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Simulated annealing using coarse grained classical dynamics:
Smoluchowski dynamics in the Gaussian density approximation

John E. Straub,a) Jianpeng Ma, and Patricia Amara
Department of Chemistry, Boston University, Boston, Massachusetts 02215

~Received 12 December 1994; accepted 5 April 1995!

A dynamical annealing algorithm for global optimization based on approximate solution of th
Smoluchowski equation is presented. The equations of motion in the Gaussian dens
approximation are interpreted as a steepest descent quench on a time dependent effective pote
energy surface. A relation between the convexity condition for the effective potential surface and
size of thermal fluctuations provides a definition of the critical temperature above which th
distribution is delocalized and the effective potential is smooth and convex during an annealing r
This critical temperature may be significantly less than the temperature characteristic of escape f
a local energy minimum. ©1995 American Institute of Physics.
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I. INTRODUCTION

Simulated annealing~SA! remains a paradigm for globa
energy minimization of molecular systems.1,2 Part of the ap-
peal of SA is its ease of application. A computer progra
written for Newtonian molecular dynamics or Monte Carlo
easily converted into a program for global optimization
incorporating a temperature control and an annealing sc
ule for the decrease of the temperature with time. A sec
reason for the popularity of SA is its success, although
complete, in solving many optimization problems. A thi
reason is that the analogy with the familiar statistical m
chanical process of annealing provides a means of pictu
the optimization process and gaining insight into its mec
nism.

Nevertheless, there are reasons to believe that simul
annealing is not the optimal optimization method for app
cations to molecular systems. One characteristic of biom
lecular systems is the broad distribution of energy scale
the problem.3 Configuration space is partitioned by very hig
barriers~on the order of tens of kcal/mol! corresponding to
dihedral angle transitions while the relative stability of co
formers can be determined by weak hydrogen bonding fo
and van der Waals contacts~which are often tenths of a kca
mol!. In the simulated annealing protocol the trajectory b
gins at a temperature which initially is large compared w
the highest barrier in the system,Emax, and ends at a tem
perature which is small compared with the separationDE
between the global energy minimum and the next low
lying minimum. If the trajectory is to sample the equilibriu
distribution at each intermediate temperature we expect
the cooling should be logarithmically slow. It follows that th
length of the optimal annealing runtsim scales exponentially
with the ratioEmax/DE. Therefore, problems with a wid
range of energy scales represent very hard problems fo
standard simulated annealing method. As the ratio of
largest and smallest energy scales grows, the problem
comes exponentially harder. For this reason alone, we ex
protein folding~finding the lowest energy state of a protein!,

a!Author to whom correspondence should be addressed.
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and many other molecular global energy minimizations,
be hard optimization problems.

A second paradigm for global energy minimization o
atomic and molecular clusters and macromolecules is pot
tial smoothing. It has been known for some time that sh
range potentials produce potential energy hypersurfaces w
a large number of local energy minima.4,5 Global energy
minimization on such landscapes can be frustrating. It is a
known that by increasing the range of interaction in the p
tential energy function it is possible to greatly reduce t
number of local minima while preserving the global chara
ter of the potential hypersurface.4,5 Of course, physical po-
tentials are determined for us and the potential surface
must work with may have the character of a rugged ene
landscape with a large number of local minima making t
optimization problem ‘‘hard.’’ While it has been shown tha
smoothing can merely transform one hard optimization pro
lem into another,6 in practice smoothing algorithms have ha
considerable success. Smoothing algorithms involve a tra
formation of the interaction potential from a rugged surfa
to a smooth one. The simpler problem of global minimiz
tion on the transformed surface is then solved. The trans
mation is then inverted and the solution is mapped on to
untransformed~physically interesting! potential surface.

Consider an example provided by Stillinger and Web
involving an ad hoc local Gaussian coarse graining of th
potential energy.7 Starting from the physical potentialV(r )
in d dimensions, the Gaussian coarse grained potential
ergy is defined as

^V&5~2pL2!2d/2E dr 8 V~r 8!e2uur2r8uu2/2L2. ~1!

