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Simulated tempering (ST) is a generalized-ensemble algorithm

that employs trajectories exploring a range of temperatures to

effectively sample rugged energy landscapes. When imple-

mented using the molecular dynamics method, ST can require

the use of short time steps for ensuring the stability of trajec-

tories at high temperatures. To address this shortcoming, a

mass-scaling ST (MSST) method is presented in which the par-

ticle mass is scaled in proportion to the temperature. Mass

scaling in the MSST method leads to velocity distributions that

are independent of temperature and eliminates the need for

velocity scaling after the accepted temperature updates that

are required in conventional ST simulations. The homogeneity

in time scales with changing temperature improves the stabil-

ity of simulations and allows for the use of longer time steps

at high temperatures. As a result, the MSST is found to be

more efficient than the standard ST method, particularly for

cases in which a large temperature range is employed. VC 2016

Wiley Periodicals, Inc.

DOI: 10.1002/jcc.24430

Introduction

Performing efficient and stable molecular simulations is an

indispensable task for understanding biological systems. The

generalized-ensemble algorithms have been developed and

applied to biological systems (for reviews, see, e.g., Refs. [1–4])

to overcome insufficient sampling of conventional molecular

dynamics (MD) and Monte Carlo (MC) simulations. Commonly

used generalized-ensemble algorithms include simulated tem-

pering (ST),[5,6] the replica-exchange method (REM)[7,8] (see

also Refs. [9,10]), and the multicanonical algorithm (MUCA).[11,12]

Closely related to the MUCA are the Wang–Landau

method,[13,14] statistical temperature methods,[15–17] and meta-

dynamics.[18] The ST method considers the temperature as a

dynamical variable in addition to the (microscopic) state of the

system. As the temperature is updated in the ST simulations, a

random walk in the temperature space occurs, whereby the

random walk in the energy space is realized, and the energy

barriers are overcome. Further developments of these

generalized-ensemble algorithms have been intensively

sought, including a multidimensional extension,[19–24] and the

combination of Tsallis statistics[25] with ST (see, e.g., Ref. [26])

as well as the generalized REM (see, e.g., Refs. [27–29]). The

MD version of MUCA was developed in Refs. [30,31]. The key

to the MD version of REM, which is referred to as replica-

exchange molecular dynamics (REMD),[32] was the scaling of

the velocity after the replica-exchange attempt was accepted.

A similar approach was also useful in the MD version of ST

(see e.g., Section IIC in Ref. [20]).

Although ST and REM are similar in that they fully utilize the

combinations of the Boltzmann distributions at several tem-

peratures, there are critical differences. The ST method requires

only one replica, whereas the REM requires an increasing num-

ber of replicas for a larger system. When an excessive number

of replicas prevents use of the REM, the ST method would be

a powerful tempering method. Another difference is the

weight determination. While the REM does not require any

weight determination, free energy estimates at each tempera-

ture are necessary in ST. Even though it can be cumbersome

to obtain these values, some promising methods have recently

been presented by Pande and coworkers[33] and Nguyen

et al.[34]

This work presents a novel algorithm that significantly

enhances the MD version of ST simulations. MD simulations

become numerically less stable at increasing temperatures due

to the short timescales involved in high energy collisions that

demand a short time step. To address this issue and stabilize

REMD simulations, two of the authors recently proposed the

mass-scaling REMD (MSREMD) method,[35,36] based on the mul-

tidimensional REM[37] and the mass scaling that has many

applications[38–45] including QM/MM[46] and ab initio MD simu-

lations.[47] In the MSREMD method, the scaling of mass in
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proportion to the temperature produces an identical velocity

distribution among temperatures. The homogeneity makes it

feasible to exchange replicas without velocity scaling and to

stabilize simulations.

In this article, adopting the concept of MSREMD to ST, we

present a mass-scaling ST (MSST) method in which the mass

values are set in proportion to the temperature. We demon-

strate that mass scaling is a powerful and convenient tool

within a certain class of the generalized-ensemble para-

digm. The velocity distribution realized by the mass scaling

makes it feasible to update the temperature without veloc-

ity scaling, which is necessary after every accepted tempera-

ture update in conventional ST simulations. Introducing a

more general framework, we also demonstrate that the

mass scaling can be applied to a subset of systems. The

usefulness of mass scaling at high temperatures is also con-

firmed in application to a simple fluid, a model lipid system

and the folding of model peptide, Trpcage,[48] in the con-

text of ST simulation.

This article is organized as follows. In methodology, the ST

method is briefly reviewed in the MD context and the MSST

method is introduced. We show that the MSST method pre-

serves the numerical stability of the simulation at high temper-

atures in applications to a simple fluid. After comparison of

the physical quantities obtained with the ST and MSST simula-

tions, we compare (integrated) autocorrelation time as indica-

tor of efficiency. Following this, we establish the equivalence

between mass scaling and time step adjustment for Nos�e–

Hoover thermostats. The utility of mass scaling is further dis-

cussed based on the results of a more complex system. Finally,

we discuss the sampling efficiency of MSST via an application

of protein folding.

Methodology

Review of the ST method

Before examining the MSST method, we briefly review the

original ST method[5,6] in the context of MD simulation. Let us

consider an N-particle system, of which the velocity and coor-

dinate vectors are given by _q5f _q1; . . . ; _qNg and

q5fq1; . . . ; qNg, respectively. For simplicity, the momentum is

assumed to be pk5mk _qk , where mk is the mass of the kth par-

ticle. The total energy of the system is given by

H5K1E; (1)

where K and E are the kinetic and potential energies, respec-

tively. The kinetic energy is given by

Kð _qÞ5
XN

k51

mk _q2
k

2
: (2)

In ST simulations, the temperature is considered as a dynam-

ical variable that is updated during simulations. The temper-

ature can assume one of M temperature values of T1, T2, . . .,

TM (i.e., the temperature space is discretized). In other words,

the Boltzmann factor e2H=kBT is considered as an unnormal-

ized joint probability of microscopic state and temperature.

