Cellular prion protein targets amyloid-β fibril ends via its C-terminal domain to prevent elongation

Received for publication, April 5, 2017, and in revised form, August 15, 2017. Published, Papers in Press, August 23, 2017, DOI 10.1074/jbc.M117.789990

Erin Bove-Fenderson1, Ryo Urano2, John E. Straub1, and David A. Harris11

From the 1Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118 and the 6Department of Chemistry, Boston University, Boston, Massachusetts 02215

Edited by Paul E. Fraser

Oligomeric forms of the amyloid-β (Aβ) peptide are thought to represent the primary synaptotoxic species underlying the neurodegenerative changes seen in Alzheimer’s disease. It has been proposed that the cellular prion protein (PrPc) functions as a cell-surface receptor, which binds to Aβ oligomers and transduces their toxic effects. However, the molecular details of the PrPc–Aβ interaction remain uncertain. Here, we investigated the effect of PrPc on polymerization of Aβ under rigorously controlled conditions in which Aβ converts from a monomeric to a fibrillar state via a series of kinetically defined steps. We demonstrated that PrPc specifically inhibited elongation of Aβ fibrils, most likely by binding to the ends of growing fibrils. Surprisingly, this inhibitory effect required the globular C-terminal domain of PrPc, which has not been previously implicated in interactions with Aβ. Our results suggest that PrPc recognizes structural features common to both Aβ oligomers and fibril ends and that this interaction could contribute to the neurotoxic effects of Aβ aggregates. Additionally, our results identify the C terminus of PrPc as a new and potentially more druggable molecular target for treating Alzheimer’s disease.

Alzheimer’s disease (AD)2 is associated with deposition in the brain of the amyloid-β (Aβ) peptide, a 40–42–amino acid cleavage product of the amyloid precursor protein (1). There is strong evidence that small oligomers of Aβ, rather than large, amyloid fibrils, represent the key neurotoxic species in AD (2). Aβ oligomers are thought to target synapses, causing both functional and structural changes at these sites (3, 4). Although the central importance of Aβ in AD is widely agreed upon, the mechanism by which it causes neuronal dysfunction has remained mysterious. It is presumed that the disease process starts by the binding of Aβ oligomers to receptor proteins or lipids on the surface of neurons. However, the molecular identity of the relevant binding sites is uncertain.

In 2009, Laurén et al. (5) identified the cellular prion protein (PrPc) as a cell-surface receptor for soluble oligomers of the Aβ peptide, an observation subsequently confirmed by other groups (6–8). Binding of Aβ oligomers to PrPc was shown to produce neurotoxic effects, including suppression of long-term potentiation and retraction of dendritic spines; it was reported that these effects depended upon interactions between PrPc and metabotropic glutamate 5 receptor, resulting in activation of intracellular Fyn kinase (9–12). In addition, disruption of the endogenous gene encoding PrPc was shown to rescue behavioral deficits as well as early mortality in certain AD transgenic models (13). Taken together, these results led to the proposal that PrPc is one of the receptors mediating the synaptotoxic effects of Aβ oligomers and that pharmacologic targeting of PrPc could represent a novel therapeutic strategy for treatment of AD (14–16). Although some studies have disputed the importance of PrPc in mediating Aβ toxicity (17–20), these discrepancies may result from the use of different experimental paradigms, variability in preparations of synthetic Aβ oligomers, or the involvement of additional neurotoxic pathways.

Most previous studies of PrPc–Aβ interaction have focused on oligomeric preparations of Aβ referred to as amyloid-β–derived diffusible ligands (ADDLs), which are produced by resolubilization of synthetic Aβ peptide in aqueous medium (21). ADDL preparations have the virtue of being enriched in soluble, oligomeric species, but they are very heterogeneous in terms of size, and they do not obviously correspond to any of the intermediate states that have been described during the polymerization of Aβ from a monomeric state. Under suitably controlled conditions, Aβ polymerizes by a well-studied process involving distinct steps of primary nucleation, secondary nucleation, and elongation (22–24). These kinetic steps have been mathematically modeled, and their rate constants have been determined (25–27). To explore more fully the nature of the PrPc–Aβ interaction, we sought to determine how PrPc affected the Aβ polymerization process and to use the results of these experiments to provide further insight into the nature of the Aβ species targeted by PrPc. Our results have important implications for understanding the role of PrPc as a receptor transducing the neurotoxic effects of Aβ, and they suggest a
novel approach for disrupting the PrP–Aβ interaction for therapeutic purposes.

