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Simulation study of the collapse of linear and ring homopolymers
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The thermodynamic and kinetic properties of Lennard-Jones homopolymers are studied b
computer simulation of the homopolymer at constant temperature and during collapse following a
abrupt temperature drop. The homopolymer dynamics is simulated using both the Gaussian pha
packet dynamics algorithm, which provides an approximate solution of the Liouville equation for
the time dependent classical density distribution, and conventional molecular dynamics. Numerica
simulations of both linear and ring polymers are analyzed and compared with theoretica
predictions. The results support the idea that homopolymer collapse is a two-stage process. ©1995
American Institute of Physics.
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I. INTRODUCTION

Understanding the mechanism of protein folding rema
a central problem of molecular biology. The problem of ho
to determine the final unique globular conformation and t
dynamic folding pathway continues to be the focus of ma
researchers.1 Considerable progress has been made in b
experimental2 and theoretical3 studies. Recent experimenta
studies4 and computer simulation5–11studies strongly sugges
that protein folding is a multistage process, the first sta
being the collapse of the molecule to a compact conform
tion, followed by rearrangement to acquire the native fo
The first stage of folding, compaction, was studied in det
recently by Socci and Onuchic9 using Monte Carlo simula-
tions of a short, 27 monomer lattice model protein. The
authors showed that the rate of this burst compactizat
stage is sequence-independent, which makes it similar to
collapse of a homopolymer. Therefore it is reasonable to
lieve that insights into the character and mechanism of
fastest stage of protein folding may be gained from a detai
analysis of the thermodynamics and dynamics of collap
transitions in a simple homopolymer. Another reason
study the collapse transition in homopolymers is that it m
help to test various analytical approaches and assess the
lidity of different approximations made in theoretica
studies.12,13In the present paper, we restrict our attention to
Lennard-Jones homopolymer ofN monomers.

As one of the most important phenomena in polym
physics, the coil-globule phase transition vividly illustrate
many fundamental properties of polymer systems. The p
neering research on this transition was stimulated by
puzzle of protein denaturation, in which the protein molecu
undergoes a cooperative, sharp transition accompanied
changes of many of its physicochemical characteristics,
cluding loss of biological activity. The approach to the co
globular transition based on a generalization of Flory theo
was proposed by Ptitsyn and Eisner in 1964.12 The funda-
mental theoretical approach to the study of the coil-globu
transition in polymer systems was proposed by Lifshitz14

who pointed out that the coil and the globule are two diffe
ent macroscopic phase states of the polymer chain. Th
J. Chem. Phys. 103 (7), 15 August 1995 0021-9606/95/103(7)/Downloaded¬11¬Jul¬2001¬to¬128.197.30.205.¬Redistribution¬subject¬to¬
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two phases differ primarily in their fluctuation regimes. The
radius of correlation of density in the globule is small com
pared to its size; in the coil state it is of the order of its size
The phase transition between the coil and globule state w
predicted14 to be a weak first order transition with a laten
heat and density jump per particle which vanish at the tra
sition point as the size of the molecule increases. The sim
plest macromolecular model which manifests the fundame
tal properties addressed in Lifshitz’ theory is the so-calle
standard Gaussian model. In this model, the polymer mo
ecule is represented asN beads connected by a flexible
string; thus the Gaussian model is also called a ‘‘bead
model.

A general scenario for the kinetics of the collapse of
flexible polymer coil has been presented by de Gennes.15 An
‘‘expanding sausage model’’ was used to describe the co
lapse of the polymer molecule. His scenario predicts that t
polymer chain first collapses to a sausage-shaped obj
where the subunits of the chain, called ‘‘blobs,’’ tend to stic
together. This corresponds to the relaxation of short leng
scale properties. In the second stage of collapse, the ‘‘sa
sage’’ grows with the hydrodynamic friction until the mol-
ecule reaches the final spherical form. During the collapse
the polymer, the density is predicted to increase~and reach
its equilibrium value! much faster than the shape of the mol
ecule relaxes to equilibrium.