The weight factor of the ST simulation is given by

PSTðq; _q; TiÞ5exp ½2ðKð _qÞ1EðqÞÞ=kBTi1aðTiÞ�; (3)

where aðTiÞ is the parameter introduced to obtain the flat

distribution in the temperature space. In the MD version of

the ST simulation, updates of q and _q are performed at a

fixed temperature Ti by canonical MD simulation, and tem-

perature updates are performed by the MC method with q

and _q fixed.

Let us consider the transition probability from Ti to Tj: the

original state is denoted by X5fq; _q; Tig and the candidate by

X 05fq; _q 0; Tjg, where the velocity _q0 is scaled[20] as

_q 05

ffiffiffiffi
Tj

Ti

r
_q; (4)

to cancel an unhelpful contribution from the kinetic energy to

the transition probability. Based on the Metropolis criteria,[49]

the transition probability is given by

w X ! X 0ð Þ

5min 1; exp 2
1

kBTj
2

1

kBTi

� �
EðqÞ1aðTjÞ2aðTiÞ

� �� �
:

(5)

Taking account of the velocity scaling [see eq. (4)], the config-

uration dependent contribution to the dimensionless free

energy

fi52ln

ð
exp 2

EðqÞ
kBTi

� �
dq (6)

can be shown to be a proper choice for aðTiÞ to ensure that a

flat distribution over the temperature is obtained.

The thermodynamic average at Ti of coordinate-related

quantities, which are usually of interest, can be obtained in

the standard way

hAiTi
¼

ð
AðqÞexp 2EðqÞ=kBTi½ �dqð

exp 2EðqÞ=kBTi½ �dq

¼ hAðqÞjTiiST;

(7)

which yields

hAiTi
5

1

Ni

XNi

j

AðqijÞ; (8)

where qij is the coordinate of the jth sample at Ti and Ni the

number of samples at Ti.

MSST method

The key concept of the MSST method is that the mass is scaled

in proportion to the reference temperature Ti. In the simplest

form, the mass value of the kth particle at Ti is given by
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mkðTiÞ5m0;k
Ti

T1
; (9)

where m0;k is the mass value of the kth particle at the lowest

temperature and the kinetic energy at Ti is

Kið _qÞ5
XN

k51

m0;k
Ti

T1
_q2

k

2
: (10)

The weight factor of the MSST simulation is given by

PMSSTðq; _q; TiÞ5exp 2 Kið _qÞ1EðqÞð Þ=kBTi1aðTiÞ½ �

5exp 2
XN

k51

m0;k _q2
k

2kBT1

 !
2EðqÞ=kBTi1aðTiÞ

" #
;

(11)

which demonstrates that the velocity distributions are inde-

pendent of temperature. In contrast, as an increase in mass in

the canonical ensemble generates the larger momenta, the

momenta are described by a different probability distribution

function. The homogeneity in MSST enables the temperature

to be updated without velocity scaling and stabilizes the simu-

lation at higher temperatures.

The transition probability of MSST can be obtained by the

Metropolis criterion[49] without velocity scaling:

wðfq; _q; Tig ! fq; _q; TjgÞ5min 1;
PMSSTðq; _q; TjÞ
PMSSTðq; _q; TiÞ

� �

5min 1;

exp

�
2

XN

k51

m0;k _q2
k

2T1

 !
2EðqÞ=kBTj1aðTjÞ

�

exp

�
2

XN

k51

m0;k _q2
k

2T1

 !
2EðqÞ=kBTi1aðTiÞ

�
2
66664

3
77775

5min 1; exp 2
1

kBTj
2

1

kBTi

� �
EðqÞ1aðTjÞ2aðTiÞ

� �� �
:

(12)

In this way, the standard transition probability of ST, eq. (5), is

recovered without velocity scaling.

Similar to the original ST method, to make the distribution

of samples with respect to the temperature (PSðTiÞ) flat, that is,

PSðTiÞ /
Ð

d _q dq PMSSTðq; _q; TiÞ5const:; the configuration part of

the free energy fi is shown to be a suitable choice for aðTiÞ. As

the physical quantities of interest are usually not a function of

velocities, the average of any coordinate-related quantities are

identical in the ST and MSST. The average kinetic energies are

also the same between the two methods, because the average

kinetic energy is only a function of the temperature.

The above formalism is sufficient for the Langevin[50] and Ander-

sen[51] thermostats. We note that, as the Nos�e–Hoover thermo-

stat[52,53] involves additional variables, the terms originated from

them must be added in the interest of precision. Assuming ergo-

dicity, the Nos�e–Hoover thermostat with the reference tempera-

ture T realizes the probability density function of fq; _q; gg:

fNHðq; _q; gÞ

/ exp 2Hðq; _qÞ=kBT½ �exp 2Qg2=2kBT½ �;
(13)

where g and Q represent the rate and mass, respectively. Inte-

grating the probability density function with respect to g, one

obtains the canonical distribution with regard to fq; _qg. To

obviate the contribution of g to the temperature-updating

attempt in ST simulations, the scaling of g is necessary, simi-

larly to the REMD,[54] which is given by

g05

ffiffiffiffi
Tj

Ti

r
g (14)

for the update from Ti to Tj.