Results

Aβ preparation and polymerization

We used carefully defined conditions for polymerization of Aβ(1–42) (hereafter referred to simply as Aβ), which have been described previously (22, 23, 28, 29) and which have been shown to result in reproducible kinetic curves as monitored by thioflavin T (ThT) fluorescence. To ensure that our experiments began with monomeric Aβ, we solubilized lyophilized peptide in 15 mM NaOH and used a Superdex 75 column to isolate monomers (Fig. 1a). Aβ in the monomer fraction produced a random coil signature by circular dichroism (Fig. 1d, 0 min curve), consistent with the absence of significant β-sheet–containing aggregates.

Upon incubation in physiological buffer, monomeric Aβ polymerized in a highly reproducible fashion based on ThT fluorescence, following characteristic sigmoidal kinetics (Fig. 1b). Starting with a monomeric Aβ concentration of 5 μM, polymerization proceeded with a typical lag time of 50–60 min, reaching a plateau after about 90–100 min, with a half-time of 70–80 min. Using analytical size-exclusion chromatography (SEC), we observed continuous depletion of monomers in the Aβ sample over time, reflecting their incorporation into filaments that were removed by filtration and ultracentrifugation.

Figure 1. Preparation and polymerization of Aβ. a, size-exclusion chromatograph for preparation of Aβ monomers on a Superdex 75 column. Rectangle, the Aβ monomer peak collected for use in kinetic experiments. Arrows, elution volume of molecular weight standards. b, polymerization of Aβ (5 μM) monitored with ThT. Each set of colored dots represents one polymerization run with triplicate samples (for a total of seven polymerization runs). c, analytical SEC (Agilent Bio SEC-3 column) of samples taken at different times from the polymerization reaction shown in b. Arrows, molecular weight standards. Samples were centrifuged and filtered to remove insoluble aggregates before injection into the column. d, far-UV circular dichroism of Aβ at the indicated times during the course of polymerization. The CD signature shifts from random coil to β-sheet. e, EM images of negatively stained preparations of Aβ shown in b. f, EM images of negatively stained ADDLs showing small globular aggregates. Scale bars, 500 nm. h, ThT curves for ADDLs incubated under the same conditions used for polymerization of Aβ monomers shown in b. The ThT signal is much lower than in b and does not change substantially over 16 h.
before chromatography (Fig. 1c). We did not detect a significant population of oligomeric species that migrated with a molecular size of \(\leq 100 \) kDa at any time during the course of polymerization. This observation is consistent with previous reports that oligomers, although obligate intermediates during the polymerization process, never constitute \(> 1\% \) of the total A\(\beta \) mass during the course of the reaction, with the major species being monomers and fibrils, the ratio of which changes continuously as polymerization proceeds (22). During the polymerization process, the CD signature of the A\(\beta \) gradually shifted from random coil to \(\beta \)-sheet, consistent with incorporation of unstructured monomers into amyloid fibrils (Fig. 1d).

Using electron microscopy with negative staining, we observed that fibrils formed early during the polymerization process, consistent with previous reports that fibrils are first detectable during the lag phase (30, 31) (Fig. 1e, center image). During the early exponential phase, the fibrils had lengths of 0.5–2 \(\mu \)m and displayed a twisted morphology with diameters ranging between 4.1 ± 0.8 nm in the narrow regions and 12.1 ± 1.5 nm in the thick regions. At later time points, fibrils tended to clump together, and their lengths and morphology were more difficult to discern (Fig. 1e, right image). These structural features have been described previously (32). Only scattered fibrils were observed in the isolated monomer fraction at zero time, and these were much more difficult to locate on the EM grid. For the most part, fibrils were not detected on the surface of the grid when freshly prepared A\(\beta \) was applied (Fig. 1e, left image). Most likely, the scattered fibrils that were observed represent a very small proportion of the total A\(\beta \) present at this time point and are a reflection of how rapidly aggregates begin to form after monomers of A\(\beta \) are isolated.

For the purposes of comparison, we utilized ADDL preparations in some of the experiments described below. ADDLs are typically prepared by solubilizing A\(\beta \) in HFIP, drying to a thin film, resuspending the film in DMSO, diluting into aqueous medium, and incubating for 16 h at room temperature. These preparations consisted primarily of aggregates that eluted in the void volume of the Superdex 75 column, indicating a molecular size \(> 70 \) kDa (Fig. 1f). As described previously (21), these aggregates appeared as small, globular assemblies of 5–10 nm in diameter by EM (Fig. 1g). The ThT-binding signal obtained from ADDL preparations, even at 20 or 100 \(\mu \)M, was considerably lower than the maximum signal achieved by fully polymerized A\(\beta \) at 5–10 \(\mu \)M, consistent with the absence of long fibrils in the ADDL samples (Fig. 1h). The ThT signal of the ADDL preparations did not increase further with continued incubation, indicating that the aggregates did not fibrillize during the 16-h period after formation.

