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Smoluchowski dynamics in the Gaussian density approximation
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A dynamical annealing algorithm for global optimization based on approximate solution of the
Smoluchowski equation is presented. The equations of motion in the Gaussian density
approximation are interpreted as a steepest descent quench on a time dependent effective potential
energy surface. Arelation between the convexity condition for the effective potential surface and the
size of thermal fluctuations provides a definition of the critical temperature above which the
distribution is delocalized and the effective potential is smooth and convex during an annealing run.
This critical temperature may be significantly less than the temperature characteristic of escape from
a local energy minimum. €1995 American Institute of Physics.

I. INTRODUCTION and many other molecular global energy minimizations, to
be hard optimization problems.
Simulated annealin@SA) remains a paradigm for global A second paradigm for global energy minimization of

energy minimization of molecular systerh$Part of the ap- atomic and molecular clusters and macromolecules is poten-
peal of SA is its ease of application. A computer programtial smoothing. It has been known for some time that short
written for Newtonian molecular dynamics or Monte Carlo is range potentials produce potential energy hypersurfaces with
easily converted into a program for global optimization bya large number of local energy minirfid.Global energy
incorporating a temperature control and an annealing schedrinimization on such landscapes can be frustrating. It is also
ule for the decrease of the temperature with time. A secon#inown that by increasing the range of interaction in the po-
reason for the popularity of SA is its success, although notential energy function it is possible to greatly reduce the
complete, in solving many optimization problems. A third humber of local minima while preserving the global charac-
reason is that the analogy with the familiar statistical me-ter of the potential hypersurfaéé.Of course, physical po-
chanical process of annealing provides a means of picturinfgntials are determined for us and the potential surface one
the optimization process and gaining insight into its mechamust work with may have the character of a rugged energy
nism. landscape with a large number of local minima making the
Nevertheless, there are reasons to believe that simulatéPtimization problem “hard.” While it has been shown that
annealing is not the optimal optimization method for appli-Smoothing can merely transform one hard optimization prob-
cations to molecular systems. One characteristic of biomo!€M into anothef,in practice smoothing algorithms have had
lecular systems is the broad distribution of energy scales igonsiderable success. Smoothing algorithms involve a trans-
the problent Configuration space is partitioned by very high formation of the interaction potential from a rugged_s_urf_ace
barriers(on the order of tens of kcal/motorresponding to (@ & Smooth one. The simpler problem of global minimiza-
dihedral angle transitions while the relative stability of con-tion on the transformed surface is then solved. The transfor-
formers can be determined by weak hydrogen bonding force@ation I1s then mverted ar_1d the splunon |s-mapped on to the
and van der Waals contadishich are often tenths of a kcal/ untransfo_rmec{physmally mtere_stmg potenpgl surface.
mol). In the simulated annealing protocol the trajectory be-, CQnS|der an example prowdpd by Stllllnge_r ‘?‘”d Weber
gins at a temperature which initially is large compared withmVOlV'.ng an ad7hoc Iopal Gaussian coarse graining of the
the highest barrier in the syster,,,,, and ends at a tem- _potent.|al energy. Starting “OT“ the phyS|caI.potent|aA(r)
perature which is small compared with the separatid® in d dimensions, the Gaussian coarse grained potential en-

between the global energy minimum and the next lowest &Y 15 defined as
lying minimum. If the trajectory is to sample the equilibrium
distribution at each intermediate temperature we expect that
the cooling should be logarithmically slow. It follows that the
length of the optimal annealing rug,,, scales exponentially

with the ratio E,/AE. Therefore, problems with a wide When the length scale of the coarse graining-0, the

range of energy scales represent very hard problems for thbet)arse grained potential reduces to the physical potential
standard simulated annealing method. As the ratio of th V)—V(r). When the coarse graining length scalés in-

largest and smqllest energy scalgs grows, the problem b reased, the potential is smoothed. Minima separated by dis-
comes exponentially harder. For this reason alone, we expegl,.es small compared with will be joined into a single
protein folding(finding the lowest energy state of & profin  inimum on the smoothed potential surface. An effective
coarse graining will result in a simplified potential function
dAuthor to whom correspondence should be addressed. with relatively few minima, and these surviving minima will

<v>=(2wL2)*d’2f dr’ V(e lir=riFa (D)
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often represent the most important minimdeepest with ., aren+k rank symmetric tensors. For the special case
largest volumgon the physical potential surface. of a Gaussian packet representation of the density distribu-