Nevertheless, similar to the velocities, the scaling of the rate

of Nos�e–Hoover thermostats can be eliminated by setting

Q5ðTi=T1ÞQ0. Substituting mk5ðTi=T1Þm0;k and Q5ðTi=T1ÞQ0 in

eq. (13), the weight factor of the MSST simulation with Nos�e–

Hoover thermostats is given by

PNH2MSSTðq; _q; g; TiÞ5exp 2 Kið _qÞ1EðqÞð Þ=kBTi1aðTiÞ½ �

exp 2Q0g2=2kBT1½ �

5exp 2
XN

k51

m0;k _q2
k

2kBT1

 !
2EðqÞ=kBTi1aðTiÞ

" #
exp 2Q0g2=2kBT1½ �:

(15)

Note that the distributions of _q and g are independent of Ti.

In the general case, the mass of kth particle m0;k is scaled

by arbitrary factor ak;i at Ti. Then the kinetic energy at Ti is

given by

Kið _qÞ5
XN

k51

ak;im0;k _q2
k

2
: (16)

Temperature updates from fq; _q; Tig to fq; _q0; Tjg may be

made using eq. (5) with the velocity scaling of

_q0k5

ffiffiffiffiffiffiffi
ak;i

ak;j

r ffiffiffiffi
Tj

Ti

r
_qk: (17)

In summary, an MSST simulation can be performed as follows:

(1) prepare an initial condition; (2) perform the canonical MD

simulation at the current temperature; (3) attempt to update

the temperature and mass values according to the probability

given by eq. (5) with eq. (17); and (4) repeat steps (2) and (3)

until the simulation ends.

Equations of motion for mass-scaled system

In the general case, the MSST method allows for the use of a

variety of scaling factors. This can be of great utility in the sim-

ulation of systems with particles of widely varying mass. A

special case of the MSST method involves the use of a single,

uniform mass scaling factor. In that case, the mass scaling in

the equation of motion of the Nos�e–Hoover thermostat[52,53] is

mathematically identical to changing the time step.[35] The

equations of motion are given by

dq

dt
5

p

m
; (18)
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dp

dt
5FðqÞ2gp; (19)

dg
dt

5
p2=m23NkBT

Q
; (20)

where F denotes force and t is the time. For simplicity, we set

m15m25 . . . 5mN � m. These four equations are invariant

under the transformation given by

m5am0; (21)

t5
ffiffiffi
a
p

t0; (22)

Q5aQ0; (23)

q5q0; (24)

g5
1ffiffiffi
a
p g0; (25)

along with

dq

dt
5

1ffiffiffi
a
p dq0

dt0
; (26)

p5
ffiffiffi
a
p

p0; (27)

where a denotes the scaling factor. Therefore, the time step Dt0

of a system with mass value m0 corresponds to the time step

Dt5
ffiffiffi
a
p

Dt0 (28)

of a system with the mass value m5am0.

Based on the time evolution of a mass-scaled system, we

examine the equivalence between the MSST simulation and a

corresponding time-step-adjusting ST (TSA-ST) simulation. The

TSA-ST simulation is defined as a conventional ST simulation

with a varying time step

DtTSAðTiÞ5
DtMSSTffiffiffiffiffiffiffiffiffiffiffi

Ti=T1

p ; (29)

where DtMSST is the time step of the equivalent MSST simu-

lation. Further discussion of the equivalence focusing on

the temperature-updating attempt is provided in the

Appendix.

In order for the primed quantity to correspond to MSST, we

set a to 1=ðTi=T1Þ. In other words, m0 is ðTi=T1Þ-times as heavy

as m and Dt0 of the heavier system corresponds to Dt5Dt0=ffiffiffiffiffiffiffiffiffiffiffi
Ti=T1

p
with the normal mass m. We thus define an effective

time step of MSST at Ti by

DteffðTiÞ5
DtMSSTffiffiffiffiffiffiffiffiffiffiffi

Ti=T1

p : (30)

Equation (24) suggests that the MSST simulation with the time

step DtMSST generates the same time evolution of the coordi-

nate vector as the ST simulation with the time step DteffðTiÞ at

Ti. We therefore refer to the ST simulation with the time step

DtTSAðTiÞ5DteffðTiÞ as the TSA-ST simulation, the coordinate

Figure 1. Probability density functions of vx, pðvxÞ, obtained in (a) LTS-ST, (b) STS-ST (c) MSST, and (d) TSA-ST simulations. Gray thick, black thin, and red

dashed lines represent the functions for T1, T4 and T8, respectively. Those at other temperatures were suppressed for the sake of clarity, as were error bars.

The lines completely overlap in the MSST simulation [see (c)]. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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vector of which is equivalent to that of an MSST simulation

with DtMSST, that is,

qMSST5qTSA: (31)

In contrast to the position, the evolution of the velocity (or

momentum) vector and rate of the Nos�e–Hoover thermostat

are reproduced up to a proportionality constant. For example,

the velocity and rate of the Nos�e–Hoover thermostat between

the ST and MSST simulations can be related by

1ffiffiffiffiffiffiffiffiffiffiffi
Ti=T1

p _qTSA
5 _qMSST; (32)

1ffiffiffiffiffiffiffiffiffiffiffi
Ti=T1

p gTSA5gMSST: (33)

Application to a Lennard–Jones fluid

We employed a pairwise additive 12-6 Lennard–Jones (LJ) fluid

as a useful test system. Hereafter, values are reported in the

reduced unit, in which the well depth � and the diameter r
are set to unity.