When the length scale of the coarse grainingL→0, the
coarse grained potential reduces to the physical poten
^V&→V(r ). When the coarse graining length scaleL is in-
creased, the potential is smoothed. Minima separated by
tances small compared withL will be joined into a single
minimum on the smoothed potential surface. An effecti
coarse graining will result in a simplified potential functio
with relatively few minima, and these surviving minima wi
5/103(4)/1574/8/$6.00 © 1995 American Institute of PhysicsAIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1575Straub, Ma, and Amara: Coarse grained classical dynamics
often represent the most important minima~deepest with
largest volume! on the physical potential surface.

In this paper, we discuss algorithms based on appr
mate solutions to the Fokker–Planck and Smoluchow
equations. Explicit equations of motion are derived for t
Gaussian density approximation. We find that the coa
grained classical dynamics combines the best propertie
potential smoothing methods and classical density annea
algorithms.

II. DERIVATION OF COARSE GRAINED
SMOLUCHOWSKI DYNAMICS

The Langevin equation represents the dynamics of a
tem ~a single point in phase space! coupled to a heat bath o
well defined temperatureT. The Fokker–Planck equatio
~for the phase space density distribution! which is equivalent
to the Langevin equation is the Kramers equation8

]

]t
r~r ,p,t !52F pm –¹r1F~r !–¹p

2g@¹p•@p1mkBT¹p##Gr~r ,p,t !. ~2!

The density distributionr(r ,p,t) is completely specified by
the center in phase space (^r &,^p&)5(r0 ,p0) and the mo-
ments in position and momentumMn,k5^(r2r0)

n(p
2 p0)

k& aren1k rank symmetric tensors, defined by ave
ages over permutations of the tensor indices of the posi
and momentum components, where^•& represents a phas
space average over the distributionr(r ,p,t). To derive equa-
tions of motion for these moments, we use the fact that
time derivative of the average of a quantityA(r ,p,t) defined

^A&5E dr dp A~r ,p,t !r~r ,p,t ! ~3!

is given by

d

dt
^A&5E dr dpFr ]A

]t
1A

]r

]t G . ~4!

The partial time derivative acts only on the explicitly tim
dependent quantities~the moments! while the time depen-
dence of the density distribution is given in this case by E
~2!.

Evaluation of Eq.~4! leads to

dr0
dt

5
p0
m

,
dp0
dt

5F02gp0 ~5!

for the motion of the distribution center. For the equations
motion of the moments, integration by parts of Eq.~4!, as-
suming the surface terms equal to zero because the Gau
distribution vanishes at infinity, provides

dMn,k

dt
5

n

m
Mn21,k111kWn,k21

2g@kMn,k2k~k21!mkBTLn,k22#, ~6!

where the momentsWn,k5^(r2r0)
n(p2p0)

k(F2F0)& and
Ln,k5^I (r2r0)

n(p2p0)
k& whereI is the identity matrix. In

our shorthand notation, it is implicit thatMn,k , Wn,k21, and
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Ln,k22 aren1k rank symmetric tensors. For the special cas
of a Gaussian packet representation of the density distrib
tion the equations of motion have been present
previously:9

ṙ05
p0
m

, ṗ052¹ r0^V&2gp0,

Ṁ2,05
2

m
M1,1, Ṁ1,15

1

m
M0,22

1

d
M2,0¹ r0

2 ^V&2gM1,1,

~7!

Ṁ0,252
2

d
M1,1¹ r0

2 ^V&22g@M0,22dmkBT# ,

where each second order scalar moment is the trace of
corresponding second rank tensor. For the spherically sy
metric Gaussian basis, the second rank tensor moments
isotropic. Coupling to the heat bath manifests itself by ha
monically constraining the width of the momentum distribu
tion M0,2 about the correct temperature constantdmkBT. As
the system evolves in time, the motion of the center of th
distribution in momentump0 is damped out to zero while the
width in momentum spaceM0,2 approaches the correct tem
perature proportionality. Thus, at a fixed temperature t
density distribution of the system will relax to an approx
mation to the static equilibrium distribution.

For many systems one may assume that the mome
relax quickly to the Maxwell distribution relative to the time
scale for the coordinate relaxation. The adiabatic eliminati
of the momenta is achieved by assuming that instantaneou
dp/dt50. The dynamics of the reduced configurationa
space distribution functionr̂(r ,t) is given by the Smolu-
chowski equation10

]

]t
r̂~r ,t !5

1

mg
@¹ r•@2F~r !1kBT¹ r#r̂~r ,t !#. ~8!