In this paper, we discuss algorithms based on approxition the equations of motion have been presented
mate solutions to the Fokker—Planck and Smoluchowskbreviougy;q

equations. Explicit equations of motion are derived for the
Gaussian density approximation. We find that the coarse :@
grained classical dynamics combines the best properties of m’
potential smoothing methods and classical density annealing

. . 1 1
algorithms. M2,0= m M1, Mya= m Mo~ d M 2,0Vr20<V> —YMua,

Il. DERIVATION OF COARSE GRAINED @)
SMOLUCHOWSKI DYNAMICS

Po=— Vi olV) = ¥Po,

. 2
__= 2 )\ _
The Langevin equation represents the dynamics of a sys|\-/I 02=~gM 14V (V) =29 IMo—dmieT]

tem (a single point in phase spaaeoupled to a heat bath of
well defined temperatur@. The Fokker—Planck equation
(for the phase space density distribujievhich is equivalent
to the Langevin equation is the Kramers equdtion

where each second order scalar moment is the trace of the
corresponding second rank tensor. For the spherically sym-
metric Gaussian basis, the second rank tensor moments are
isotropic. Coupling to the heat bath manifests itself by har-
d p monically constraining the width of the momentum distribu-
ot p(r.p.t)=— m Vet F(N)-Vp tion Mg, about the correct temperature constaniksT. As
the system evolves in time, the motion of the center of the
_ ) distribution in momentunp, is damped out to zero while the

NVp- [P+ mkeTV,1]|p(r,p.L). @ width in momentum spachl, , approaches the correct tem-

perature proportionality. Thus, at a fixed temperature the

The density distributiop(r,p,t) is completely specified b s P . '
y p(r.p.) PISTSl sp y density distribution of the system will relax to an approxi-

the center in phase spacé),(p))=(ro,pp) and the mo- ; X = oo
ments in positon and momentunM, ={(r—rq)"(p mation to the static equilibrium distribution.

— Po)*) aren+k rank symmetric tensors, defined by aver- _ FOf many systems one may assume that the momenta
ages over permutations of the tensor indices of the positioﬁdax quickly to the Maxwell distribution relative to the time
and momentum components, wheré represents a phase scale for the coordinate relaxation. The adiabatic elimination
space average over the distril;uti,@("r p,t). To derive equa- of the momenta is achieved by assuming that instantaneously
tions of motion for these moments, we use the fact that thdP/dt=0. The dynamics of the reduced configurational

time derivative of the average of a quantiyr,p,t) defined space distribution functio(r.t) is given by the Smolu-
chowski equatiot?

<A>=f dr dp A(r,p,t)p(r,p,t) 3) J . 1 .
7 PEO= Ve [—FO+keTV (DL (8
is given by
q A p Following the procedure described in the previous section,
—_ <A>:J dr dp|p — +A op i (4)  We derived moment equations for the time evolution of the
dt at ot configurational density distribution which are
The partial time derivative acts only on the explicitly time 4, 1 dM 1
dependent quantitiethe moments while the time depen- d_t0: —Fq, d_tn: —[kgTn(n—1)L,_»,+nW,_4],
dence of the density distribution is given in this case by Eq. my my ©
().
Evaluation of Eq(4) leads to where Fo=(F(r)), M =((r—rgo)"), W,=((r—rg)"(F(r)
dry p dp — Fog)), andL,=(I(r—rg)"), wherel is the identity ma-
Zo_Fo MO _p trix. Again, it is implicit thatM, ,, W, _4, andL,, ,_, are
at - m' dt Fo— vPo (5) g p n,k nk-1 nk—2

n+k rank symmetric tensors. This hierarchy of equations
for the motion of the distribution center. For the equations ofdescribes the time evolution of the configurational distribu-
motion of the moments, integration by parts of E4), as-  tion exactly. However, to make use of these equations we
suming the surface terms equal to zero because the Gaussi@st truncate the moment expansion. For example, suppose

distribution vanishes at infinity, provides we approximate the single particle configurational density
distribution as a delta functiop(r,t)=48(r(t)—ry). The
dMn'k: EM T KW momentsM ,=0 and the dynamics consists of a steepest
dt n—1k+1 nk—1

descent along the potential at a rate defined by the gradient
divided by the friction. Using a spherical Gaussian approxi-