Free energy calculations

As mentioned above, the ST and MSST methods require free

energy estimates as part of their input. We applied the

MBAR,[55] which is the equivalent of WHAM[56–58] in the limit

that the bin width tends to zero, to the results of MSREMD

simulations performed in a previous study.[35] Once the free

energy is obtained, the reweighting techniques enable the

thermal averages to be obtained at an arbitrary temperature

at which simulations are not performed.

Numerical details

An in-house time-reversible integrator,[59] which employed the

Suzuki–Trotter decomposition corresponding to Integrator 1 in

Ref. 60, was used. The Mersenne twister pseudo-random num-

ber generator[61] was employed.

In all simulations unless otherwise mentioned, eight tem-

peratures, referred to as T1 to T8, are used, as in our previous

work[35]: 1.000, 1.104, 1.219, 1.346, 1.486, 1.641, 1.812, and

2.000. As in the previous study, 500 identical LJ particles

were placed (N 5 500) in a cube with a side length of 8.55 in

the reduced length unit, using periodic boundary conditions

and corresponding to a number density of q50:800. The LJ

fluid is in the liquid phase[62] under these thermal

conditions.

The particle mass was set to unity regardless of the temper-

ature in the ST and TSA-ST simulations. In these simulations,

the mass of the Nos�e–Hoover thermostat was always 10, and

g was scaled according to eq. (14). In the MSST simulations,

the mass at Ti was given by Ti=T1 and that of the Nos�e–

Hoover thermostat was set to Q0510. The temperature-

updating attempts were performed at intervals of 10 MD steps.

Table 1. Empirical probability P(Ti) of visiting temperature Ti in the four

LJ fluid simulations.

LTS-ST STS-ST MSST TSA-ST

T1 0.140 0.135 0.139 0.138

T2 0.135 0.130 0.132 0.132

T3 0.128 0.125 0.126 0.126

T4 0.120 0.120 0.120 0.120

T5 0.116 0.117 0.116 0.117

T6 0.119 0.121 0.120 0.120

T7 0.122 0.126 0.124 0.124

T8 0.121 0.125 0.124 0.123

Considering the autocorrelation time for the temperature index, the

typical errors exceed the approximate value of 0.001.

Figure 2. Numerical instability, as measured by DEcons, plotted against tem-

perature. As the error bars are small, they were suppressed for the sake of

clarity. Red plus signs, blue squares, green crosses, and black point marks

represent the LTS-ST, STS-ST, MSST, and TSA-ST simulations, respectively.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 3. Instantaneous temperatures Tinst are plotted against MD step.

Red thick, blue thin, and green dot lines marks LTS-ST, STS-ST, and MSST

simulations, respectively. Ordinate is shown in the logarithmic scale. The

LTS-ST simulation begins to show unreasonable behavior from the 8200th

step, and is only plotted to 10,000th step. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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The choice between two neighboring temperatures was made

at random. The LJ forces were simply truncated at rc53, and

accordingly the LJ potential was shifted upward for rij < rc.

Systems were prepared from a random initial configura-

tion and equilibrated with the 83106-step MSST simulation.

We performed four simulations, namely ST with a long time

step 0.01 (hereafter, referred to as LTS-ST or LTS), ST with a

short time step 0:01=
ffiffiffiffiffiffiffiffiffiffiffi
T8=T1

p
(STS-ST or STS), MSST with a

time step 0.01, and corresponding TSA-ST simulations. These

four simulations lasted for 83107 steps. The time step in the

STS-ST simulation represents the short one chosen for

enhanced stability at high temperatures. In the TSA-ST simu-

lation, the time step is set to Dt50:01=
ffiffiffiffiffiffiffiffiffiffiffi
Ti=T1

p
at Ti [see eq.

(30)], and other details are the same as for the LTS-ST simula-

tion. We also performed another set of simulations, in which

25 temperatures are involved ranging 1 to 10 with exponen-

tial spacing. This wide range of temperature may sound

somewhat extreme but is not unrealistic. For example, Ref.

[63] employed the temperature range of 500 K to 5000 K

during the replica-exchange MC simulations for an all-atom

protein in an implicit membrane model. In addition, a short

MSST simulation with Dt50:0005 and a TSA-ST simulation, of

which the time step is given by Dt50:0005=
ffiffiffiffiffiffiffiffiffiffiffi
Ti=T1

p
at Ti, are

performed to demonstrate the equivalence between the two

methods.

Evaluation of numerical instability

We evaluated the numerical instability using the trajectory

inaccuracy in the following way.[35,59] The conserved quantity

for the Nos�e–Hoover MD simulation with the reference tem-

perature Tref is given by

EconsðtÞ5
XN

k

p2
k

2mk
1EðqÞ1 1

2
Qg213NkBTref

ðt

0

gðt0Þdt0:
(34)

In practice, this quantity fluctuates, as a reflection of numerical

errors. The average of the absolute fluctuation per MD step is

defined as the trajectory inaccuracy

DEcons �
1

Nstep

XNstep

i51

jEconsðiDtÞ2Econsðði21ÞDtÞj; (35)

where Nstep is the number of MD steps. We ascribe the

decrease in the numerical stability to the increase in DEcons.

Application to model lipid bilayer

To further evaluate the effects of mass scaling on trajectory

stability, we performed canonical simulations of a model lipid

system using the solvent-free three-bead lipid model of Cooke

et al.[64,65] We used parameters depicted in Ref. [65]. For the

simplicity, the unit length of r and the unit energy � were set

to unity as well as kB. This model combines a hard core

Weeks–Chandler–Andersen potential, a bond potential that

has a finite divergence length, a bending potential, and an

effective hydrophobic attraction. In our simulations, the box

dimension was fixed at 17:6 r and the number of lipids was

512. A binary lipid mixture was simulated with 128 A lipids

and 384 B lipids, and the decay ranges of the hydrophobic

attraction between A (wAA), between B (wBB) are set to 1.6,

while that between A and B (wAB) was set to 1.48. The system

forms a bilayer with phase separations at T 5 1.1.[65,66]

Table 2. Average kinetic energy hKi obtained with the four simulations at all reference temperatures.