Following the procedure described in the previous sectio
we derived moment equations for the time evolution of th
configurational density distribution which are

dr0
dt

5
1

mg
F0 ,

dMn

dt
5

1

mg
@kBTn~n21!Ln221nWn21#,

~9!

where F05^F(r )&, Mn5^(r2r0)
n&, Wn5^(r2r0)

n(F(r )
2 F0)&, andLn5^I (r2r0)

n&, whereI is the identity ma-
trix. Again, it is implicit thatMn,k , Wn,k21, andLn,k22 are
n1k rank symmetric tensors. This hierarchy of equation
describes the time evolution of the configurational distrib
tion exactly. However, to make use of these equations
must truncate the moment expansion. For example, supp
we approximate the single particle configurational dens
distribution as a delta functionr̂(r ,t)5d(r (t)2r0). The
momentsMn50 and the dynamics consists of a steepe
descent along the potential at a rate defined by the gradi
divided by the friction. Using a spherical Gaussian approx
mation to the configurational distribution

r̂~r ,t !5~2pM2 /d!2d/2expF2
d

2M2
~r2r0!

2G , ~10!
3, No. 4, 22 July 1995AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1576 Straub, Ma, and Amara: Coarse grained classical dynamics
the dynamics of the distribution are completely defined
terms of the time dependence of the distribution cen
r05^r & and variance,M2 is the trace of the second ran
tensorM2 which is isotropic for the spherical Gaussian bas
The resulting equations of motion are

dr0
dt

52
1

mg
¹ r0

^V&,

~11!
dM2

dt
5

1

mg F2dkBT2
2

d
M2¹ r0

2 ^V&G .
Alternatively, these equations of motion may be deriv
from the Fokker–Planck equations for the special case
~1! ṗ050, ~2! M0,25dmkBT, and that~3! Ṁ1,150. Note
that if these equations are written in terms of the scaled t
t5t/mg the structure of the dynamical equations are univ
sal and independent ofg.

The equation of motion for the center of the dens
distribution is a steepest descent equation of motion on
coarse grained effective potential^V&.11 The widths of the
distribution adjust to the curvature of the effective poten
and can reach a static value when a balance is reached
tween the delocalizing influence of the temperature and
localizing influence of the potential or when

kBT5
1

d2
M2¹ r0

2 ^V&. ~12!

This condition provides the exact distribution width for
harmonic system and an approximate effective harmonic
tribution width for anharmonic potentials.12 We now turn to
an analysis of the properties of the effective potential and
dynamical optimization mechanism.

III. GENERAL PROPERTIES OF COARSE GRAINED
DYNAMICS

It is useful to explore the general properties of simula
annealing using Fokker–Planck or Smoluchowski packet
namics in the context of a one-dimensional rough potent

V~x!5 1
2 kx21e cos@qx1p#, ~13!

where we sete52, q510, andk51. In Fig. 1 we show the
time evolution of a phase space density packet during
annealing run. For a conservative dynamics the center wo
trace an ellipse in phase space. For the dissipative dynam
as the temperature of the packet is lowered, the packet
rows in both momentum and position and eventually
comes localized at a single point in phase space. Midwa
the annealing run, the configuration space variance of
packetM2,0 collapses and the packet is trapped in a lo
minimum of the potential surface. The rise in temperat
that coincides with the packet collapse indicates that the
calization transition has an associated ‘‘latent heat.’’ T
leads to a jump in temperature and an increase in momen
fluctuations which are evident on the phase space plot.

An example of the Smoluchowski dynamics in a on
dimensional potential is provided in Fig. 2. The dynamics
characterized by a steady reduction in temperature over
annealing run. The localization transition in which the pac
width M2 collapses is associated with a sharp drop in
J. Chem. Phys., Vol. 1Downloaded¬09¬Jul¬2001¬to¬128.197.30.175.¬Redistribution¬subject¬to
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average energy of the packet. In contrast to Fokker–Plan
packet dynamics, where there is an associated heat of tran
tion which is converted into packet kinetic energy, in Smolu
chowski packet dynamics the temperature is strictly con
trolled and the decrease in temperature during annealing
monotonic. What is the nature of this transition in terms o
the packet dynamics and the properties of the effective p
tential ^V&? What is the temperature associated with the lo
calization transition and how can it be calculated from th
potential parameters? A similar localization transition wa
seen in the Fokker–Planck packet dynamics. How is the l
calization transitioninto a local minimum related to an es-
cape ~delocalization! transition from a local minimum for
packet dynamics?