Amore detailed scenario of the kinetics of homopolyme
collapse was presented by Grosberg, Nechaev, and Sha
novich ~GNS!.16 They proposed that the kinetics of collapse
of a polymer coil following an abrupt decrease in tempera
ture is a two-stage process. The first stage leads to a so-ca
‘‘crumpled globule’’ where the monomers proximal along the
chain are most likely to be proximal in space. The crumple
globule is predicted to be formed through a self-similar pro
cess so that its features persist on all length scales. T
makes a crumpled globule a fractal object. On a length sca
larger thanNe the chain domains of the fractal globule are
segregated from each other in space. (Ne is the well-known
parameter of the reptation model.13,17! For the crumpled
26152615/10/$6.00 © 1995 American Institute of PhysicsAIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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2616 Ma, Straub, and Shakhnovich: Collapse of homopolymers
globule, the density inside the ‘‘blobs’’ is close to the fin
globular density while the ‘‘blobs’’ are still spatially segre
gated.

The second stage of homopolymer collapse in the G
scenario is chain quasi-knotting in which the crumpled glo
ule continues to shrink through topological relaxation to
final equilibrium state. The key difference between t
crumpled and equilibrium globules is that in the crumpl
globule monomers which are neighbors along the chain
more likely to be neighbors in space, while in the equil
rium globule monomers distant along the chains are m
likely to be in contact. Thus, in a linear chain the ends pla
crucial role in this process, which is proposed to follow
reptation-type mechanism. Not surprisingly, the characte
tic time of this process scales with the number of monom
N asN3. Naturally, a ring polymer would not have this se
ond relaxation stage; for such polymers the crumpled glob
state is expected to be the natural consequence of comp
zation. Compact ring polymers are predicted to be in
crumpled globule state for an indefinitely long time.

A test of these theoretical predictions in a real or nume
cal experiment is important to estimate the adequacy of
concept of a crumpled globule. In this paper, we presen
computer simulation study of homopolymer collapse a
compare our results with the predictions of the GNS s
nario. In our model homopolymer, the interaction poten
between any two beads is a typical Lennard-Jones 12-6
tential form. We study in parallel the behavior of ring an
linear polymers because, as was stated above, they are
dicted to differ in the character of their equilibrium compa
state.

We employed the conventional molecular dynam
~MD! method and an approximate numerical simulat
technique, Gaussian phase packet~GPP! dynamics, devel-
oped recently by Ma, Hsu, and Straub18 as an alternative to
the normal MD method, as our simulation tools. The G
method is based on an approximate solution of the class
Liouville equation using a product of single particle Gau
ian phase packets to represent the phase space density
bution. The parameters of the density distribution obey va
tionally optimized equations of motion. As such, one c
replace the calculation of a single trajectory in normal M
which explores a line of points in phase space, with a c
tinuous distribution of trajectories, which visit a much larg
volume of phase space. The GPP method can be gene
regarded as an approximate enhanced sampling algori
For applications to Lennard-Jones clusters and fluids,
phase space sampling statistics are improved over thos
conventional molecular dynamics simulation. However,
results are approximate while those of MD are in princip
exact. The parallel comparison study of the MD and G
methods demonstrates the advantages and shortcomin
the GPP method.

In this paper, after a brief description of the statistic
mechanics background in section II, we outline the form
ism of GPP dynamics at constant temperature and the co
sponding temperature jump strategy. In section III, we d
cuss the simulation results for both the thermodynamic
kinetic properties of the linear and ring Lennard-Jones
J. Chem. Phys., Vol. 103Downloaded¬11¬Jul¬2001¬to¬128.197.30.205.¬Redistribution¬subject¬to¬
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mopolymers using the MD and GPP methods. We focus o
the comparison of simulation data and theoretical prediction
for the collapse kinetics. A brief summary and discussion i
provided in section IV.

II. METHOD

In this section, we begin with a discussion of the Gauss
ian phase packet~GPP! approximation to the classical den-
sity distribution. We then define the equations of motion o
the classical density distribution in the GPP approximation a
constant temperature.