Tl
3
2 NTl LTS STS MSST TSA

1.000 750.000 749.979 6 0.009 749.997 6 0.012 749.997 6 0.009 750.016 6 0.009

1.104 828.000 828.027 6 0.014 828.029 6 0.018 828.015 6 0.014 828.013 6 0.015

1.219 914.250 914.255 6 0.016 914.216 6 0.021 914.250 6 0.017 914.241 6 0.017

1.346 1009.500 1009.495 6 0.017 1009.497 6 0.023 1009.479 6 0.029 1009.476 6 0.019

1.486 1114.500 1114.502 6 0.018 1114.514 6 0.025 1114.525 6 0.022 1114.509 6 0.022

1.641 1230.750 1230.750 6 0.019 1230.749 6 0.026 1230.757 6 0.024 1230.729 6 0.024

1.812 1359.000 1358.989 6 0.021 1359.004 6 0.026 1358.984 6 0.027 1359.033 6 0.026

2.000 1500.000 1500.002 6 0.015 1499.993 6 0.019 1499.986 6 0.021 1499.965 6 0.020

The kinetic energy was calculated with the velocities at half time steps.[60] Errors were evaluated using the jackknife method with 1000 bins. Exact

average kinetic energy 3
2 NT is also given.

Table 3. Average potential energy hEi obtained with the four methods at all reference temperatures.

Tl LTS STS MSST TSA

1.000 22519.604 6 0.022 22519.500 6 0.026 22519.630 6 0.022 22519.567 6 0.022

1.104 22474.296 6 0.024 22474.226 6 0.025 22474.305 6 0.025 22474.319 6 0.025

1.219 22425.878 6 0.026 22425.790 6 0.027 22425.830 6 0.027 22425.858 6 0.026

1.346 22374.052 6 0.027 22373.959 6 0.031 22374.000 6 0.031 22374.011 6 0.029

1.486 22318.681 6 0.029 22318.611 6 0.032 22318.651 6 0.032 22318.634 6 0.033

1.641 22259.383 6 0.029 22259.212 6 0.035 22259.245 6 0.035 22259.294 6 0.036

1.812 22195.888 6 0.032 22195.771 6 0.036 22195.787 6 0.036 22195.785 6 0.037

2.000 22128.297 6 0.035 22128.027 6 0.040 22128.104 6 0.040 22128.154 6 0.040

Errors were evaluated using the jackknife method with 1000 bins.

FULL PAPER WWW.C-CHEM.ORG

2022 Journal of Computational Chemistry 2016, 37, 2017–2028 WWW.CHEMISTRYVIEWS.COM



The temperature was set to 1.1, 1,4, 2.0, or 4.0 with the

time step Dt being 0.005, 0.0075, 0.01, or 0.015. The moderate

time step of 0.01 is the value reported in Ref. 65 for simula-

tions at T 5 1.1. The time step of 0.015 is considered to be an

ambitious time step. In standard simulations, the mass was set

to unity. In mass-scaling simulations, the mass was set in pro-

portion to the temperature with the mass unity at T 5 1.1. We

performed or tried to perform 13105-step simulations for all

combinations of the above temperatures and time steps.

Application to Trpcage

To evaluate the utility of mass scaling, we performed standard

and mass scaling canonical MD simulations of Trpcage[48] with

a time step of 0.5 and 1.0 fs, using the GPU-accelerated

OpenMM.[67–69] The temperature was kept at 273 K or 819 K

with Langevin dynamics with the friction coefficient of 1.0 ps–1.

For the simulation at the higher temperature, we tested two

mass scaling schemes. In the first scheme, each atom mass was

multiplied by 819=27353. In the other scheme, only the hydro-

gen mass was multiplied by 3 with other masses kept at their

original values. We evaluated the stability of Langevin dynamics

trajectories in the spirit of eq. (20) in Ref. [70]. In this work, the

leading term of the increment of the conserved quantity

DHcons5Dq
f ðtÞ1f ðt1DtÞ

2

� �
1DE (36)

was used, where Dq5qðt1DtÞ2qðtÞ; DE5Eðt1DtÞ2EðtÞ and

f(t) represents the force. A modification of ff99SB previously

Figure 4. Autocorrelation time for potential energy plotted against temper-

ature. Red plus signs, blue boxes, green crosses, and black point marks rep-

resent the values for the LTS-ST (sE;LTS
i ), STS-ST (sE;STS

i ), MSST (sE;MS
i ), and

TSA-ST (sE;TSA
i ) simulations, respectively. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 5. Scaled autocorrelation time for potential energy plotted against

temperature. Red plus signs, blue boxes, green crosses, and black point

marks represent sE;LTS
i ; ð1=

ffiffiffi
2
p
ÞsE;STS

i ; ð1=
ffiffiffiffi
Ti

p
ÞsE;MSST

i , and ð1=
ffiffiffiffi
Ti

p
ÞsE;TSA

i ,

respectively. The four values at each temperature are in good agreement.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 6. Autocorrelation time for potential energy plotted against temper-

ature for the simulations with 25 temperatures from 1 to 10. Blue boxes

and green crosses represent the STS-ST (sE;STS
i ) and MSST (sE;MS

i ) simula-

tions, respectively. Black diamonds represent
ffiffiffiffi
Ti

p
=
ffiffiffiffiffi
10
p

sE;STS
i , scaled in

accordance to the effective and real time steps. LTS-ST simulations (not

shown) were unstable using the too large time step. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 7. x-component velocities for the first particle plotted as a function

of the MD step for the TSA and MSST simulations. Thick gray and dotted

black lines represent the velocity of the MSST and scaled velocity of the

TSA-ST
�

1ffiffiffiffiffiffiffiffi
Ti=T1

p vTSA
x

�
simulations, respectively. Red line represents the

unscaled velocity for the TSA-ST simulation (vTSA
x ). The abrupt changes in

vTSA2ST
x reflect scaling at accepted temperature updates. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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employed by Simmerling et al. to the study of the folding of