A. Critical fluctuations and convexity conditions

Convexity conditions are a useful means of analyzin
potentials which are transformed by smoothing. By deman
ing that the smoothed potential function be everywhere co
vex, a unique solution to the minimization problem on th
transformed potential is guaranteed. To develop an und
standing of the dynamics on the Gaussian coarse grain
effective potential̂ V& we return to the simple example of a
one-dimensional harmonic potential with added sinusoid
roughness:13

V~x!5 1
2 kx21e cos@qx1p#. ~14!

To compute the effective potential^V& we must average the
potential over the configurational distribution. The effective
potential for the center of a one-dimensional Gaussian dist
bution as a function of its centerx0 and varianceM2 is

^V&~x0!5 1
2 k~x0

21M2!1e e2M2q
2/2 cos@qx01p#. ~15!

How does the character of the effective potential change
the width of the Gaussian density is increased? When t
distribution varianceM250, the bare potential is recovered.
As the variance is increased, the sinusoidal roughness dim
ishes in importance. In the regime where the variance of t
distribution is large compared to the length scale of th
roughnessM2@1/q2, the roughness becomes exponentiall
small and the bare harmonic potential is recovered. In th
regime, a coarse grained averaging on the length scale of
potential roughness erases the roughness and exposes
broader features of the potential which correspond to long
length scale interactions or correlations.

At small values ofM2 there are many local minima on
the potential surface. The number of these minima can
found by evaluating the solutions of]x0^V&50 where
]x0x0^V&.0. The number of extrema is given by the numbe
of solutions of

x05
eq

k
e2M2q

2/2 sin@qx01p#. ~16!

As M2 increases, the right-hand side of Eq.~16! becomes
increasingly small. WhenM2 exceeds a critical value there
will be a single solution to this equation which correspond
to the global energy minimum. The zeros are the points
intersection of the linear~left-hand! and the sinusoidal~right-
03, No. 4, 22 July 1995¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 1. Time evolution of the phase space density distribution following the approximate Fokker–Planck equations for a Gaussian density distributio
one-dimensional potential energyV(x)5x2/212 cos@10x1p#. For the run, we set the bath temperatureT50 andg50.09 and show~a! the trajectory of the
packet center including the dynamics before~smooth spiral! and after~dense elliptical spiral! the packet is localized,~b! the configuration space variance
M2,0, and the time evolution of the packet’s~c! total energy and~d! temperature.
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hand! terms whose limits of oscillation are determined by t
prefactor which becomes exponentially small. In fact, if t
slope of the right-hand side is less than unity, there will
only one zero corresponding to a single extremum. In ot
words, if

eq2

k
e2M2q

2/2,1 ~17!

there will be a single minimum on the effective potent
surface. Therefore, we can define a critical value of
Gaussian packet variance

M2
c52

2

q2
lnS k

eq2D . ~18!

If the packet is broader than this critical value, the effect
potential is convex and there is a single global energy m
mum on the surface. This is a ‘‘convexity condition’’ com
monly employed in the study of optimization problem
J. Chem. Phys., Vol. 10Downloaded¬09¬Jul¬2001¬to¬128.197.30.175.¬Redistribution¬subject¬to¬
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Once a smoothing transformation is defined, the convexity
condition can be used to define an optimal smoothing such
that all local minima are annihilated and a single energy
minimum remains.