A. Statistical mechanics background of the GPP
method

The standard canonical ensemble average of a physic
quantityA(r,p) takes the form19

^A&5E ddrE ddpr~r,p,t !A~r,p !, ~1!

where r(r,p,t) is the phase space density distribution, the
time evolution of which is described by the Liouville
equation20,21

]

]t
r~r,p,t !52L0r~r,p,t !, ~2!

whereL0 is the Liouville operator

L05
p

M
•¹ r1F„r …•¹p ~3!

and whereF„r … is the force andM the mass.F„r …, r , and
p are d-dimensional vectors. In the Gaussian phase pack
approximation, the phase space density distribution functio
for each particle ind dimensions is a single spherically sym-
metric Gaussian function

r~r,p,t !5F A12a2

2psasb
GdexpF2

1

2 S r2r0
sa

D 22 1

2 S p2p0
sb

D 2
2aS r2r0

sa
D S p2p0

sb
D G . ~4!

r0 , p0 , sa , sb , anda, which depend explicitly on time,
must be calculated in order to fully definer(r ,p,t). The
equations of motion can be derived for both constant energ
and constant temperature dynamics.18

B. Gaussian phase packets at constant temperature

The constant temperature constraint can be applied usi
Gauss’ principle.22 We write the generalized Liouvillian

L5
p

M
•¹ r1~F„r …2gp!•¹p5L02gp•¹p , ~5!

whereg is determined by the general temperature~T! con-
straint equation

dT

dt
5

1

dkBM

d^p2&
dt

52h~ t !. ~6!
, No. 7, 15 August 1995AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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2617Ma, Straub, and Shakhnovich: Collapse of homopolymers
If h is zero, the temperature is held rigorously constant.
h equal to a constant greater than zero, the temperature
decrease linearly in time.

The resulting equations of motion for the Gaussian ph
packet are18

ṙ05
p0
M

, ṗ052¹ r0^V&2gp0 ,

Ṁ2,05
2

M
M1,1, Ṁ1,15

1

M
M0,22

1

d
M2,0¹ r0

2 ^V&2gM1,1,

~7!

Ṁ0,252
2

d
M1,1¹ r0

2 ^V&22gM0,2,

where theMn,k are the moments of the distribution define
asMn,k5^(r2r0)

n(p2p0)
k&. Note that^V& is the bare po-

tential energy averaged over the phase space distributio

^V&[E ddrE ddpr~r,p,t !V~r !. ~8!

The value ofg is determined by the constraint equation

g5
dkBMh/21p0•F02M1,1¹ r0

2 ^V&/d

p01M0,2
, ~9!

where the value ofh(t) determines the cooling schedule. W
have used the fact that^p2&5p0

21M0,2. While the discus-
sion above is focussed on a single particle system ind di-
mensions, generalization of these equations to anN-body
system is straightforward when theN-body density distribu-
tion is approximated:

r~rN,pN,t !5)
k51

N

r~r k ,pk ,t ! ~10!

as a product of single particle density distributions.18,23

III. APPLICATION TO LJ HOMOPOLYMERS

We begin with a general description of the numeric
simulation strategy. This is followed by the results for t
thermodynamic and dynamic properties of both linear a
ring polymers.

A. Numerical simulations

In our simulation, the polymer chains were modeled
ing ~1! a relatively soft harmonic bond between neighbori
sites

Vi j8 5 1
2 k~ ur i j u2 l b!

2, ~11!

where l b521/6 is the equilibrium bond length andk510 is
the bond force constant and~2! a Lennard-Jones pair poten
tial acting between all pairs of sites. The total potential e
ergy is a sum over pair potentials of the form

V~r i j !54~r i j
2122r i j

26!, ~12!

where r i j5ur i2r j u. The harmonic forces between adjace
sites determine the connectivity while the bond lengths
allowed to fluctuate. A detailed discussion of the bond pot
tial is given in the Appendix.
J. Chem. Phys., Vol. 103Downloaded¬11¬Jul¬2001¬to¬128.197.30.205.¬Redistribution¬subject¬to
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The effective potential@Eq. ~8!# corresponding to the
Lennard-Jones potential cannot be calculated in a clos
form for the GPP representation of the density distribution
We chose to fit the Lennard-Jones 6-12 potential to a su
of four Gaussians.24 The parameters (ak ,bk) for the potential
fit of V(r )5(kak exp(2bkr