~ KMy —k(k=1)mieTLn 2], ®  mation to the configurational distribution
where the momentsV,, ,={((r—rq)"(p—po)“(F—Fo)) and q
Ln,kz(l(r—ro)”(p—_po)k} v.vh.erell ig the identity matrix. In ﬁ(r,t)=(2wM2/d)d’2ex;{ _ (r—ro)z}, (10)
our shorthand notation, it is implicit théd , ,, W, 1, and 2M;
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1576 Straub, Ma, and Amara: Coarse grained classical dynamics

the dynamics of the distribution are completely defined inaverage energy of the packet. In contrast to Fokker—Planck
terms of the time dependence of the distribution centepacket dynamics, where there is an associated heat of transi-
ro=(r) and varianceM, is the trace of the second rank tion which is converted into packet kinetic energy, in Smolu-
tensorM , which is isotropic for the spherical Gaussian basis.chowski packet dynamics the temperature is strictly con-

The resulting equations of motion are trolled and the decrease in temperature during annealing is
dr 1 monotonic. What is the nature of this transition in terms of
—o__ = V. (V), the packet dynamics and the properties of the effective po-
dt ° tential (V)? What is the temperature associated with the lo-
dM, 1 , (11 calization transition and how can it be calculated from the
T m_y 2dkgT— J MZVr()(V) . potential parameters? A similar localization transition was

seen in the Fokker—Planck packet dynamics. How is the lo-

Alternatively, these equations of motion may be derivedcalization transitiorinto a local minimum related to an es-
from the Fokker—Planck equations for the special case thatape (delocalization transition from a local minimum for
(1) po=0, (2) Mg ,=dmksT, and that(3) Ml 1=0. Note  packet dynamics?
that if these equations are written in terms of the scaled tim
T=t/my the structure of the dynamical equations are univer-
sal and independent of. Convexity conditions are a useful means of analyzing

The equation of motion for the center of the densitypotentials which are transformed by smoothing. By demand-
distribution is a steepest descent equation of motion on thiag that the smoothed potential function be everywhere con-
coarse grained effective potenti@V).** The widths of the vex, a unique solution to the minimization problem on the
distribution adjust to the curvature of the effective potentialtransformed potential is guaranteed. To develop an under-
and can reach a static value when a balance is reached Igianding of the dynamics on the Gaussian coarse grained
tween the delocalizing influence of the temperature and theffective potentialV) we return to the simple example of a

9. Critical fluctuations and convexity conditions

localizing influence of the potential or when one-dimensional harmonic potential with added sinusoidal
1 roughnes$?
_ = 2
keT= gz M2V (V). (12 V(X)=1 kx2+ e cogqx+ 7. (14)

This condition provides the exact distribution width for a To compute the effective potentiéV/) we must average the
harmonic system and an approximate effective harmonic digpotential over the configurational distribution. The effective
tribution width for anharmonic potentiat.We now turn to  potential for the center of a one-dimensional Gaussian distri-
an analysis of the properties of the effective potential and théution as a function of its centey, and varianceM, is
dynamical optimization mechanism. )

(V)(Xo) =3 k(X5+ M)+ e e M2 cofqxy+m]. (15

I1l. GENERAL PROPERTIES OF COARSE GRAINED . .
DYNAMICS How does the character of the effective potential change as

the width of the Gaussian density is increased? When the
Itis useful to explore the general properties of simulateddistribution varianceM ,=0, the bare potential is recovered.
annealing using Fokker—Planck or Smoluchowski packet dyAs the variance is increased, the sinusoidal roughness dimin-
namics in the context of a one-dimensional rough potentialishes in importance. In the regime where the variance of the
V(x)=1 kx2+ e cog qx+ 7], (13) distribution is large compared to the length scale of. the
roughnesM,>1/g2, the roughness becomes exponentially
where we set=2, q=10, and«=1. In Fig. 1 we show the  gmall and the bare harmonic potential is recovered. In that
time evolution of a phase space density packet during apegime, a coarse grained averaging on the length scale of the
annealing run. For a conservative dynamics the center WOU'ﬁotential roughness erases the roughness and exposes the
trace an ellipse in phase space. For the dissipative dynamiggyoader features of the potential which correspond to longer
as the temperature of the packet is lowered, the packet Naangth scale interactions or correlations.
rows in both momentum and position and eventually be- At small values ofM, there are many local minima on
comes localized at a single point in phase space. Midway ifhe potential surface. The number of these minima can be
the annealing run, the configuration space variance of thgyund by evaluating the solutions of, (V) 0 where

packetM, , collapses and the packet is trapped in a IocaI . (V)>0. The number of extrema is given by the number
minimum of the potential surface. The rise in temperature °°

that coincides with the packet collapse indicates that the 10° of solutions of

calization transition has an associated “latent heat.” This €4 2

leads to a jump in temperature and an increase in momentum  Xo=-" € 247 sinfgxo+ 7]. (16)
fluctuations which are evident on the phase space plot.