Using the Smoluchowski dynamics algorithm, the criti-
cal varianceM2

c can be given a physical, thermodynamic
meaning in terms of a critical fluctuation size or temperature.
Our equation for the time evolution ofM2 in the approxi-
mate Smoluchowski dynamics@Eqs.~11!# provides a means
of defining the critical temperature. Suppose that the cente
x0 is fixed at a particular position. The variance of the
distribution will evolve in time until a balance is reached
between the kinetic energy contribution and the curvature
of the effective potential. For a free particle distribution,
the variance will increase linearly in time asM2

52d(kBT/mg)t52dDt where the diffusion constant is
D5kBT/mg. For a particle distribution in a convex poten-
tial, a steady state value of the variance is reached by bal
3, No. 4, 22 July 1995AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



bution
FIG. 2. Time evolution of the configuration space density distribution following the approximate Smoluchowski equations for a Gaussian density distri
and the one-dimensional potential energyV(x)5x2/21 2 cos@10x1p#. For the run we set the bath temperatureT50 andg50.09 and show~a! the trajectory
of the packet center~a linear steepest descent!, ~b! the configuration space varianceM2 , and the time evolution of the packet’s~c! total energy and~d!
temperature.
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ancing the localizing influence of the potential and the del
calizing influence of the kinetic energy~and temperature!.

What is an upper bound on the value of the critical an
nealing temperatureTa? We defineTa to be the temperature
above which the variance of the distribution in the stead
state limit will necessarily be above the critical valueM2

c for
all x0 . The steady state variance is defined by the solution
Ṁ250 or

T5
M2

kB
@k2eq2 e2M2q

2/2 cos@qx01p##. ~19!

Noting that the right-hand side is largest when the cosi
term is minus unity provides an upper bound on the critic
temperature

Ta5
M2

c

kB
@k1eq2 e2M2

cq2/2#. ~20!

Substituting the critical value ofM2
c we find
J. Chem. Phys., Vol. 103Downloaded¬09¬Jul¬2001¬to¬128.197.30.175.¬Redistribution¬subject¬to¬A
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Ta52
4k

q2kB
lnS k

eq2D . ~21!

This is a critical temperature for simulated annealing usin
the Smoluchowski Gaussian packet dynamics. ForT,Ta , it
is likely that the Smoluchowski dynamics will converge to a
local energy minimum on the effective potential. For an
T.Ta , the dynamics of the Smoluchowski equation shoul
converge from the high temperature distribution to a sing
global minimum on the potential energy surface. Therefor
this critical temperature is the thermodynamic equivalent o
a convexity condition. These properties are displayed in Fi
3 where the effective potential is drawn for four values of th
packet variance, in each case using a steady state value
M2 at eachx0 . In simulated annealing, it is possible to re-
duce the temperature rapidly to a value slightly larger tha
Ta without loss of precision. As we will see in the next
section, thisTa may be significantly higher than the charac
teristic temperature of escape from a local minimum.
, No. 4, 22 July 1995IP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1579Straub, Ma, and Amara: Coarse grained classical dynamics
B. Critical temperatures for escape Tescape and
annealing Ta

In the previous section we found that when the dens
distribution is annealed from a high temperature~where the
varianceM2 is large! to a low temperature~aboveTa) there
will be a single minimum on the effective potential surfac
This implies that the annealing can be performed rapidly
T.Ta without a concern that the trajectory will be kinet
cally trapped and quenched in a high energy local minimu
Annealing below the critical annealing temperatureTa must
proceed more slowly since the effective potential will in ge
eral have multiple minima.

In this section, we develop a detailed understanding
the dependence ofM2 on T. At a given temperature, there
are a set of fixed points forM2 which correspond to the zero
of dM2 /dt50. The Gaussian packet will evolve in time to
fixed point of the varianceM2 at a given center position
x0 . Consider again the one-dimensional harmonic poten
with sinusoidal roughness. Suppose that we set the cente
the packet to bex050. Due to the symmetry of the potentia
the packet center will not move, but the widths will evolv
from some initial value to a steady value that is a solution
dM2 /dt50 or

T5
M2

kB
@k1eq2 e2M2q

2/2#. ~22!

The solutions of this equation are displayed in Fig. 4. The
are two types of solutions to this nonlinear equation. One
of solutions arestable fixed points ~heavy lines! and the
other set areunstablefixed points ~light line!. At a given
temperature, any initial value ofM2 which is not itself a
steady state value will evolve to a steady state solution c
responding to a stable fixed point.~The evolution ofM2 at a
fixed temperature is shown by the arrows.! If the initial width
and temperature correspond to an unstable fixed point,M2

FIG. 3. The effective potential energŷV& defined by Eq.~ 15! using a
steady state value ofM2 at each x0 for four values of temperature
T50,Ta/2, Ta1d (d as small as you like! and 4Ta demonstrating that for
values ofT.Ta the effective potential is convex and there is a single ene
minimum on^V&.
J. Chem. Phys., Vol. 103Downloaded¬09¬Jul¬2001¬to¬128.197.30.175.¬Redistribution¬subject¬to¬
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will remain constant in time. However, if the value ofM2 is
perturbed, it will evolve to a steady state solution corre
sponding to a stable fixed point.