Trpcage[71] with GBOBC2[72] was used to parametrize these

simulations. The solute and solvent dielectrics were set to 1.0

and 78.5, respectively. Note that, as Langevin dynamics was

employed, the exact correspondence between TSA-ST and

MSST discussed above with Nos�e–Hoover thermostat is not

guaranteed.

Additionally, we performed the standard ST and MSST simu-

lations. In the MSST simulation, only the hydrogen mass was

scaled. The time step was set to 0.5 fs in the standard ST simu-

lation and to 1.0 fs in the MSST simulation. Exchange attempts

were made every 50 ps with the Gibbs sampler scheme.[73]

Simulations lasted for 30 ns. Five replicates of simulations

starting with the extended structure were performed for each.

In this application, we obtained separate sets of weights for

ST and MSST simulations, as, considering @f=@T2hEi=kBT 2, the

shift in the average potential energy due to the varying time

step[45,60,70] can significantly affect the weights. We first per-

formed three simulations with the Wang–Landau approach for

ST and MSST so as to obtain approximate samples at each

temperature. The first rough estimates were obtained by appli-

cation of MBAR[55] to these results. We then performed three

replicates of simulations with these fixed weights. Observing

the random walk in these simulations, we further refined the

weights with the application of MBAR. These refined weights

were used for the final production runs reported below. The

weights obtained were significantly different between the two

simulations.

Results and Discussion

LJ fluid simulations

We first confirm that the probability density function for veloc-

ity is independent of temperature for MSST and dependent on

temperature for all other methods (Fig. 1). This was performed

by evaluating the probability distribution function of velocity

in the x-dimension for LTS-ST, STS-ST, MSST, and TSA-ST

Figure 8. Rates of Nos�e–Hoover thermostats plotted as a function of the

MD step for the MSST and TSA-ST simulations. Thick gray line represents

the rate of the Nos�e–Hoover thermostat for the MSST, and dotted black

line the scaled rate for the TSA-ST simulation
�

1ffiffiffiffiffiffiffiffi
Ti=T1

p gTSA
�

. Red line repre-

sents the unscaled velocity for the TSA-ST simulation (gTSA). The abrupt

changes in gTSA are a consequence of scaling at accepted temperature

updates. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

Table 4. Summary of simulations of model lipid bilayer noting if simula-

tion was stable (�) or unstable (3) after 105 time steps.

Dt50:005 Dt50:0075 Dt50:01 Dt50:015

T51:1 � � � �

T51:4 � � � 3

T52:0 � � � 3

T54:0 � � 3 3

Figure 9. Normalized conserved quantity Econs=Econsð0Þ is plotted against

MD step for the normal simulations at T 5 2.0. The unit of abscissa is kilo

MD step. Gray thick, black thin, and red dash lines represent the results for

Dt150:005; Dt250:0075, and Dt350:01, respectively. Simulation with Dt5

0:015 (not shown) was unstable. At this temperature, a drift is observed

even with the time step of Dt50:01. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 10. Normalized conserved quantity Econs=Econsð0Þ is plotted against

MD step for the mass scaling simulations at T 5 2.0. The unit of abscissa is

kilo MD step. Gray thick, black thin, red dash, and blue dot lines represent

the results for Dt150:005; Dt250:0075; Dt350:01, and Dt450:015, respec-

tively. The inset is the same plot with a different range. A small drift was

observed for the ambitious time step of Dt50:015. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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simulations, taking the velocity at half time steps as per the

recommendation in Ref. [60]. The probability distributions for

visiting each temperature were nearly flat (Table 1), having a

slight discrepancy from P
ðperfectÞ
S ðTiÞ50:125, a perfectly flat dis-

tribution, whereby the random walk in temperature was real-

ized (The temperature-updating acceptance rates ranged from

29% to 35% in all simulations. These values are larger than the

corresponding values in the REMD and MSREMD simulations

obtained in the previous study (14% to 19%).[35] This increase

in the acceptance ratios is consistent with Refs. [74–77] and

often credited as the reason for the superior sampling effi-

ciency of ST over REMD methods. Nevertheless, this may not

necessarily be the case, especially in the vicinity of a phase

transition.[78] A more in-depth discussion of this point would

be interesting, but is beyond the scope of this work). Consid-

ering the autocorrelation time[79–81] [see, in particular, eq.

(4.27) in Ref. [80]] of the temperature index, the errors roughly

exceed 0.001, thereby indicating that PSðTiÞ is the same

between all simulations.

The numerical instability in terms of trajectory inaccuracy, D
Econs [eq. (35)], at each temperature observed in these four

simulations shows that ST simulations become substantially

more unstable than MSST simulations as temperatures increase

(Fig. 2). The slight increase in inaccuracy with rising tempera-

ture in the MSST simulation could be attributed to the steeper

potential energy surfaces encountered at higher potential

energy values. In short, we infer that the MSST method ena-

bles us to perform more stable ST simulations with a long

time step, because the trajectory inaccuracy is substantially

reduced by this method at high temperature.