PrP delays fibril formation at substoichiometric ratios

We sought to determine what effect PrP has on the polymerization process itself. We found that recombinant PrP profoundly delays A\(\beta \) polymerization, even when present in amounts that are highly substoichiometric to A\(\beta \) (Fig. 2a). The half-time for polymerization was nearly doubled at a PrP/A\(\beta \) ratio of 1:160 and tripled at a ratio of 1:20 (Fig. 2b). However, even in the presence of PrP, polymerization eventually reached the same plateau value of ThT binding, indicating that PrP at the concentrations examined slowed, but did not prevent, conversion of monomeric to fibrillar A\(\beta \).

The inhibitory effect of PrP on A\(\beta \) fibril formation could also be visualized using semidenaturing detergent agarose gel electrophoresis (SDD-AGE), which provides a means of separating large, SDS-resistant amyloid fibrils from monomers and smaller aggregates on agarose gels. After 160 min, samples polymerized without PrP, which had reached the plateau phase of ThT binding, contained substantial amounts of fibrillar material, which migrated as a broad smear (Fig. 2c, lane 6). At this same time point, samples polymerized in the presence of increasing amounts of PrP contained decreasing amounts of fibrillar material on SDD-AGE (Fig. 2c, lanes 1–5), corresponding to the lower levels ThT binding reached by these samples. When SDD-AGE analysis was performed at 16 h, when plateau values of ThT fluorescence had been attained in all samples, there was no apparent difference in the amount of fibrillar material between PrP-containing and control reactions (Fig. 2d), again indicating that PrP in substoichiometric amounts slows but does not completely prevent fibril formation.

We also assessed the effect of PrP on polymerization of fluoroscantly labeled A\(\beta \) using fluorescence polarization (FP). In both the presence and absence of PrP, polarization increased with time, reflecting incorporation of labeled A\(\beta \) monomers into fibrils, which have a lower rotational mobility (Fig. 2e). This change in polarization was slower in the presence of PrP, consistent with an inhibitory effect on fibril formation. The FP signal plateaued at a similar value with and without PrP, suggesting again that PrP delayed but did not prevent fibril formation, with all of the monomers eventually being converted to the fibrillar form.

PrP does not prevent secondary nucleation by preformed fibrils

When a small amount of preformed fibrils is added at the start of an A\(\beta \) aggregation reaction, the rate-limiting, primary nucleation step is bypassed, shortening the lag phase and resulting in rapid formation of new fibrils by secondary nucleation and elongation (22). We investigated how PrP affected this process. We seeded a solution of 5 \(\mu \)M A\(\beta \) with a 1\% molar equivalent of preformed fibrils in the presence and absence of PrP and compared the results with equivalent unseeded reactions. As expected, in the absence of PrP, seeding significantly accelerated the polymerization reaction (Fig. 3a, 0 \(\mu \)M curve). PrP showed an inhibitory effect in seeded reactions (Fig. 3a), gradually damping the acceleration produced by the seeds. Importantly, however, the strength of the effect was reduced when compared with non-seeded reactions with equivalent amounts of PrP (Fig. 3b). For each concentration of PrP, the half-time was significantly decreased by the addition of seeds (Fig. 3c). This result held true independent of whether PrP was preincubated with the fibrils before their addition to the reaction (not shown). In another variation of the experiment, we found that fibrils formed in the presence of PrP accelerated polymerization reactions to nearly the same extent as fibrils formed in the absence of PrP (Fig. 3, d and e). Taken together, these results suggest that PrP does not have a major effect on the secondary
nucleation phenomena that occur when reactions are seeded by preformed fibrils.

PrP selectively inhibits filament elongation

Given the mechanistically well-characterized features of Aβ polymerization under the controlled experimental conditions we employed, we had an opportunity to pinpoint which microscopic step(s) were being affected by PrP using a mathematical modeling approach based on the macroscopic ThT curves. This approach has been used successfully to characterize interactions between Aβ and several molecular chaperones (23). We first determined the integrated rate law for Aβ aggregation in the absence of PrP, using as a guideline published values for the key rate constants (see supplemental material). We then fit the ThT curves in the presence of PrP by systematically varying the rate constant for only one of the three molecular steps in the polymerization process: \(k_n \) for primary nucleation, \(k_2 \) for secondary nucleation, and \(k_+ \) for elongation. The best global fit to the data was achieved when the elongation rate (\(k_+ \)) was varied in response to PrP addition (Fig. 4a). The sum of residual errors for this fit was 1.7, compared with 7.7 and 17.7 for the fits to variations in \(k_n \) and \(k_2 \), respectively (Fig. 4, b and c). The calculated values for \(k_+ \) exhibit a strong influence of PrP concentration on elongation rate, which dropped to 6% of the uninhibited value in the presence of 250 nM PrP, a 1:12 ratio of PrP to Aβ (Fig. 4a (inset), and supplemental Tables S1 and S2).
The prion protein prevents amyloid-β fibril elongation