2/2) given in Lennard-
Jones reduced units are~8.467 0673105, 30.928 81!,
~2.713 6513103, 14.963 75!, ~20.7154420, 1.279242!, and
~29.699 172, 3.700 745!. These parameters were derive
from a fit to the force and were found to provide a goo
representation of the Lennard-Jones 12-6 potential and t
corresponding force. Lennard-Jones reduced units are u
throughout the study.

All of the MD and GPP simulations employed the fol-
lowing protocol for both linear and ring polymers.

~1! The initial polymer configurations were chosen ran
domly in three-dimensional space with the bond lengths s
equal to the equilibrium lengtha521/6 in Lennard-Jones re-
duced units. The initial random conformations of ring poly
mers were generated by HyperChem on a Silicon Graph
workstation. Typically, the initial bond lengths of the ring
polymers were not exactly equal to the equilibrium distanc
Any small deviations relaxed during the equilibration.

~2! The equations of motion@Eqs.~7! and ~9!# were in-
tegrated using the Bulirsch-Stoer method25 with an internal
relative error tolerance of 1025.

~3! We chose the initial values ofp0 andM1,1 to be zero.
The moments were chosen to be in the rangeM2,0

P @0.75,3.0#18 andM0,25dMkBT whereT is the desired
temperature.

~4! At the beginning of the simulation, the system wa
integrated at constant temperature until it was judged to be
equilibrium. All measurements were taken after the equil
bration period. The results for the static and dynamical pro
erties for both linear and ring polymers using the MD an
GPP methods are presented below.

B. Thermodynamic properties of the LJ
homopolymers

An important measure of the polymer system is the gy
ration radiusRg defined as the root-mean-square distanc
between each monomer and the center of mass, e.g., for
GPP method

Rg
25

1

N(
k51

N

@~r0
~k!2r c!

21M2,0
~k!#, ~13!

whereN is the number of monomers in the chain,r c is the
center of mass of the polymer, andr0

(k) and M2,0
(k) are the

center and squared width of the packet representing the d
sity of the kth site. For the MD method, the width term
M2,0

(k) equals zero. Figure 1 shows the gyration radii as fun
tions of temperature for both linear and ring 60mers usin
the MD and GPP methods. As expected, at high temperatu
theRg of the linear polymer exceeds that of the ring polyme
However, the value ofRg for both the linear and ring poly-
mers converged to the same value in the low temperatu
limit. In the case of the GPP dynamics the high temperatu
limit of Rg is reached at a lower temperature than in the MD
, No. 7, 15 August 1995¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



FIG. 1. The temperature dependence of gyration radii for 60mer linear~lines! and ring~circles! polymers. Results for the MD~left panel! and GPP~right
panel! methods are shown. At low temperatures, the two kinds of polymer systems presented here have the sameRg values. The comparison suggests that the
two methods give qualitatively similar results but differ by some temperature scale.
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simulation. The comparison shown in Fig. 1 suggests that
MD and GPP results differ just by a scaling of T.

It is helpful to investigate the extent of the density flu
tuations of the polymer chain in the course of transition. A
measure of these fluctuations, we calculated the distribu
of gyration radii at different temperatures. Figure 2 sho
typical distributions of gyration radiiP(Rg) at high, interme-
diate, and low temperature from the GPP simulation. At v
high temperature, the polymer is in the random coil sta
Not surprisingly, theRg distribution is wide indicating that in
the random coil state the density fluctuations are of the o
of the density itself.14 At intermediate temperature~close to
transition! fluctuations are still pronounced. At lower tem
perature the distribution ofRg is a narrow peak indicating
that the polymer molecule has a stable globular state at lo
T. These distributions clearly demonstrate the existence
coil-globule transition for the LJ homopolymer.

