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Straub and Thirumalai1 and Straubet al.,2 have proposed
a method for finding the distributiong(E) of the heightsE of
potential energy barriers in many-body systems. Keyes3 and
Straub and Choi,4 gave further discussion and elaboration
The method uses an integral equation:

f u~T!5E
0

`

dE f̄u~T,E!g~E! ~1!

to relate the barrier height distributiong(E) to the fraction of
time f u(T) that a system at temperatureT will be found in
the ‘‘unstable’’ part of configuration space. The integra
equation contains a kernelf̄ u(T,E); a simple and intuitively
plausible guess for the kernel was proposed in Refs. 1 and

f̄ u~T,E!5
e22j2*0

jdx ex
2

*0
jdx e2x21e22j2*0

jdx ex
2 , ~2!

where j5(E/2kT)1/2. Given the unstable fractionf u(T)
~found, e.g., by computer simulation!, one solves the integral
equation forg(E). The method was applied to a mode
polypeptide in Refs. 1 and 2, and to a model liquid in Ref. 3
It led to surprisingly similar barrier height distributions in
these two quite dissimilar systems.

Unforunately there seems to be no way of directly
checking the reliability of the proposed method in the many
body systems to which it is being applied. This commen
presents a highly simplified one-dimensional potential en
ergy function for which the method actually can be tested. I
this test, the method does not work.

As illustrated in Fig. 1, a one-dimensional potentia
U(x) is broken up into cells of alternating minima and
maxima. In a ‘‘min’’ cell, centered onx54 j , the potential is
harmonic upwards,

Umin~x!5aj
2@211~x24 j !2#, 4j21,x,4 j11. ~3!

The minimum value of the potential in this cell is2aj
2 . Note

that the potential vanishes at its endpoints in the cell. In
‘‘max’’ cell, centered onx54 j12, the potential is harmonic
downwards,

Umax~x!5bj
2@12~x24 j22!2#, 4j11,x,4 j13.

~4!

The maximum value of the potential in this cell is1bj
2 .

Again the potential vanishes at its endpoints. Overall, th
potential is continuous inx, but its first derivative is discon-
tinuous atx54 j11 and 4j13.

The coefficientsaj andbj determine the curvatures, or
frequencies, of the potential. In the present example,a andb
are chosen independently from the same uniform distributio
r(a) or r(b),
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r~a!51, 0,a,1,

50, 1,a. ~5!

To get from one potential minimum to another, one mus
go over a barrier. Because this is a one-dimensional pote
tial, any individual barrier heightE is either aj

21bj
2 or

bj
21aj11

2 . The distribution of barrier heightsg(E) can be
found by averaging the delta functiond(E2a22b2! over a
andb,

g~E!5E
0

`

daE
0

`

db r~a!r~b!d~E2a22b2!. ~6!

In the present example, using Eq.~5!, the barrier height dis-
tribution is

g~E!5p/4, 0,E,1,

5p/42 arctan~A~E21!!, 1,E,2, ~7!

50, 2,E.

Now we find f u(T), the fraction of occupancy of the
unstable configurations, or those configurations for which th
curvature of the potential is negative. This fraction is the
total partition function of the unstable region divided by the
total partition function of both stable and unstable regions,

f u~T!5
Qu~T!

Qs~T!1Qu~T!
. ~8!

If there areN ~min,max! pairs, then

Qu~T!5(
j
E

21

1

dx exp@2bbj
2~12x2!#, ~9!

Qs~T!5(
j
E

21

1

dx exp@2baj
2~211x2!#. ~10!

Each individual term in these sums is determined by a sp
cific a or b that is chosen randomly from the distributionr,

FIG. 1. A realization of a random one-dimensional potential.
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and so the totalQu andQs are sums of a very large numbe
of independent random variables. The mean and the varia
of any individual term are both finite and independent ofN.
Then, according to the Law of large numbers, the sum
any specific sequence ofa’s and b’s is very close to its
average. Of course there are fluctuations about the ave
but they have a negligible order of magnitude whenN is very
large. Consequently, for any particular realization of the o
dimensional potential, we can estimate the stable and
stable partition functions by

Qu~T!5NE
0

`

db r~b!E
21

1

dx exp@2bb2~12x2!#

1O~N1/2!, ~11!

Qs~T!5NE
0

`

da r~a!E
21

1

dx exp@2ba2~211x2!#

1O~N1/2!. ~12!

By changing variables, the integrals can be related to e
functions and Dawson’s integral~whereb51/kT, for conve-
niencek51, and the fluctuations are dropped!,

Qu5N
2

b1/2 E
0

b1/2

ds
1

s
e2s2E

0

s

dt et
2
, ~13!

Qs5N
2

b1/2 E
0

b1/2

ds
1

s
es

2E
0

s

dt e2t2. ~14!

Figure 2 shows the resultingf u(T) as a function ofT. At low
temperatures,Qs is proportional toT3/2e1/T and this domi-
nates the fraction of unstable configurations becauseQu is
proportional toT1/2. Then the unstable fractionf u(T) is pro-
portional toT21e21/T for smallT.

Now we use these results to test the Straub–Thirum
integral equation. On changing variables tox5E/T, Eq. ~1!
becomes
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f u~T!5TE
0

`

dx f̄u~x!g~Tx! ~15!

which reduces in the limit of smallT to

f u~T!→Tg~0!E
0

`

dx f̄u~x!. ~16!

The remaining integral overx is approximately 1.06. Ifg(0)
does not vanish, then the unstable fraction must be linear i
T. @The converse of this argument was used in Refs. 1–3 t
conclude that, in a polypeptide and in a liquid,g(E) does not
vanish at lowE.# In the one-dimensional example studied
here,g(0) does not vanish, andf u(T) is not linear inT for
small T; it varies asT21e21/T. The integral equation, with
the proposed kernelf̄ u(T,E), is not consistent with the exact
behavior of this one-dimensional model potential.
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FIG. 2. Fractionf u(T) of unstable configurations at temperatureT.
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