Figure 4. PrP selectively inhibits filament elongation. The dotted symbols show ThT polymerization curves for 3 μM Aβ in the presence of PrP. The solid lines show best global fits to the data based on varying the kinetic constants for elongation rate, k_1 (a), secondary nucleation rate, k_2 (b), or primary nucleation rate, k_n (c). The schematics in each panel illustrate the step in the polymerization process at which PrP (denoted by P) is assumed to act. The insets show the variation in the respective rate constants as a function of PrP concentration, normalized to the value in the absence of PrP. The solid line in the inset of a is fit to the data points based on PrP binding to fibril ends with $K_a = 2.1 \times 10^6$ M$^{-1}$. See the supplemental materials for details.
As Aβ fibrils are thought to grow by monomer addition to the fibril ends (22), a plausible mechanism for the inhibitory effect of PrP on fibril elongation is that PrP binds specifically to the growing ends of the fibrils, preventing monomer addition. If one assumes that PrP is present in excess and that it binds rapidly to fibril ends as soon as they are generated (i.e., that binding is at equilibrium), it is possible to derive a mathematical expression, in the form of a Langmuir binding isotherm, relating the normalized values for k_+ to the concentration of PrP. This expression incorporates an equilibrium constant, K_{eq}, for binding of PrP to the fibril ends. The experimentally determined k_+ values in the presence of increasing concentrations of PrP provide an excellent fit to this model (Fig. 4a, inset), yielding a value for K_{eq} of $2.1 \times 10^7 \text{ M}^{-1}$, corresponding to an affinity constant of 47.6 nM. This quantitative analysis provides strong evidence that PrP selectively inhibits elongation of Aβ fibrils and suggests that it does so by binding tightly and selectively to fibril ends.

PrP binds both monomeric and fibrillar forms of Aβ but with different affinities

To provide biochemical evidence for this model, we examined binding interactions between PrP and the two major species present during the polymerization reaction: monomers and fibrils. For comparison, we also analyzed PrP binding to ADDLs, an interaction that has been previously characterized. We employed three different techniques: surface plasmon resonance (SPR), dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA), and FP.

For SPR experiments, we tagged recombinant PrP with a c-Myc epitope at its C terminus and captured it on the SPR chip using 9E10 antibody. This strategy was adopted to leave the N-terminal domain of PrP, which contains the two putative Aβ-binding sites, free to interact with Aβ that was injected over the chip in the mobile phase. We compared the binding ability of Aβ samples taken at 0 min, representing mainly monomer, and at 16 h, representing fully polymerized fibrils. We found that the 0-min sample displayed detectable binding (≈180 resonance units (RU) after 240 s of injection) only at the highest concentration of Aβ (15 μM) (Fig. 5a). The 16-h sample gave much larger responses, ranging from 180 to 700 RU over a concentration span of 0.9–15 μM (Fig. 5b), presumably reflecting the larger molecular weight of fibrils compared with monomers. ADDLs also bound to PrP, consistent with previous reports, with response magnitudes intermediate between monomer and fibril.
The prion protein prevents amyloid-β fibril elongation

...mers and fibrils (supplemental Fig. 1a). These results demonstrate that PrP binds efficiently to fully polymerized Aβ fibrils and to ADDLs. PrP may also bind weakly to Aβ monomers, although the much smaller mass of monomers compared with fibrils would make binding of this species more difficult to detect. It was not possible to calculate reliable affinity constants and stoichiometries for the PrP-Aβ binding reaction from these SPR data due to the fact that binding of the analyte (Aβ) did not reach saturation during the injection phase. These anomalies of PrP-Aβ interactions in SPR experiments have been noted before (6), and may be related to re-binding or self-association of Aβ.

To assess PrP-Aβ interactions under equilibrium conditions, we employed DELFIA. Aβ samples were incubated in plastic wells containing immobilized PrP, and the amount of bound Aβ was then measured using anti-Aβ antibody 6E10. We observed binding of monomers (0 min, both fresh and frozen), fibrils (16 h), and ADDLs, with apparent dissociation constants of 1.07 ± 0.34 μM for fibrils and 0.11 ± 0.04 μM for ADDLs (supplemental Fig. 1b). Monomer binding did not approach saturation; therefore, the dissociation constant was not calculated. The actual Kd values for the aggregated species are likely to be much lower than the apparent values, because the molar concentration of these forms is only a fraction of the total Aβ concentration by a factor equivalent to the number of subunits in each aggregate. Thus, this assay confirms that PrP binds Aβ monomers, polymers, and ADDLs, with a higher affinity for the latter two species.