An example of the Smoluchowski dynamics in a one-As M, increases, the right-hand side of E46) becomes
dimensional potential is provided in Fig. 2. The dynamics isincreasingly small. Whei, exceeds a critical value there
characterized by a steady reduction in temperature over theill be a single solution to this equation which corresponds
annealing run. The localization transition in which the packeto the global energy minimum. The zeros are the points of
width M, collapses is associated with a sharp drop in théantersection of the lineaiteft-hand and the sinusoiddtight-
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FIG. 1. Time evolution of the phase space density distribution following the approximate Fokker—Planck equations for a Gaussian density distribution in the
one-dimensional potential enery}x) = x%/2+ 2 co§ 10x+ 7r]. For the run, we set the bath temperatilire0 andy=0.09 and showa) the trajectory of the

packet center including the dynamics bef¢senooth spirgl and after(dense elliptical spiralthe packet is localizedp) the configuration space variance

M, o, and the time evolution of the packets) total energy andd) temperature.

hand terms whose limits of oscillation are determined by theOnce a smoothing transformation is defined, the convexity
prefactor which becomes exponentially small. In fact, if thecondition can be used to define an optimal smoothing such
slope of the right-hand side is less than unity, there will bethat all local minima are annihilated and a single energy
only one zero corresponding to a single extremum. In otheminimum remains.

words, if Using the Smoluchowski dynamics algorithm, the criti-
€q? , cal varianceM$ can be given a physical, thermodynamic
— e M2072< 17 meaning in terms of a critical fluctuation size or temperature.

Our equation for the time evolution dfl, in the approxi-
there will be a single minimum on the effective potential mate Smoluchowski dynami¢&qgs.(11)] provides a means
surface. Therefore, we can define a critical value of theof defining the critical temperature. Suppose that the center

Gaussian packet variance Xo is fixed at a particular position. The variance of the
2 « distribution will evolve in time until a balance is reached
M$=— —lIn —2) (18)  between the kinetic energy contribution and the curvature

q €q of the effective potential. For a free particle distribution,

If the packet is broader than this critical value, the effectivethe variance will increase linearly in time a#/,
potential is convex and there is a single global energy mini=2d(kgT/my)t=2dDt where the diffusion constant is
mum on the surface. This is a “convexity condition” com- D=kgT/mvy. For a particle distribution in a convex poten-
monly employed in the study of optimization problems.tial, a steady state value of the variance is reached by bal-
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FIG. 2. Time evolution of the configuration space density distribution following the approximate Smoluchowski equations for a Gaussian density distribution
and the one-dimensional potential eneXx) =x?/2 + 2 co$ 10x+ 7r]. For the run we set the bath temperatlire0 andy=0.09 and showa) the trajectory
of the packet centefa linear steepest descentb) the configuration space variandé,, and the time evolution of the packets) total energy andd)

temperature.

ancing the localizing influence of the potential and the delo- Ak

calizing influence of the kinetic energand temperatuje
What is an upper bound on the value of the critical an-

nealing temperatur€,? We defineT, to be the temperature This is a critical temperature for simulated annealing using

above which the variance of the distribution in the steadythe Smoluchowski Gaussian packet dynamics.FaiT,, it

state limit will necessarily be above the critical vaMeg for

K
Taz — —qsz In(ﬁ) . (21)

is likely that the Smoluchowski dynamics will converge to a

all xo. The steady state variance is defined by the solution téocal energy minimum on the effective potential. For any

M,=0 or

Noting that the right-hand side is largest when the cosin
term is minus unity provides an upper bound on the critical

temperature
M3

c.2
—Z[k+ eq? e M2072],
kB[K q ]

Ta=

Substituting the critical value df15 we find

2
e~ M29°2 cogd qxo+ 7]].