C. Dynamic properties of the LJ homopolymers

The kinetics of collapse of a polymer coil after an abru
decrease in temperature byDT was investigated. A mecha
nism for this kinetic process was suggested by de Genn15

and then developed, to take into account topological c
straints, by Grosberg, Nechaev, and Shakhnovich.16 It was
reported that one must decrease the temperature signific
by DT.u/N1/2 in order to have a significant collapse. He
u is the temperature at which the second virial coeffici
vanishes,26 analogous to the Boyle temperature of gases.

Both MD and GPP simulations were run for 20–30 tim
units at higher temperature to calculate the average quan
in the coil state. This was followed by a one step sudd
decrease in temperature,DT. In our simulation we chose th
initial temperature of 1.5 and the final temperature of 0.6.
followed the system for a sufficiently long time after th
quench to study the kinetics of the collapse of the polym
J. Chem. Phys., Vol. 103Downloaded¬11¬Jul¬2001¬to¬128.197.30.205.¬Redistribution¬subject¬to¬
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chain. Several quantities, which are important for unde
standing the dynamics of the collapse of a LJ homopolym
were measured.

We define a ‘‘contact loop’’ of the polymer chain as th
loop whose head monomeri and end monomerj are within
the defined contact distanced. The distribution of the lengths
of the contact loops~DCL! formed by the polymer chain is
an important quantity which can be used to statistically d
scribe the geometrical structure of a polymer. In our simul
tion, we chose the head-end contact distanced51.3 which is
slightly larger than the equilibrium bond length. We trace
the DCL as a function of time during the collapse of th
chain. Figure 3 shows the representative pictures of the D
for both linear and ring 60mers, calculated from GPP dynam
ics, after the temperature was suddenly decreased. The t
evolution of the DCLs demonstrates that longer loop
formed when the polymer chains relaxed following the su
den temperature quench. One can see from Fig. 3 that
number of contact loops shows a rapid initial increase a
then becomes relatively stable in the long time limit. Th
reflects the fast geometrical structural collapse subsequen
the quench and the relatively stable globular state form
once the chain reaches equilibrium. The similarities in th
DCLs of the linear and ring polymers in the long time limi
means that the structures of the globular chains remain in
stable phase although they undergo slow internal structu
changes. We observed similar dynamical features of DC
for the conventional MD simulations.

In Fig. 4 we show the average length of the contact loo
L̄, calculated from DCLs, as a function of time for both
linear and ring polymers. The results are presented for bo
MD and GPP dynamics. TheL̄ values have not reached a
plateau even after the polymer molecules reach a globu
state where the length of the contact loop should be re
, No. 7, 15 August 1995AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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D

tively stable. Note that the average length of the contact lo
for the ring polymer increased significantly less than that
the linear polymer. We believe this is due to the topologic
constraint of the ring polymer~where the head and end ar
joined!. The slight positive slope in the curves in the lon
time limit suggests that the polymer chains are undergo
internal conformational rearrangement in the globular sta
In the GPP simulation, the initial value ofL̄ is smaller than

FIG. 2. The gyration radii distributions for the linear 60mer are presented
~a! high, ~b! intermediate, and~c! low temperature, respectively. The result
presented are from GPP simulations. At highT, the fluctuation in the poly-
mer size is large while there is a well definedRg at low temperature.
J. Chem. Phys., Vol. 103,ownloaded¬11¬Jul¬2001¬to¬128.197.30.205.¬Redistribution¬subject¬to¬
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f
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that in the MD for both linear and ring polymers. Howeve
the rate of increase ofL̄ in time is significantly larger in the
GPP simulation indicating a faster reorganization.