If PrP binds selectively to the ends of Aβ fibrils, then the amount of binding should be directly related to the effective concentration of fibril ends in the Aβ sample. To test this prediction, we used DELFIA to compare binding of PrP to fibrils before and after shearing of the fibrils via sonication. A sample of sonicated fibrils should contain a larger number of fibril ends compared with an unsonicated sample at the same concentration. As predicted, sonication of fibrils increased PrP binding (supplemental Fig. 2).

Both SPR and DELFIA are surface-based binding techniques, which may be subject to artifacts resulting from potential interference by the substrate with the binding interaction between PrP and Aβ. We therefore tested PrP-Aβ interactions using FP, a solution-based technique. As the fluorescent probe, we utilized an N-terminal fragment of PrP (residues 23–109), which encompasses the two previously identified binding regions for Aβ aggregates (5, 6). This fragment was labeled on a C-terminal cysteine residue with Alexa Fluor 488 C5 maleimide (Fig. 5c). We compared the change in polarization for samples taken at different time points of an Aβ polymerization reaction (Fig. 5d). The zero time (monomer) sample did not produce a polarization shift, whereas the samples taken at 24 min (lag phase), 48 min (early exponential phase), and 90 min (plateau phase) produced progressively greater shifts at equivalent Aβ concentrations. These results demonstrate that PrP(23–109) binds to Aβ fibrils that form during the polymerization process. The data do not necessarily indicate a lack of binding to monomers (Mr = 4,500), which would be too small to produce a measurable shift in FP values, as demonstrated by the fact that an even larger ligand, an anti-PrP antibody (Mr = 150,000), did not cause a shift in polarization (Fig. 5e). However, ADDLs did produce a polarization shift consistent with a size intermediate between monomers and fibrils (Fig. 5f).

The structured, C-terminal domain of PrP is required for inhibition of Aβ fibril elongation and also influences binding to monomers

It has been shown previously that the unstructured N-terminal domain of PrP contains two polybasic regions (residues 23–27 and 95–105), which are required for binding to ADDLs, whereas the globular C-terminal domain is dispensable for this function (Fig. 6a, top schematic) (5, 6). We tested the roles of the N- and C-terminal domains in the ability of PrP to inhibit the growth of Aβ fibrils. Fig. 6a shows schematic diagrams of the deletion constructs used for these experiments.

As expected, removing the entire N-terminal domain (yielding construct 110–230) completely abolished the inhibitory effect of PrP on Aβ fibrillation (Fig. 6, compare b and c). To our surprise, however, we found that the isolated N-terminal domain (residues 23–119), which includes both of the putative ADDL-binding sites, had no effect on polymerization (Fig. 6d). A more C-terminally extended construct, 23–144, which ends just before the first α-helix, had a weak inhibitory effect at the highest concentrations, but much less than full-length PrP(23–230) (Fig. 6e). Taken together, these results imply that both the N-terminal and C-terminal domains of PrP are required for efficient inhibition of Aβ fibril elongation. We also tested a construct (Δ105–125), which is missing only a short hinge region connecting the N- and C-terminal domains, and found that it inhibited polymerization less effectively than the wild-type protein, implying that this region is also important for inhibitory activity (Fig. 6f). Fig. 6g summarizes the relative polymerization half-times for each of the PrP constructs.

To determine whether the observed differences in the ability of the PrP constructs to inhibit Aβ polymerization were due to alterations in their binding affinity for Aβ fibrils, we carried out DELFIA-binding assays. Surprisingly, the two C-terminally deleted constructs (23–119 and 23–144), as well as the internally deleted construct (Δ105–125), all of which showed greatly diminished ability to inhibit Aβ polymerization, displayed relatively unimpaired affinity for Aβ fibrils (Fig. 7a). In contrast, the 110–230 construct, which is missing the N-terminal, ADDL-binding domains, exhibited significantly reduced binding to fibrils. These results imply that fibril binding, like ADDL binding, depends primarily on sites in the N-terminal domain. Importantly, although the C-terminal domain is not required for fibril binding, this domain (along with the hinge region) nevertheless plays a crucial role in the ability of PrP to inhibit fibril elongation.

We also used DELFIA to test the ability of the different PrP constructs to bind to Aβ monomers. Surprisingly, we found that the C-terminally deleted construct 23–119 displayed a greatly reduced ability to bind to Aβ monomers (Fig. 7b), although it showed an affinity for fibrils comparable with full-length PrP (Fig. 7a). The 23–144 construct displayed slightly reduced monomer binding. As expected, the 110–230 construct exhibited virtually no monomer binding. These results suggest that the C-terminal domain of PrP (particularly resi-
dues 120–144) influences binding to Aβ monomers, although this region is not essential for binding to Aβ fibrils.

