx—X") + (1= Pg) p(X) Wy(x—X")
=Pgp(X")Wy(X' —X) + (1= Pg)p(X" )Wy (X' —X),
(22

where To(x—x')=(1/Z8)(1—(1-q)BU(x"))¥*~ D when
gd>1 andTy(x—x")=1/A whenq=1, Ay(x—X") is given
by Eq(21) for g>1 andA4(x—x") is given by Eq8) for

|. Andricioaei and J. E. Straub: Monte Carlo and molecular dynamics
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FIG. 1. The cumulative probability distribution generated by the generalized
MD algorithm using the effective potential agrees well with the analytical
distribution.

g=1. Thus configuration space will be sampled according to

the Gibbs distribution at temperaturesl/

F. Generalized molecular dynamics

As an alternative to MC sampling, one may sample th
Tsallis probability distribution using an MD-based algo-
rithm. For a given potential energy functia(r"), the cor-
responding generalized statistical probability distribution
which is generated by the generalized Monte Carlo algorith
is Po(rN)=[p4(r™)]1%. Consider the generalized distribution
Pq(r(h) to be generated in the Gibbs—Boltzmann canonica
ensemble =1) by an effective potentia%//}l(rN;ﬂ) which
is defined as

Po(r™)y=exp(— 87 4(r"; B)) (23
such that wherg=1, 7 (rN; 8)=U(rN). For g#1, the ef-

e

P

Assume that the potential is defined to be a positive
function. In the regimey> 1, the scaling functiom(rN, ) is
largest near low lying minima of the potential. In barrier
regions, where the potential energy is large, the scaling func-
tion a(rN,B) is small. This has the effect of reducing the
magnitude of the force in the barrier regions. Therefore, a
article attempting to pass over a potential energy barrier
will meet with less resistance whep>1 then wherg=1. At

quilibrium, this leads to more delocalized probability distri-
Eutions with an increased probability of sampling barrier re-
gions. This argument demonstrates that whenl the gen-
eralized molecular dynamics or Monte Carlo trajectories will
cross barriers more frequently and explore phase space more
efficiently.

fective potential will depend on temperature as well as the

coordinates.

Given this effective potential, it is possible to define a
constant temperature molecular dynamics algorithm suc
that the trajectory samples the distributi@b(r’\‘). The
equation of motion takes on a simple and suggestive form

dzrk
m,—s =

k dt2

~V, U=-V, U(rM)g[1—(1-q)BU(rY)]
(24

for a particle of massn, and positionr, and U defined by
Eq. (6).

The effective force derived from the effective potential
71(rN) has a number of interesting properties. It is of the
form Fo(rN;8)= —Vrku_z Fi(rMaq(r™; 8) where Fy(rM)
is the “exact” force for standard molecular dynamicg (
=1) andaq(r"';,B) is a scaling function which is unity when

G. Proof of sampling distribution by the
Kolmogorov—Smirnov test

We want to demonstrate that the generalized MD
method samples the Tsallisian distribution. To do this, we
employed the Kolmogorov—Smirnov test. We chose a har-
monic potential, with temperatufE=1 andq=2. The the-
oretical cumulative probability distribution can be obtained
by integration of the probability in Eq23) for a harmonic
oscillator. Using 1000 samples equidistantly sampled from a
10* step simulation, the significance level of agreement be-
tween the analytical distribution and that generated by solu-
tion of Eq.(24) was higher than 99.5%. A plot of the cumu-
lative probability distribution obtained by the generalized
MD simulation can be seen in Fig.1. The overlapped theo-
retical cumulative probability distribution is almost indistin-

g=1 but can otherwise have a strong effect on the dynamicguishable.
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Ill. A MODEL POTENTIAL

In this section the properties developed in the previous
section are explored for the case of a one-dimensional mode
potentialU (x) defined as

U(x)=x2—ae b0+’ _ce dx-2?_fg-o03)7 ¢
(29

where € is a constant potential shift that will make certain

0.8

0.6

that the potential energy has positive values only. This en- pa(2)

ergy function consists of four minima imposed on a har-
monic background potentidee Fig. 2 We have used the
parametera=f=15p=c=10d=g=3. The heights of the
barriers separating the four minima vary greatly.

A. Tsallis statistical distributions and Monte Carlo
walks

The generalized statistical distributions shown in Fig. 2
are compared with the standagg=1 distribution. Forq
>1 the distribution shows a significantly higher relative ()
probability of being in the barrier region relative to the
minima. This feature manifests itself during a Monte Carlo
walk in a much higher frequency of barrier crossing. Fig. 3
shows a Monte Carlo walk foq=1 which is characterized
by infrequent hopping. Fay= 2, the trajectory is much more
delocalized as would be predicted for a jump diffusion pro-
cess generated by a random sampling of the Tsallis statistice
distribution.