We also present representative coordinate snapshots
the same relaxation process in Fig. 5 taken from GPP sim
lations. These snapshots support the conclusions drawn fr
other dynamical measures of the collapse process for the
homopolymer. In Fig. 6 we show the dependences of t
gyration radii on time during the process of collapse. As on
can see, the gyration radius converges to a stable value a
a steep initial decay which implies that the polymer chain
remain in a state with a stable density in the long time lim
This indicates the presence of a transition from the coil to t
globular state of the polymer chain after the abrupt tempe
ture drop. The final collapsed linear and ring polymers ha
very similar gyration radii. Note that the GPP simulation
collapse the polymer~ring and linear! into a more compact
state than in the MD simulation. It is also interesting to com
pare the gyration radii and the average length of a cont
loop. We saw a slight increase in the average loop length
longer time while we do not see any significant change
Rg . This behavior may correspond to the second stage
relaxation for linear polymer chains predicted in the GN
scenario.16 This stage corresponds to reorganization~poten-
tially chain end reptation! which leads to formation of an
equilibrium globule with a predominance of long rang
~along the sequence! contacts.

Thus, the simulations appear to support the theoretic
prediction of a two-stage collapse of a homopolymer.16 In the
first stage, the polymer chain presumably collapses to
‘‘crumpled’’ state; in the second stage, the crumpled sta
reorganizes further to a more globular state. It is not easy
fully characterize the crumpled stage for our system; ho
ever, we can recognize the continuous internal movement
the polymer chain in the globular state.

In order to study the structural properties of our chain
we also define a quantityRs as a real space distance betwee
two monomers which areg monomers apart along the poly-
mer chain. The average valueR̄s(g) is defined as

R̄s~g!5
1

N2g(
i51

N2g

ur0
~ i !2r0

~ i1g!u, ~14!

where N is the number of monomers. We calculated th
value of R̄s during the collapse of the chain. The results fo
R̄s at different time intervals are shown in Fig. 7. The down
ward shifting coincides with a decrease in the physical si
of the polymer molecule during the collapse.

It is of particular interest to study the short length lobe o
the R̄s curve. We anticipate that the short length lobe tak
the formga where the value of factora can be obtained by
fitting the logarithm of theR̄s curves. Theoretically, for a
Gaussian-like chain16 R̄s(g) } g1/2, while for the crumpled
globular conformationR̄s(g) } g1/3. For the equilibrium
globule,R̄s(g);g1/2 for g,gc andR̄s } g0 for g.gc . Here
the crossover lengthgc is determined by the condition that
the size of a Gaussian fragment of the chain is of the order
the globule sizeRg , i.e., gc;(Rg /a)

2 wherea is the aver-
age bond length. The time dependence of the exponenta for

at
No. 7, 15 August 1995AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



umn
FIG. 3. Time dependence of the distribution of contact loops~DCL! for both linear and ring polymers. GPP dynamics results are shown. The left panel col
is for the linear 60mer:~a! High temperature average while~b!, ~c!, ~d! are typical instantaneous snapshots. The right panel column is for the ring 60mer:~a8!
High temperature average while~b8!, ~c8!, ~d8! are typical snapshots.

2620 Ma, Straub, and Shakhnovich: Collapse of homopolymers
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D

the collapse processes are shown in Fig. 8. Thea values start
around 1/2 in the high temperature limit and decay quick
following the temperature quench. This behavior is consi
tent with the results for the time dependence of the gyrati
radii. In the high temperature regime we can consider t
polymer to be an ideal chain. Thea values derived from
simulation for the linear and ring molecules are in reasonab
agreement with the theoretical predictions. At long times,a
asymptotically reaches its equilibrium value. From the sim
lations, we found thea value at the final stage to be 1/3 for
the ring polymer and a smaller value for the linear molecul
The simulation data give the final value ofa51/3 for the
ring polymer which supports the assertion16 that such poly-
mers are in the crumpled globular state. For the linear po
mer case, we see a smallera value which again supports the
theoretical prediction that the linear polymer molecule ca
reach an equilibrium globular state through a slow head-e
rearrangement, in which caseR̄s is independent ofa. It
might be helpful to see at what length of the chain segme

FIG. 4. Time dependence of the average lengthL̄ of the contact loop for
linear ~lines! and ring~circles! molecules. Results are shown for both MD
~upper panel! and GPP~lower panel! dynamics. The curves show that the
length of the contact loop increases significantly during the collapse for t
linear polymer while the ring polymer shows a relatively small change.
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the R̄s(g) } ga relation breaks down. We found this relation
to be reasonably accurate for chain segments of length l
than 20 for the linear and ring polymers. Again, this is due
the fact that for large chain segments, the fragment size
comes comparable with the size of the globule as a whol