Discussion

There has been considerable interest in the unexpected ability of PrP to bind Aβ aggregates (5–8), both because of evidence that PrP may transduce some of the neurotoxic effects of such aggregates in AD (9–13) and because of the possibility that exogenous PrP or anti-PrP antibodies could be used as therapeutic agents to neutralize such toxic effects (14–16, 33). Whereas many previous studies have focused on binding of PrP to heterogeneous preparations of soluble oligomers (ADDLs), we have characterized the effect of PrP on the polymerization of Aβ under highly reproducible conditions in which conversion of monomeric to fibrillar forms proceeds via a series of kinetically well-characterized steps, including primary nucleation,
secondary nucleation, and elongation (22–24). Our results have allowed us to pinpoint which of these steps is inhibited by PrP, as well as which Aβ species and molecular sites PrP is likely to bind. Our study has implications for understanding the neurotoxicity of Aβ oligomers, and it suggests new approaches to targeting PrP for therapeutic purposes in AD.

Taken together, our results suggest a molecular model in which PrP binds tightly to the ends of growing fibrils, specifically inhibiting the elongation step of fibril growth (Fig. 8a). This mechanism is supported by several pieces of evidence. Most importantly, it provides an extremely close fit of the ThT polymerization curves to published differential equations (22, 25–27) describing the kinetics of Aβ polymerization. In this scheme, the data are best modeled by assuming that PrP specifically reduces k_+, the rate constant for fibril elongation, and that it does so by binding to fibril ends with an equilibrium dissociation constant, K_d, in the nanomolar range. In contrast, models based on inhibition of primary or secondary nucleation result in very poor fits to the data. The model shown in Fig. 8a is also consistent with the substoichiometric nature of PrP inhibition, because only 1–2 PrP molecules would need to bind to each fibril to completely block elongation. This mechanism is also consistent with our observation that PrP has relatively little effect on seeded polymerization, which depends strongly on secondary nucleation. In contrast, chaperones that inhibit secondary nucleation of Aβ dramatically retard seeded polymerization reactions (28). Finally, we have demonstrated, using several different techniques (SPR, DELFIA, FP), that PrP binds to fibrillar Aβ, as would be predicted by this model. Although the K_d for this interaction is difficult to calculate from our data due to uncertainty in the actual concentration of fibrils being analyzed, it is likely to be in the submicromolar range, consistent with the value arrived at from the kinetic modeling.

We have made the unexpected observation that fragments of PrP encompassing only the N-terminal domain show a greatly reduced ability to inhibit Aβ polymerization, although their affinity for Aβ fibrils is relatively unaltered. Our data demonstrate that the N-terminal domain of PrP, encompassing the two previously described ADDL-binding sites, is essential for binding to fibrils but that this interaction alone is insufficient to block elongation. Rather, an additional involvement of the globular C-terminal domain is required. Because the globular domain itself lacks significant fibril-binding activity, the question arises as to how this domain contributes to elongation inhibition. One possibility is that binding of the N-terminal domain positions the C-terminal domain in proximity to the fibril end, sterically blocking access of additional Aβ subunits. Alternatively, binding of Aβ to the N-terminal domain of PrP may cause a conformational change in the C-terminal domain that unmarks additional Aβ-binding sites in that region. We have found that deletion of a short hinge region (residues 105–125) linking the N- and C-terminal domains impairs the ability of PrP to inhibit polymerization, consistent with the idea that inhibitory activity depends on interactions between the two domains. NMR experiments support such an interdomain docking mechanism (34). We note that, in a previous study, the C-terminally truncated construct PrP(23–144) was reported to inhibit Aβ polymerization as effectively as full-length PrP (33). In contrast, we found that this construct had significantly reduced inhibitory potency, a discrepancy that could be due to the different polymerization conditions used in the two experiments.