To further examine the stability, we examine the time series

of instantaneous temperatures (2K=3N or 2Ki=3N) in simula-

tions employing 25 reference temperatures. As shown in Fig-

ure 3 the LTS-ST simulation with the time step of 0.01 exhibits

unreasonable behavior from around the 8180th MD step, while

the MSST and too careful STS-ST simulations were stable over

107 steps. This result demonstrates the superior stability of the

MSST method.

The agreement between the physical quantities of the four

methods is confirmed in Tables 2 and 3 that list the average

kinetic and potential energies, respectively, for all the reference

temperatures. In addition, the radial distribution functions

were also found in agreement between the four methods

[data not shown].

As an indicator of the efficiency of the simulations, we

obtained the autocorrelation time (s) of the potential energy

for the four simulations (Fig. 4). In this regard, the binning

method[79,80] was employed and, in particular, s was calculated

based on eq. (4.27) in Ref. 80. In this calculation, the unit of s
is the number of samples and an increase in its value can be

interpreted as a reduction in the efficiency of the simula-

tions.[79,80] In other words, the shorter autocorrelation time

suggests the faster simulation. The energy autocorrelation

times in the MSST an TSA-ST simulations are in relative agree-

ment with each other, indicating the equivalence in coordi-

nates between the two methods. Additionally, the value of the

autocorrelation time in MSST coincided with that of LTS-ST at

lowest temperature (Fig. 4), demonstrating the similar effi-

ciency of MSST to LTS-ST at the lowest temperature, at which

the physical quantities are usually of most interest.

Figure 5 shows the scaled autocorrelation time s for the

potential energy versus T. The scaling was performed accord-

ing to the ratios in the real or effective time steps of each sim-

ulation to the LTS-ST simulation. The effective time step of the

MSST method is defined in eq. (30). For the LTS-ST, STS-ST,

MSST, and TSA-ST simulations, the factors are 1,
1ffiffiffiffi
T8

p ð5 1ffiffi
2
p Þ; 1ffiffiffiffiffiffiffiffi

Ti=T1

p , and 1ffiffiffiffiffiffiffiffi
Ti=T1

p , respectively. Figure 5 clearly indi-

cates that sE;LTS
i ; ð1=

ffiffiffi
2
p
ÞsE;STS

i ; ð1=
ffiffiffiffi
Ti

p
ÞsE;MSST

i , and ð1=
ffiffiffiffi
Ti

p
ÞsE;TSA

i

Figure 11. Conserved quantity as a function of MD step. Red and green

lines mark the standard canonical simulation with Dt251:0 fs at Tlow5273

K and Thigh5819 K, respectively. Blue line marks standard simulation with D
t150:5 fs at 819 K. Magenta line represents the simulation with Dt251:0 fs

with the mass scaling applied to all atoms, while the cyan line represents

the simulation with Dt251:0 fs with the mass scaling applied to hydrogen

atoms only. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

Figure 12. Average potential energy hEi and average helix content hnHi as

a function of temperature. Open and closed squares represent the average

number of residues judged as helix by DSSP.[82] The bars show the stand-

ard deviation of the replicates of simulations. Open and closed circles mark

the average potential energy obtained with ST and MSST simulations,

respectively. The size of error was comparative to the size of mark. [Color

figure can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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are in agreement. This demonstrates that the autocorrelation

time merges into one master curve by scaling, showing univer-

sal behavior as a function of temperature.

Figure 6 shows the autocorrelation time of potential energy

for the LJ fluid simulation employing 25 temperatures. The dif-

ference in the efficiency between the MSST and STS-ST simula-

tion as measured by sE
1 is approximately as large as a factor of

3. Recall that in this case the LTS-ST simulation was unstable.

Additionally, the agreement between the scaled values (black

diamonds) and values of MSST (green crosses) supports the

validity of the scaling argument illustrated in Figure 5. This

result establishes that the MSST method is superior to the con-

ventional ST method, especially when the temperature range

is wide.

We examine the equivalence between MSST and TSA-ST sim-

ulations based on LJ fluid simulations with a very short time

step. Both of the simulations were initiated at T1, where they

use the identical mass and time step, with the same initial

conditions and random number seed. Figure 7 illustrates the

x-component velocity of the particle as a function of the time

step. Even though the two methods have different values for

their velocities, the properly scaled value vTSA2ST
x =

ffiffiffiffiffiffiffiffiffiffiffi
Ti=T1

p
, cor-

responding to eq. (32), coincides with the value of vMSST
x . Simi-

larly it is clearly shown that gSTA2ST=
ffiffiffiffiffiffiffiffiffiffiffi
Ti=T1

p
, which

corresponds to eq. (33), merges into the curve of gMSST (Fig. 8).

These figures clearly establish the relationship between the

MSST and TSA-ST simulations. In addition, both vx and g have

smaller values at high temperatures in MSST than in TSA-ST

simulations. This indicates that the MSST simulation has slower

dynamics at high temperatures, whereby the simulations tend

to be more stable with the fixed long time step.

Solvent-free model lipid bilayer simulations

All simulations of the model lipid bilayer employing mass scal-

ing were stable; however, some of the simulations without

mass scaling exhibited unstable behavior (see Table 4). As the

time step of 0.01 is the value reported in Ref. [65] for simula-

tions at T 5 1.1, this time step should be a moderate time

step. The time step of 0.015 is an ambitious time step, with

which the integration can be performed at T 5 1.1 with a small

monotonic drift in Econs of around 5% at 105 MD steps (data

not shown). The time steps of 0.005 and 0.0075 are chosen as

sober time steps. The table shows that, even with the time

step of 0.0075, the simulation at T 5 4.0 is unstable, indicating

that the time step of 0.005 is necessary for the conventional

ST method. With the ambitious time step of 0.015, the normal

ST simulation breaks down even at T 5 1.4. Converesely, the

mass-scaling simulations with time step of 0.015 stable over

the wide range of temperature, although a small drift in Econs

was observed as found at T 5 1.1.