(19

(20

T>T,, the dynamics of the Smoluchowski equation should
converge from the high temperature distribution to a single
global minimum on the potential energy surface. Therefore,
this critical temperature is the thermodynamic equivalent of
a convexity condition. These properties are displayed in Fig.
3 where the effective potential is drawn for four values of the
packet variance, in each case using a steady state value of
M, at eachx,. In simulated annealing, it is possible to re-
duce the temperature rapidly to a value slightly larger than
T, without loss of precision. As we will see in the next
section, thisT, may be significantly higher than the charac-
teristic temperature of escape from a local minimum.
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FIG. 3. The effective potential energy) defined by Eq. 15 using a FIG. 4. The space of temperatufeand packet varianchl, for fixed x, in
steady state value oM, at eachx, for four values of temperature the potentialV(x)=x?/2+2 co§10x+ ]. The line indicates the solutions
T=0,T./2, T,+ 6 (6 as small as you likeand 4T, demonstrating that for  of the equationrdM,/dt=0 which are the steady state packet widths. The
values ofT>T, the effective potential is convex and there is a single energyheavy lines are stable steady state fixed points while the lighter connecting
minimum on{V). line represents unstable steady state fixed points. The arrows show how
trajectories at a fixed temperature and initial valueMbf evolve in time,
draining to the stable fixed pointsteady state widths The T, marker

B. Critical temperatures for escape  Tescape and signifies the upper bound provided by E®R1).
annealing T,

In the previous section we found that when the densitywill remain constant in time. However, if the value M, is
distribution is annealed from a high temperatangere the  perturbed, it will evolve to a steady state solution corre-
varianceM, is large to a low temperaturéaboveT,) there  sponding to a stable fixed point.
will be a single minimum on the effective potential surface. When the initial packet is wide, as in an annealing run,
This implies that the annealing can be performed rapidly tahe width will decrease in time until reaching its steady state
T=T, without a concern that the trajectory will be kineti- value [a solution of Eq.(22)]. For T>T,, this width will
cally trapped and quenched in a high energy local minimumeorrespond to the width of the broad harmonic potential. For
Annealing below the critical annealing temperatlitemust  T<T,, the steady state width is narrower and corresponds to
proceed more slowly since the effective potential will in gen-the width of the sinusoidal wells of potential roughness. For
eral have multiple minima. this potentialT,=0.2.

In this section, we develop a detailed understanding of  When the initial packet is narrow, as for a localized delta
the dependence d¥l, on T. At a given temperature, there function distribution, the packet will spread in time in evolv-
are a set of fixed points fvl , which correspond to the zeros ing to its steady state value. FOK Tescape the steady state
of dM,/dt=0. The Gaussian packet will evolve in time to a width is narrow and the packet remains trapped in the local
fixed point of the varianceM, at a given center position sinusoidal potential minimum. Whef> Tegcqpe the packet
Xo. Consider again the one-dimensional harmonic potentiahay “escape” from the well and the width will evolve to a
with sinusoidal roughness. Suppose that we set the center ghlue which reflects filling the broad harmonic potential. For
the packet to b&,=0. Due to the symmetry of the potential, this potentialT escaps= 1.5.
the packet center will not move, but the widths will evolve For temperature3 ,<T <Tcpeand intermediate initial
from some initial value to a steady value that is a solution ofvalues ofM,, there is a set of steady stad#, values corre-

dM,/dt=0 or sponding to unstable fixed points. These are solutions of Eq.
M, , (22). However, if the values oM, at these unstable fixed
T= et eq? e M2072], (22)  points are slightly perturbed to largt, (to the righ} they
B

will evolve to the stable fixed points corresponding to a
The solutions of this equation are displayed in Fig. 4. Theresteady state value in the broad harmonic potential. A slight
are two types of solutions to this nonlinear equation. One sgperturbation to smalleM, (to the lef) will cause the vari-
of solutions arestable fixed points (heavy line$ and the ance to narrow until the packet is localized in a narrow well
other set areunstablefixed points (light line). At a given  on the sinusoidal roughness potential.
temperature, any initial value d¥1, which is not itself a This analysis provides several conclusiofis. For an
steady state value will evolve to a steady state solution coritially localized packet, there is a critical temperature
responding to a stable fixed poitiThe evolution ofM, ata  TegeapeWhich must be reached before the Gaussian packet
fixed temperature is shown by the arropéthe initial width ~ can delocalize beyond the local potential well. Reasonably,
and temperature correspond to an unstable fixed pbigt, the value of the escape temperature is comparable to the
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1580 Straub, Ma, and Amara: Coarse grained classical dynamics

depth of the roughness potential wek24. (2) For an ini-
tially delocalized packet, there is a critical temperatiite

above which there is a single minimum on the effective po- \700
tential surface. The system may be rapidly annealed by set-
ting the temperature to a value slightly greater tfgnfol-
lowed by a slower annealing b= 0. (3) While the value of
TescapelS cOmparable to the depth of the wells on the rough
potential, the value of the critical annealing temperaiiyés
nearly an order of magnitude smaller. Using the Gaussian
density annealing through the Smoluchowski equation, it is
possible to anneal rapidly to a temperature significantly
smaller than the well depth without loss of precision. The
disparity betwee ¢sc,peand T, represents a hysteresis. With
Gaussian density annealing, there will be a single energy
minimum for all temperatures abodg making it possible to
anneaby quencho this low temperature, significantly below