Interestingly, we have found that PrP binds weakly to Aβ monomers, and this binding is diminished when the C-terminal domain of PrP (particularly residues 120–144) is deleted. This observation suggests that the PrP C-terminal domain contributes to recognizing the unstructured conformation of the Aβ monomer. This conformation might be present transiently after a new monomer is added to the end of the growing fibril, before it is locked into the cross-β-structure characteristic of the rest of the fibril (35), thus explaining why C-terminally deleted PrP constructs have reduced ability to inhibit elongation. Alternatively, it is possible that PrP binding to the zero time sample, which we interpret as monomer binding, really represents binding to a minor population of small oligomers or short fibrils that forms rapidly during the time required to carry out the DELFIA assay. In any case, the fact that PrP inhibits Aβ polymerization at substoichiometric ratios makes it unlikely that it acts primarily by binding to Aβ fibrils. Previous studies have documented binding of PrP to Aβ fibrils as well as to ADDLs, although PrP has generally been said to lack affinity for Aβ monomers (5, 6). However, weak binding of PrP to mono-
The prion protein prevents amyloid-β fibril elongation

Figure 8. Model for the inhibitory effect of PrP on Aβ polymerization and a possible mechanism for PrP interaction with toxic Aβ oligomers. a, schematic showing the individual steps in the Aβ polymerization process, with corresponding rate constants. PrP binds to the ends of growing filaments, blocking elongation by reducing k_e. b, PrP recognizes structural features common to fibril ends and oligomers.

...mers has been observed in some cases (15), consistent with the results presented here.

Previous studies have identified several other proteins that act as chaperones affecting particular steps in the polymerization of Aβ or other amyloidogenic proteins (23). For example, DNAJ/B6 has been shown to block primary nucleation of Aβ by specifically targeting small oligomers (36), and proSP-C BRI-CHOS inhibits secondary nucleation by binding stoichiometrically along the surface of Aβ fibrils (28). A particularly relevant example is Ssa1, an Hsp70-type chaperone that blocks elongation of fibrils formed by the yeast prion protein, Ure2p, most likely by binding to fibril ends (37). The kinetic features of Ssa1 inhibition of Ure2p polymerization, based on ThT curves, are strikingly similar to those of PrP inhibition of Aβ polymerization described here, consistent with the conclusion that both proteins inhibit fibril elongation by binding to fibril ends. In contrast, the ThT curves for Aβ polymerization in the presence of PrP and DNAJ/B6 are quite distinct from each other, arguing that PrP does not target the small population of oligomers that forms transiently during the reaction.

Many previous studies have reported that PrPC binds tightly and specifically to ADDLs (5–8). This observation has received considerable attention because ADDLs have been shown to have neurotoxic effects, such as suppression of long-term potentiation and retraction of dendritic spines (4, 5). Thus, it has been proposed that PrPC may serve as a cell-surface receptor that binds Aβ oligomers and mediates their neurotoxic effects in the context of AD. What is the relationship between the ability of PrPC to bind ADDLs and its ability, demonstrated here, to bind to the ends of growing Aβ fibrils and inhibit elongation? ADDLs are clearly distinct from the Aβ fibrils that we generate in our experiments, in terms of their smaller size, their globular morphology, their much lower ThT-binding capacity, and their inability to seed polymerization when added to monomeric Aβ (not shown). Although often described as being oligomeric, ADDLs also appear to be different from the smaller oligomers (<100 kDa) that have been shown to accumulate transiently and at low levels (<1% of total Aβ) when polymerization is performed under the conditions we have used here (22). Despite these differences, however, PrP may bind strongly to ADDLs because they display some of the same structural features as fibril ends (Fig. 8b). Perhaps ADDLs represent Aβ assemblies that are trapped in an elongation-ready mode capable of binding PrP. Although ADDLs do not seem to evolve to a fibrillar state, there is evidence that their morphology can change over time, with the appearance of nanotubular structures that have potent neurotoxicity and bind avidly to PrPC (8).

Our results have important implications for theories of how Aβ causes neurotoxicity in AD. Considerable evidence indicates that Aβ oligomers, rather than fibrils or monomers, have the greatest neurotoxic potency in vivo as well as in cell-based assays (2). The data presented here suggest that this may reflect structural features common to both oligomers and fibril ends and the ability of PrPC and perhaps other cell-surface receptors to recognize these features. According to this hypothesis, small, soluble assemblies of Aβ, including oligomers, protofibrils, or nanotubes, may present a high molar concentration of protein surfaces that are structurally equivalent to fibril ends and that can therefore bind to and activate PrPC or other toxicity-transducing receptors on the neuronal surface. Consistent with this theory, structural studies suggest that Aβ fibril ends and toxic oligomers both display β-strands with dangling hydrogen bonds, which are not connected to sites on adjacent strands (35, 38). Oligomer-specific antibodies are capable of recognizing such structures (39, 40), and perhaps PrPC may do the same. It is also interesting to speculate that PrPC, which is a relatively abundant and widely distributed cell-surface protein on both neurons and glia, might influence the polymerization of Aβ within the brain, inhibiting elongation and contributing to the accumulation of soluble, neurotoxic assemblies.