B. Optimizing an algorithm

0.4

0.2

0.4

0.35

0.25

Pe() 0.2

Throughout this study we employ as an indicator of the
optimal values of the parameters the ergodic measure. Th
ergodic measure estimates the rate of self-averaging in al
equilibrium MC or MD calculatiorf'?28 Self-averaging is a
necessary but not a sufficient condition for the ergodic hy-
pothesis to be satisfied. The rate of self-averaging for a giver
property is expected to be proportional to the rate of phase
space sampling. We have chosen to use the potential ener¢
metric defined for two independent trajectoriesind 8. We
define the “move average” over the Monte Carlo trajectory (b)
of the potential energy for the jth particle along thex

0.15

0.1

0.05

9121

trajectory aftem moves as

n

1
“ia(”)ZWEk w(rU;(rd). (26)

FIG. 2. (a) The one-dimensional model potential is drawn with a heavy line.
The normalized equilibrium probability distributions are displayed over the
model potential fog=2 andg=1 for the model potential. The Boltzmann
distribution corresponds tq=1. (b) Probability distributions fog=2 at
different temperatures. Note that even at the low temperature, the relative
probability of being in the barrier region as opposed to the well region is

W(rllzl) is a weighting factor for any property at a given po- significantly greater wheg>1 and does not level off with increasing tem-

sition on thekth steprE. For a Metropolis Monte Carlo run

perature.

the weighting factor is unity. For a generalized Monte Carlo

run the weighting factor is given by E@16). The ergodic
measure is then defined as the sum d\grarticles

1
du(m)= 2 [u'n) ~uf(m7? (27

For an ergodic system if— o, thendy(n)— 0. By analogy
with molecular dynamics, for large we expect the form of
the convergence to B

1
dU(n):dU(O)D_Un’ (28)

where Dy is a rate for self-averaging dfJ over the two
independent trajectories.

Throughout this study, we associate rapid and effective
sampling of phase space with a large valuenf. The
choice of the potential energy metric is arbitrary. However, it

J. Chem. Phys., Vol. 107, No. 21, 1 December 1997
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0.45 T T T T T T

0.4

0.35

0.3

0 200 400 600 800 1000
(a) MC moves

14

FIG. 4. The potential energy metric diffusion coefficiddy, generated by

generalized Monte Carlo fay=2 as a function of the MC maximum step

Ax for the one-dimensional model potential. The optimal valuAxfis that

0 2(')0 460 6(I)0 8(I)0 1000 which maximizes the diffusion coefficiet,, and the rate of self-averaging
(b) MC moves of the potential energy. Each point’s ordinate represents the average slope of

the inverse metric calculated over 100 pairs of initial conditions. In each

FIG. 3. Time series for Monte Carlo runs generated withg=1 and(b) pair, one initial condition starts in the right well, the other in a left well.

Tsallis statistical Monte Carlog=2). The number of barrier crossings and

extent of conformation space explored is significantly greateqfel. The

qualitative features are the same for walks generated by the generalized

molecular dynamics algorithm.

0.45 T T T T T T

has been shown to be a good measure of the extent of phase
space sampling in a variety of systems. For the Monte Carlo 041 4
algorithms studied, we vary the parameters of the algorithm )
to determine the optimal parameter set which maximizes ¢35+
Dy.

For all Monte Carlo algorithms there is the acceptance 0.3 L i
ratio which can be optimized. For the histogram/J-walking
algorithm with fixed P;, the sampling temperature 2y 0.25 1
should be optimized. One of the problems of the J-walking p,
algorithm is the lack ofa priori knowledge of the higher 0.2k i
temperature distributions. For the generalized Monte Carlo
algorithm, the two additional parametef$) the potential 0.15 F ]
energy shifte and(2) the parameteq should be optimized.
In this work, we take the optimal value of any parameter of 01l i
the algorithm to be that which maximiz&s,— the rate of
self-averaging of the thermodynamic potential energy. 0.05 | i
In Fig. 4 the generalized diffusion coefficiem, is
shown to have a clear maximum as a function of the step size 0 » ) . . : :
for the MC protocol. The optimal choice of the time step can 0 2 4 6,8 1012l

be derived from an exploratory plot of this kind. Similarly,

the potential energy shi# (see Fig. ¢ and the parametey FIG. 5. The potential energy metric diffusion coefficiddy generated by