When the initial packet is wide, as in an annealing run
the width will decrease in time until reaching its steady stat
value @a solution of Eq.~22!#. For T.Ta , this width will
correspond to the width of the broad harmonic potential. Fo
T,Ta , the steady state width is narrower and corresponds
the width of the sinusoidal wells of potential roughness. Fo
this potentialTa.0.2.

When the initial packet is narrow, as for a localized delta
function distribution, the packet will spread in time in evolv-
ing to its steady state value. ForT,Tescape, the steady state
width is narrow and the packet remains trapped in the loca
sinusoidal potential minimum. WhenT.Tescape, the packet
may ‘‘escape’’ from the well and the width will evolve to a
value which reflects filling the broad harmonic potential. Fo
this potentialTescape.1.5.

For temperaturesTa,T,Tescapeand intermediate initial
values ofM2 , there is a set of steady stateM2 values corre-
sponding to unstable fixed points. These are solutions of E
~22!. However, if the values ofM2 at these unstable fixed
points are slightly perturbed to largerM2 ~to the right! they
will evolve to the stable fixed points corresponding to a
steady state value in the broad harmonic potential. A sligh
perturbation to smallerM2 ~to the left! will cause the vari-
ance to narrow until the packet is localized in a narrow wel
on the sinusoidal roughness potential.

This analysis provides several conclusions.~1! For an
initially localized packet, there is a critical temperature
Tescapewhich must be reached before the Gaussian pack
can delocalize beyond the local potential well. Reasonabl
the value of the escape temperature is comparable to t

y

FIG. 4. The space of temperatureT and packet varianceM 2 for fixed x0 in
the potentialV(x)5x2/212 cos@10x1p#. The line indicates the solutions
of the equationdM2 /dt50 which are the steady state packet widths. The
heavy lines are stable steady state fixed points while the lighter connecti
line represents unstable steady state fixed points. The arrows show h
trajectories at a fixed temperature and initial value ofM2 evolve in time,
draining to the stable fixed points~steady state widths!. The Ta marker
signifies the upper bound provided by Eq.~ 21!.
, No. 4, 22 July 1995AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1580 Straub, Ma, and Amara: Coarse grained classical dynamics
depth of the roughness potential well 2e54. ~2! For an ini-
tially delocalized packet, there is a critical temperatureTa
above which there is a single minimum on the effective p
tential surface. The system may be rapidly annealed by
ting the temperature to a value slightly greater thanTa fol-
lowed by a slower annealing toT50. ~3! While the value of
Tescapeis comparable to the depth of the wells on the rou
potential, the value of the critical annealing temperatureTa is
nearly an order of magnitude smaller. Using the Gauss
density annealing through the Smoluchowski equation, it
possible to anneal rapidly to a temperature significan
smaller than the well depth without loss of precision. T
disparity betweenTescapeandTa represents a hysteresis. Wit
Gaussian density annealing, there will be a single ene
minimum for all temperatures aboveTa making it possible to
annealby quenchto this low temperature, significantly below
Tescape.

For the simulated annealing of a point particle, frustr
tion due to trapping in local minima occur at a temperatu
comparable to the barrier height of the roughness poten
In general, it seems preferable for the packet to remain
localized to as low a temperature as possible during the
nealing process. However, this does not guarantee that w
the packet does collapse that it is more likely to localize
the global minimum. Oresˇič and Shalloway have considere
this point in detail using a method related to that propos
here.14 We now turn to a more general discussion of th
coarse graining inherent to the Gaussian density simula
annealing.

