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Straub and Thirumalaand Straulet al.,? have proposed
a method for finding the distributiog(E) of the height<E of
potential energy barriers in many-body systems. Kéyesl
Straub and Chdfi,gave further discussion and elaboration.
The method uses an integral equation:

fu(T)= fo dE f,(T,E)Q(E) )
to relate the barrier height distributig{E) to the fraction of
time f,(T) that a system at temperatufewill be found in
the “unstable” part of configuration space. The integral

equation contains a kerné}(T,E); a simple and intuitively
plausible guess for the kernel was proposed in Refs. 1 and
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where ¢£=(E/2kT)¥2. Given the unstable fractior(T)
(found, e.g., by computer simulatiprone solves the integral
equation forg(E). The method was applied to a model

fu(T.E)= 2

polypeptide in Refs. 1 and 2, and to a model liquid in Ref. 3.

It led to surprisingly similar barrier height distributions in
these two quite dissimilar systems.

O<a<li,
1<a.

p(a)=1,

=0, ®

To get from one potential minimum to another, one must
go over a barrier. Because this is a one-dimensional poten-
tial, any individual barrier heigh€ is either a’+b? or
bf+a?, ;. The distribution of barrier heightg(E) can be
found by averaging the delta functiafE —a2—b?) overa
andb,

g(E)=J:daJ:db p(a)p(b)S(E—a2—b?). (6)

$n the present example, using E§), the barrier height dis-

tribution is
g(E)=m/4, O<E<1,
=ml4— arctaf\(E—1)), 1<E<2, 7
=0, 2<E.

Now we find f (T), the fraction of occupancy of the
unstable configurations, or those configurations for which the
curvature of the potential is negative. This fraction is the
total partition function of the unstable region divided by the

Unforunately there seems to be no way of directlytotal partition function of both stable and unstable regions,

checking the reliability of the proposed method in the many-
body systems to which it is being applied. This comment
presents a highly simplified one-dimensional potential en-

ergy function for which the method actually can be tested. Inf there areN (min,max pairs, then

this test, the method does not work.

As illustrated in Fig. 1, a one-dimensional potential
U(x) is broken up into cells of alternating minima and
maxima. In a “min” cell, centered om=4j, the potential is

harmonic upwards,
Umin(X)=a[ =1+ (x—4j)?], 4j—1<x<4j+1. (3)

The minimum value of the potential in this ceIHsajz. Note

QM)

W= oM+ aum- ®
1

Q=2 J_ldxexp[—ﬁbf(l—xz)], C)
1

QS(T)=EJ dx exd — Ba’(—1+x?)]. (10)
] -1

Each individual term in these sums is determined by a spe-
cific a or b that is chosen randomly from the distributipn

that the potential vanishes at its endpoints in the cell. In a

“max” cell, centered orx=4j + 2, the potential is harmonic
downwards,

Unad X) =b71—(x—4j—2)2], 4j+1<x<4j+3.

(4)

The maximum value of the potential in this cell +sb,-2.

Again the potential vanishes at its endpoints. Overall, the

potential is continuous i, but its first derivative is discon-
tinuous atx=4j+1 and 4 + 3.

The coefficientsa; andb; determine the curvatures, or
frequencies, of the potential. In the present exangplendb

Ux)

Y. \//\\/ AW

are chosen independently from the same uniform distribution

p(a) or p(b),
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FIG. 1. A realization of a random one-dimensional potential.
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and so the tota@, andQ are sums of a very large number

of independent random variables. The mean and the variance Jraction
of any individual term are both finite and independeniNof

Then, according to the Law of large numbers, the sum for 0.4
any specific sequence @fs and b’s is very close to its

average. Of course there are fluctuations about the average, 0.3

but they have a negligible order of magnitude wihers very 0.2

large. Consequently, for any particular realization of the one-
dimensional potential, we can estimate the stable and un- 0.1
stable partition functions by

» 1 0.5 1 15 2
QU(T)=NJ0 db p(b)Jlldx exf — Bb%(1—x?)]

FIG. 2. Fractionf,(T) of unstable configurations at temperatdre

+0O(NY?), (11)
[ 1 © —_
QS(T)=NJ da p(a)J dx exd — Ba?(—1+x?)] fu(T)=TJO dx f,(x)g(Tx) (15
0 -1
+O(NY2), (120  Which reduces in the limit of small' to
By changing variables, the integrals can be related to error fu(T)—>Tg(0)fwdx ?U(X)_ (16)
functions and Dawson’s integréwhere 3=1/kT, for conve- 0

niencek=1, and the fluctuations are droppged The remaining integral over is approximately 1.06. I§(0)

21 . (s ) does not vanish, then the unstable fraction must be linear in
f ds—e"® f dt e, (13)  T. [The converse of this argument was used in Refs. 1-3 to
s 0 conclude that, in a polypeptide and in a liquidE) does not
1 s vanish at lowE.] In the one-dimensional example studied
ds= eszJ' dt et (14) here,g(0) does not vanish, anfj,(T) is notlinear inT for
S 0 small T; it varies asT e ¥'T. The integral equation, with
the proposed kernél|,(T,E), is not consistent with the exact
behavior of this one-dimensional model potential.

2
=N
Qu 87 |,

2 g2

Qs=N BT? f
0

Figure 2 shows the resultirfg(T) as a function off . At low
temperaturesQ, is proportional toT*%e''T and this domi-
nates the fraction of unstable configurations beca@gés
proportional toT*2. Then the unstable fractioi,(T) is pro- 13, E. Straub and D. Thirumalai, Proc. Natl. Acad. Sci. U. S98. 809
portional toT e *'T for small T. (1993, ' ' '
Now we use these results to test the Straub—Thirumalai ;bfé(slggib’ A. B. Rashkin, and D. Thirumalai, J. Am. Chem. 3a6,
integral equation. On changing variablesxte E/T, Eqg. (1) ST, Keyes, J. Chem. Phy&01 5081(1994).
becomes 4J. E. Straub and J.-K. Choi, J. Phys. Ch&8, 10 978(1994.
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