(see Fig. 5 may be optimized by maximizin®; . generalized Monte Carlo fagy=2 as a function of the Tsallis¢” param-
In general, we expect correlations iy, between the eter for the one-dimensional model potential. The optimal valuepf is

values ofAx, e andq and an iterative optimization is best & Which maximizes the diffusion coefficiefl, and the rate of self-
averaging of the potential energy. Note the saturation of the diffusion coef-

performed. However, due to 'Fhe simple behaviorDgf 0N ficient, paralleling the saturation of the acceptance in(E).for increasing
each parameter, the correlation between parameters is ex-
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0.12 . , . . . . 14 ] 1 . .
0.11 g 12r 1
1F i
0.1 _
s 08F .
Dy 0.09 7 Z
=
< 06 .
0.08 ,
0.4 1 i
0.07 .
02} i
0.06 1 Il 1 1 1 1 0 ) T
0 20 40 60 80 100 120 140 0 200 400, 300 1000

600
10° MC steps
FIG. 6. The potential energy metric diffusion coefficidh, generated by
generalized Monte Carlo fay=2 as a function of the potential energy shift
e for the one-dimensional model potential. The optimal value: @ that

which maximizes the diffusion coefficiefit,; and the rate of self-averaging
of the potential energy.

FIG. 7. The convergence of the average potential energy in the case of a low
temperature 13-atom cluster is shown fpjumping Monte Carlo(lower
curve and standard Metropolis Monte Carlopper curvg There is essen-
tially no convergence for the standard Monte Carlo trajectories which are
trapped in their initial basins. Thg-jumping Monte Carlo method is effec-
tive in allowing for transitions between basins leading to rapid convergence
of the average potential energy.

pected to be weak which allows for a rapid convergence to a

set of optimal parameter values. In accordance with([ES).

the temperature dependencelf is expected to behave as gradient minimization applied to each configuration leads to
the dependence on potential shift This is seen in Fig. 6. different minimized configurations. That is, the initial con-
figurations were in different “catchment regiongbr “ba-
IV. APPLICATION TO A 13-ATOM CLUSTER sins of attraction’. In this range of temperaturé.2—0.4
We have applied the algorithm to a cluster of 13 atoms.reduced u_nit)§ it is knpwn that th_e argon clusters,_for_ ex
The potential is pairwise additive, each pair interaction Con_ample, _exyst in a region of coeX|st(_=,nce betwe_en I_|qU|d-!|ke
sisting of a Lennard-Jones potential expressed in energand solid-like structures. The coexistence region is defined
units of the well depth and length units of the pair equilib-. y the temperature range po_unded by the melting and_freez—
fium distance ing temperatures. The m|n|rI1um energy g(iometry is an
icosahedron. This so-called “magic number” cluster is a
1 2 standard because it exhibits a large energy gap between the
V(r)=—F— (29 “ground state” of potential energy and the “first-excited”
r r : : : )
state, and a time-scale difference exists between inter- and
wherer is the interatomic distance. To confine the atomsintrawell motions. As a consequence it has a sizeable coex-
during the conjugate gradient search, we have also added istence region.
the Lennard-Jones pairwise interaction a confining boundary The g-jumping Monte Carlo algorithm provides for
potential of the typer(/ro)®, wherery=5. Because of the rapid convergence of the equilibrium average of the potential
shape of such a confinement, it has a negligible effect on thenergy while the standard Monte Carlo simulation shows
small interatomic distances. We have chosen a value of little or no convergence over the length of the runs. In this
=20. case, thel-jumping MC algorithm is effective in overcoming

A. Low temperature dynamics the broken ergodicity encountered at low temperatures.

To show the breakdown of ergodicity at low tempera-
tures, we show in Fig. 7 the energy metric for our method in
comparison with the normal Metropolis Monte Carlo. Our In Fig. 8 we show the comparison of the rate of self-
method consists of thg-jumping algorithm described earlier averaging of the potential energy for a 13-atom cluster using
with g=2. The simulation was performed at a temperature othe g-jumping and the J-walking MC methods. Thhgump
0.2 reduced unit$Boltzmann’s constant is unity method has a self-averaging rate roughly twice that of the

The energy metric is computed by starting from two J-walking algorithm. In the J-walking method, because the
configurations that are different in the sense that conjugatdistributions at higher temperatures do not overlap with the

B. Comparison of algorithms
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5000 [ . 1 V. CONCLUSION
We have presented algorithms to perform enhanced sam-
4500 1 . X
pling of phase space for systems which suffer from broken
4000 L i ergodicity. One method is based on Monte Carlo, the other
on molecular dynamics. Both algorithms sample phase space
3500 | . according to the generalized statistical distribution of Tsallis.
Because of the delocalized character of these distributions
3000 - J — walking for g>1, sampling of the phase space is greatly enhanced.
= o This allows for fast convergence of the equilibrium average
=000 4~ jumping ] in the canonical ensemble when appropriate reweighting is
:52000 | | performed, even if the sampling is done in the Tsallis statis-
tical ensemble.
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