Our results show that thea values obtained from GPP
dynamics are always smaller than those of the MD results
the long time limit. We believe that this is due to the fac
that, at finite temperature, the potential surface smoothi
effect of the GPPs allows the polymer chains to relax mo
readily than those simulated by MD. This interpretation
consistent with the fact the equilibrium values ofRg derived
from GPP dynamics are always slightly smaller than those
MD. These conclusions support the notion that GPP dyna
ics provides enhanced phase space sampling.18,23

IV. CONCLUSION AND DISCUSSION

This numerical simulation study of the thermodynam
and kinetic properties of Lennard-Jones homopolymers a
the comparison with theoretical predictions can be conclud
as follows:

~1! From the simulation study of the thermodynami
properties of a LJ homopolymer, we found that there do
exist a clear coil-globule phase transition of the sort theore
cally predicted by Lifshitz.27 This phase transition appears to
be second order.

~2! The process of collapse of the linear LJ homopoly
mer is a two-stage process, in accord with the theoretic
prediction made by GNS.16 In the first stage, the polymer
becomes compact. In the second stage, the subsequent re
ation appears to involve the migration of chain ends and
correlated with changes in the topological structure of th
chain.

~3! The structural properties of the linear and ring poly
mers are different; the ring polymer exhibits certain featur
of the crumpled globule.

~4! The dynamical mechanism of LJ homopolymer co
lapse does not appear to involve an activation barrier.

~5! Comparison of approximate GPP dynamics with ex
act MD simulations shows that GPP simulations provide
reasonably accurate representation of the system thermo
namics and dynamics. Differences arise in the rate of rela
ation at low temperatures indicating the GPP dynamics a
more effective in allowing reorganization in the compac
state.

Simulation of the coil-globular transition was the subjec
of several previous studies.11,28,29Most of these studies em-
ployed MC simulation techniques in lattice models. The po
sible two-stage character of the collapse transition was no
by Kron et al. as early as in 1968. In recent work by Cha
and Dill,11 a two-stage collapse transition was observed
very low temperature. However, the origins of the stag
observed by Chan and Dill and the one reported in this pap
as well as predicted by the GNS scenario, are quite differe
The second stage which Chan and Dill observed only at ve
low temperature was found to be dependent on the move
used in the Monte Carlo simulation and is likely to be con
nected with final, fine arrangement of loops on the squa

e
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FIG. 5. Coordinate snapshots for the collapse of the linear 60mer. Results are from GPP dynamics. The graphs show theXY projection for~a! the initial
snapshot at high temperature and~b! the final collapsed globular structure. The pictures show the clear collapse of the polymer molecule.
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lattice. It should be contrasted with the second stage of
GNS scenario—a topological relaxation process which is
possible in the two-dimensional case studied by Chan
Dill. 11

As we emphasized in the Introduction, many features
protein folding may be understood from polymer principl

FIG. 6. The time dependence of the gyration radii during collapse.
curves record the rapid decrease inRg in the early stage of collapse befor
relaxing to the same value ofRg for both linear~lines! and ring ~circles!
molecules at the end of the simulation. Results are shown for MD~thin
lines! and GPP~thick lines! dynamics.
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and statistical mechanics. The first stage of the folding pro
cess, which has been observed in many proteins,2,4,30is a fast
collapse to a compact but nonspecific state. This bears r
semblance to homopolymer collapse, and our aim in th

he
FIG. 7. Time dependence ofR̄s for the linear and ring molecules. Linear:~a!
High and low temperature average and~b! intermediate time snapshots.
Ring: ~c! high and low temperature average and~d! intermediate time snap-
shots. GPP dynamics results are shown.
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2623Ma, Straub, and Shakhnovich: Collapse of homopolymers
paper was to elucidate its possible kinetic mechanism. S
sequent stages of folding include the formation of spec
unique structures. In these stages, heteropolymeric eff
are of key importance. Therefore, a natural extension of
present study is to consider heteropolymers using the sa
simulation methodology. An important element of such stu
ies would be sequence design, since random heteropolym
are unlikely to fold into the stable native state, for kinet
reasons.5,31 This is a subject for future research.
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APPENDIX