Tescape T

For the simulated annealing of a point particle, frustra-
tion due to trapping in local minima occur at a temperatureFiG. 5. The effective potential enerdf defined by Eq( 23) for the high
comparable to the barrier height of the roughness potentialémperature limit Ye=Vo) and low temperature limit\(er=Vo—e€) as
In general, it seems preferable for the packet to remain deYe!! as atthe critical annealing temperatdig.
localized to as low a temperature as possible during the an-
nealing process. However, this does not guarantee that when
the packet does collapse that it is more likely to localize in

the global minimum. Oré€ and Shalloway have considered involving the crossing of barriers on the order of.2The

this E’fint in detail using a method related to that proposecffective potentiaV.y and effective diffusion constar
here:" We now turn to a more general discussion of thecorrespond to motion coarse grained with a resolution of
coarse graining inherent to the Gaussian density simulategxzw/q_ How do the approximate equations of motion for
annealing. the Gaussian density compare with this more rigorous coarse
C. Coarse graining and potential smoothness grained treatment? ' _ _ _
) ) The Smoluchowski equations of motion for the Gaussian

We can explore in greater detail the nature of the apyensity packet do not have a renormalized diffusion constant.
proximate Smoluchowski dynamical equations by focusingat 4| temperatures, the diffusion constantDs=kgT/my.
on a one-dimensional example. Zwanzig has described fgever, as we have shown above, the effective potential
coarse grained diffusion of a particle in a rough one-cnanges drastically as the temperature is reduced. At tem-
dlmen5|05nal potentlaiLls, extendmg a result. of Llfsor] and peraturesT>T, the potential is convex while &<T, the
Jacksort® While the coarse grained dynamical equations arepotential is rough. In the coarse grained dynamics the effec-

arrived at by conjecture, the mean first passage time is Préfe potentialV, is always convex. Changing the tempera-

served. Consider the potentiel(x) =Vo(X) +Vy(X) Where .o \nerely shifts the potential in energy by a position inde-
V(x) is a smooth “background” potential which varies on a

| h | hich is | q h _dlfendent constar(see Fig. 5. The high temperature limit of
engt s“cae whic ; IS long compare t(.) the more rapl Vi IS Vo while at low temperatures it i¥y,—e. However,
varying “roughnessV,(x). D is the diffusion constant. The

ffective Smoluch ki ion f ined d the diffusion constanD. is D at high temperatures while
effective Smoluchowski equation for coarse graine ynambeﬁ decreases exponentially with decreasing temperature

ics is defined® by motion in an effective potential: [see Eq(25)].
1 iy Therefore, at high temperatures the dynamics of the
Ve(X) = Vo(X) — 8 In[(e™#"1)] (23)  Gaussian packet is consistent with the coarse grained effec-
_ _ o tive Smoluchowski equation. As the temperature is lowered,
with an effective diffusion constant: each coarse grained dynamical theory treats the slowing of
D..=D/({efV1) (e BV1)). 24 the motion differently(1) The coarse graining intrinsic to the
ef « X 2 24 Gaussian density packet leads to an effective pote(itial
The coarse graining average is writtér). which changes dramatically between the low and high tem-

For example, Zwanzig considered diffusion in a roughperature limits; the form of the diffusion constant remains
potential with the form of Eq.(13.'* In this case unchangedthe high temperature limit 0Dg). (2) In the
(exp(=BVy1))=1o(Be) wherel, is a modified Bessel func- effective Smoluchowski equation of Zwanzig, the potential is
tion. In the low temperature limi{3e is large and smoothed and changes with temperature only through a con-

_ 928 stant shift(the high temperature limit gfV/)); the slowing of

Der=D(2Be)e > (% diffusion due to the roughness pottgntizal is manifest in the
which has the suggestive Arrhenius form indicating that dif-effective diffusion constanD .z which decreases dramati-
fusion on a length scale long compared witly g activated  cally at low temperatures.
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