C. Coarse graining and potential smoothness

We can explore in greater detail the nature of the a
proximate Smoluchowski dynamical equations by focusi
on a one-dimensional example. Zwanzig has describe
coarse grained diffusion of a particle in a rough on
dimensional potential,13 extending a result of Lifson and
Jackson.15While the coarse grained dynamical equations a
arrived at by conjecture, the mean first passage time is p
served. Consider the potentialV(x)5V0(x)1V1(x) where
V0(x) is a smooth ‘‘background’’ potential which varies on
length scale which is long compared to the more rapid
varying ‘‘roughness’’V1(x). D is the diffusion constant. The
effective Smoluchowski equation for coarse grained dyna
ics is defined13 by motion in an effective potential:

Veff~x!5V0~x!2
1

b
ln@^e2bV1&# ~23!

with an effective diffusion constant:

Deff5D/~^ebV1&^e2bV1&!. ~24!

The coarse graining average is written^•&.
For example, Zwanzig considered diffusion in a roug

potential with the form of Eq. ~13!.13 In this case
^exp(6bV1)&5I 0(be) whereI 0 is a modified Bessel func-
tion. In the low temperature limit,be is large and

Deff5D~2be!e22be, ~25!

which has the suggestive Arrhenius form indicating that d
fusion on a length scale long compared with 1/q is activated
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involving the crossing of barriers on the order of 2e. The
effective potentialVeff and effective diffusion constantDeff

correspond to motion coarse grained with a resolution
Dx5p/q. How do the approximate equations of motion fo
the Gaussian density compare with this more rigorous coa
grained treatment?

The Smoluchowski equations of motion for the Gaussi
density packet do not have a renormalized diffusion consta
At all temperatures, the diffusion constant isD5kBT/mg.
However, as we have shown above, the effective poten
changes drastically as the temperature is reduced. At t
peraturesT.Ta the potential is convex while atT,Ta the
potential is rough. In the coarse grained dynamics the eff
tive potentialVeff is always convex. Changing the temper
ture merely shifts the potential in energy by a position ind
pendent constant~see Fig. 5!. The high temperature limit of
Veff is V0 while at low temperatures it isV02e. However,
the diffusion constantDeff is D at high temperatures while
Deff decreases exponentially with decreasing temperat
@see Eq.~25!#.

Therefore, at high temperatures the dynamics of t
Gaussian packet is consistent with the coarse grained ef
tive Smoluchowski equation. As the temperature is lowere
each coarse grained dynamical theory treats the slowing
the motion differently.~1! The coarse graining intrinsic to the
Gaussian density packet leads to an effective potential^V&
which changes dramatically between the low and high te
perature limits; the form of the diffusion constant remain
unchanged~the high temperature limit ofDeff). ~2! In the
effective Smoluchowski equation of Zwanzig, the potential
smoothed and changes with temperature only through a c
stant shift~the high temperature limit of̂V&); the slowing of
diffusion due to the roughness potential is manifest in t
effective diffusion constantDeff which decreases dramati
cally at low temperatures.

FIG. 5. The effective potential energyVeff defined by Eq.~ 23! for the high
temperature limit (Veff5V0) and low temperature limit (Veff5V02e) as
well as at the critical annealing temperatureTa .
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IV. CONCLUSIONS

We have presented algorithms for dynamical simula
annealing of a continuous classical density distributi
At the level of the Gaussian density approximation, the eq
tions of motion have the simple interpretation that the dis
bution center moves on an effective ‘‘coarse grained’’ pot
tial energy surface. These methods share the favor
properties of many potential smoothing16,17 or ‘‘continua-
tion’’ methods18 developed for many body optimizatio
problems. However, the algorithm remains a classical
mulated annealing algorithm and preserves the useful
sights provided by the analogy with statistical mechani
annealing.

Our explanation of packet annealing in terms of tw
critical temperatures implies that there is a ‘‘hysteres
involved.19 When the packet is initially localized, there is
high temperatureTescapewhich must be reached before th
packet can delocalize beyond the confines of the local m
mum. However, in approaching this localizatio
delocalization transition as an initially delocalized pack
there is a much lower critical temperatureTa in the annealing
below which the packet is localized. For the one-dimensio
model potential studied hereTa!Tescape. For a classical
point particle, there will be a single characteristic tempe
ture which characterizes this transition, regardless of whe
it is approached from low or high temperature. The analy
of the one-dimensional system provides insight into
mechanism of packet annealing. It appears that the hyste
effect can be a positive aspect of the packet annealing w
allows a rapid quench to a low temperature without dan
of trapping at high energies.
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