The approximate density distribution used to descri
the LJ homopolymers in our simulation is discussed in de
here. The bond potential is a part of the total potential s
face, and when we calculate the average potential^V& it is
most natural to average the harmonic bond potential over
density distribution. Doing that results in a term in¹ r0

2 ^V&
which is proportional to the bond force constantk. This term
dominates¹ r0

2 ^V& making Ṁ2,0 large and negative. The re

sult is that the widths of the packets shrink too fast a
consequently the size of the polymer chain will be signi
cantly smaller in the high temperature limit. Hence, w

FIG. 8. The time dependence ofa for the linear~lines! and ring~circles!
polymers. The curves start from the high temperature average values oa,
around 1/2 for both polymers, att50 and follow the collapse in time. At the
end of the collapse~low temperature! a is equal to 1/3 for the ring polymer
and a smaller value for the linear polymer. Results are shown for both
~thin lines! and GPP~thick lines! dynamics.
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adopted an alternative approach. The bond potential av
aged over the density distribution was approximatedad hoc
as

^V&bond5k (
k51

N21

~ ur k2r k11u2 l b!
2

>k (
k51

N21

~ ur k,02r k11,0u2 l b!
2. ~A1!

As such, there is no contribution from̂V&bond in ¹ r0
2 ^V&. To

test the properties of this representation, we investigated
bond fluctuation of the polymer chain. We calculated t
bond length distribution at different temperatures. Figure
shows a typical bond length distribution at three tempe
tures. The fluctuations are relatively large at higher tempe
tures with smaller deviations at lower temperatures.

A standard result from polymer physics is that at hig
temperatures the gyration radiusRg5Al b2/6N1/2 where l b is
the length of the bond. We calculated the gyration radius a
function of the chain lengthN. Figure 10 shows the size
dependence of the gyration radius for a broad range of po
mer sizes. In calculating theRg the widths contribute signifi-
cantly. Therefore, if Eq.~A1! is a poor approximation, we
would expect to see an improper scaling ofRg . In Fig. 10,
the linear fitting of the data shows that the slope is 0.
which is very close to 1/2. We also calculated the value
l b from the extrapolation of Fig. 10 toN51 which provides
a value of the bond length equal to 1.48 in the high tempe
ture limit at T51.5. Meanwhile, we compared this bon
length with the average bond length calculated from the d
tribution shown in Fig. 9 which is equal to 1.41 atT51.5.

FIG. 9. Bond length distributions are presented for three different tempe
tures. The equilibrium length of each bond is equal to 21/6. The calculations
are presented for a linear 60mer. Similar results can be expected for all o
systems studied.
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So the expected bond length from theory agrees with
average bond length from simulation. Therefore, we arg
that, in our simulation, the Gaussian ideal chain is well re
resented by the approximate phase space density distribu
we used.

Also, for comparison with the well depth of the non
bonded Lennard-Jones potential equal to one, the curva
of the LJ potential at its minimum is 36 in reduced unit
However, the bond potential between sites on the homopo
mer is not intended to mimic a chemical bond. It is taken
a reasonable estimate of the fluctuations between center
polymeric subunits along the polymer chain. As a result, t
bond force constant is weak compared with a typical cov
lent bond to allow for the larger fluctuations between t
centers of the subunits, which has contributions from bo
angle, and torsional fluctuations. We also note that if ea
site is considered to be a subunit~such as an amino acid!

FIG. 10. Polymer size dependence of the gyration radius. The results
shown in the logarithmic scale for a linear polymer in the high temperat
limit T51.5. The diamonds are for the simulation data and the solid line
for the linear fit.
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where the diameter is 10 Å, the mass 100 gm/mol, and t
well-depth 3 kcal/mol, the time unit is approximately 150 ps
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