Figures 9 and 10 illustrate the conserved quantity of Nos�e–

Hoover thermostats normalized by its initial value,

Econs=Econsð0Þ, for the normal and mass scaling simulations,

respectively, at T 5 2.0. It is shown that mass scaling makes

the integration with the time step of 0.015 feasible, although

Econs=Econsð0Þ exhibits a small drift with this large time step (as

at T 5 1.1). The conserved quantity with the time step of 0.01

shows a small yet apparent drift without mass scaling (see Fig.

9). The fact that the mass scaling improved the conservation

properties demonstrates that sound tempering simulations are

possible with mass scaling.

Protein simulations

With an integration time step of 1.0 fs, simulations at higher

temperature exhibit large fluctuations in the conserved quan-

tity (Fig. 11). Nevertheless, the mass scaled simulations demon-

strate a general decrease in fluctuations when compared to

conventional simulation with the 1.0 fs time step. Simulations

with scaled hydrogen masses show a significant relief in fluctu-

ations of the conserved quantity, suggesting that the hybrid

approach of MSST and ST should be useful for enhanced sam-

pling with increased stability.

The average energy and helix content were evaluated for

the ST and MSST with hydrogen mass scaling (Fig. 12), which

show similar convergence, as the total time is the same. How-

ever, ST requires a time step of 0.5 fs compared with a time

step of 1 fs using MSST. With the initial value being 14.9 Å,

the lowest backbone atom RMSD values to the NMR structure

PDB:1L2Y were 1.9, 1.7, 2.0, 1.7, and 2.4 Å in the five ST simula-

tions and were 1.5, 1.6, 1.5, 2.5, and 1.6 Å for the five MSST

simulations, indicating that both of these methods successfully

folded the peptide.

Conclusions

The mass-scaling simulated tempering (MSST) method is found

to have superior stability relative to the conventional simu-

lated tempering method in MD simulation. The enhanced sta-

bility allows for longer integration time steps and more

efficient simulations. Applying mass scaling to all particles in

proportion to temperature causes the velocity distributions to

become identical regardless of temperature. This homogeneity

makes the velocity scaling unnecessary on temperature

updates, thus leading to a simple and elegant algorithm. We

also show that MSST may be applied to subsets of particles in

a system, as is done for hydrogen atoms in the simulation of

Trpcage. This approach makes simulation more stable with a

minor increase in the system mass, which may be of particular

interest to the simulation of biomolecules.

It is possible to implement a more general MSST approach

for biomolecular simulation involving the mass scaling in

accordance with the atomic species as well as the tempera-

ture. The new method would be expected to work well with

coarse-grained models as well as atomistic models. Although

the efficiency of the method is measured by the autocorrela-

tion time, measurement of ergodicity[81,83] could be examined

as an additional measure of efficiency in simulation of complex

systems. Finally we note that while our efforts were specifically

directed at the canonical ensemble; however, the rigorous for-

malism and evaluation of the MSST method with other ther-

mostats or ensembles would be straightforward and fruitful.
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APPENDIX : EQUIVALENCE OF TEMPERATURE
UPDATING IN THE MSST AND TSA-ST METHODS

Assume that at time t 5 0, without loss of generality, the MSST

and corresponding TSA-ST simulations are at Ti and at the

states that meet the following conditions:

qTSAð0Þ5qMSSTð0Þ; (A1)

_qTSAð0Þ5
ffiffiffiffiffiffiffiffiffiffiffi
Ti=T1

p
_qMSSTð0Þ; (A2)

gTSAð0Þ5
ffiffiffiffiffiffiffiffiffiffiffi
Ti=T1

p
gMSSTð0Þ: (A3)

As these conditions satisfy eqs. (31–33) and the same time

evolution is expected based on the Nos�e–Hoover equations of

motion. In this Appendix, we demonstrate that the equiva-

lence in the time evolution of the coordinate between the

two methods is preserved even after temperature updates.

Let us consider temperature updates from Ti to Tj. First, we

note that both simulations have the same potential energy

values, such that the Metropolis criteria must produce the

same results, if the seed of the random number generator is

the same. Given that the temperature-updating attempts are

accepted, the system is coupled to Tj. In TSA-ST simulations _q

and g are scaled by
ffiffiffiffiffiffiffiffiffiffi
Tj=Ti

p
, which yields

qTSAð0Þ5qMSSTð0Þ; (A4)

_qTSAð0Þ05
ffiffiffiffiffiffiffiffiffiffi
Tj=Ti

q
_qTSAð0Þ5

ffiffiffiffiffiffiffiffiffiffiffi
Tj=T1

q
_qMSSTð0Þ; (A5)

gTSAð0Þ05
ffiffiffiffiffiffiffiffiffiffi
Tj=Ti

q
gTSAð0Þ5

ffiffiffiffiffiffiffiffiffiffiffi
Tj=T1

q
gMSSTð0Þ: (A6)

These equations suggest that eqs. (31–33) are met even after

the accepted temperature update to the new temperature Tj.

Therefore, the two simulations should have the same time

evolution even with temperature updates.

Keywords: generalized-ensemble algorithm � simulated tem-

pering � mass scaling � Nos�e–Hoover thermostat � molecular

dynamics
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