It has been proposed that small-molecule ligands that bind to PrPC and prevent interaction with Aβ oligomers could represent useful therapeutic agents for treatment of AD (41). However, pharmacologically targeting the N-terminal domain of PrPC, which contains the major Aβ-binding sites, is problematic, because this region is flexibly disordered, and does not present well-defined pockets for binding small molecules. In addition, ligands that interact with the N-terminal domain could produce adverse side effects, because this region has been shown to play a role in certain physiological activities of PrPC, such as neuronal development and cell adhesion (42, 43). Our data raise the possibility that small-molecule ligands for the globular C-terminal domain of PrP, which is in principle more druggable, may specifically antagonize secondary interactions...
The prion protein prevents amyloid-β fibril elongation

with oligomeric or fibrillar Aβ. If so, these ligands might provide superior tools for preventing Aβ neurotoxicity.

Experimental procedures
Preparation of Aβ monomers and ADDLs

Lyophilized Aβ 1–42 was purchased from the ERI Amyloid Laboratory, LLC (Oxford, CT). The peptide was solubilized in water, and one volumetric equivalent acetonitrile was added as a cryoprotectant before the solubilized peptide was separated into 1-mg aliquots, lyophilized, and stored at −80 °C until use. For monomer preparation, the peptide was solubilized in 15 mM NaOH as described previously (44) without the addition of TCEP. Monomers were isolated by size-exclusion chromatography on a Superdex 75 10/300 GL (GE Healthcare) column using PBS as the running buffer. Fractions were collected and kept on ice for immediate use in ThT assays or were flash-frozen in liquid nitrogen and stored at −80 °C until needed for EM or binding studies. The concentration of Aβ was estimated with a NanoDrop UV-visible spectrometer (Thermo Scientific) by reading the sample absorbance at 214 nm and applying Beer’s law with an extinction coefficient of 76,848 M−1 cm−1. ADDLs were prepared using a standard protocol (45, 46) in which lyophilized Aβ peptide was solubilized in HFIP and dried to a film. The film was then solubilized in DMSO before dilution to a concentration of 100 μM in Ham’s F-12 phenol red-free medium (total DMSO 2% (v/v)), followed by incubation at room temperature for 16 h. For seeding assays, Aβ monomers were incubated for 16 h in PBS at 37 °C, with or without 500 nM PrP. Fibril seeds were sonicated on ice for 10 min on 50% duty cycle before use.

ThT assay for Aβ polymerization

Kinetic assays for Aβ polymerization were conducted as described previously (22, 29). Briefly, monomers of Aβ were diluted to a concentration of 3–10 μM in PBS, and 10 μM ThT was added from a stock of 1 mM. Recombinant PrP was added from a 1 mg/ml stock in water at the indicated concentrations. To follow ThT binding, 100-μl samples were added to 96-well, half-volume, low-binding plates (Corning 3881), and fluorescence was read in a Synergy H1 multimode microplate reader (BioTek) every 2 or 6 min at 37 °C (excitation 440 nm, emission 480 nm). Samples used for binding studies were removed directly from the wells and transferred to low-binding, 1.5-ml tubes, flash-frozen, and stored at −80 °C until use.

Recombinant PrP

Full-length mouse PrP(23–230) and PrP(23–109)-cys sequences were synthesized by ATUM/DNA 2.0 (Newark, CA) in the vectors pHL414 and pHL11, respectively, using Escherichia coli–optimized codons, and were then subcloned into the pET101 vector using the Champion pET101 Directional TOPO expression kit (Invitrogen). The deletion variants were generated by site-directed mutagenesis using appropriate primers, and PrP(23–230) as the template. All constructs were verified by DNA sequencing. The pET101 vector was then transformed into BL21 Star chemically competent E. coli and expressed for 16 h via autoinduction (47). All constructs were expressed and purified as described previously (48), with minor modifications as follows. Cells were lysed, and inclusion bodies containing PrP(23–230), 23–109–c-Myc, Δ105–125, or His6-TEV-110–230 were purified from the lysate. In the case of the N-terminal constructs 23–119, 23–109–cys, and 23–144, no inclusion body purification was required, and lysis buffer did not contain chaotropic agents. All constructs were then purified with an ÄKTA purification system (GE Healthcare) using a Ni2+-immobilized metal ion affinity column. For the construct 23–109-cys, 1 mM TCEP was added to all Ni2+ buffers to prevent oxidation of the C-terminal cysteine. Protein was eluted from the Ni2+ immobilized metal ion affinity column with 5 mM guanidine HCl, 0.1 M Tris acetate, 0.1 M potassium phosphate (pH 4.5) while monitoring A280. Fractions spanning the elution peak were combined, and the pH was raised to 8 by titration with potassium acetate. For full-length PrP(23–230) as well as PrPΔ105–125, this was followed by storage at 4 °C overnight to facilitate proper folding. For PrP(110–230), which was expressed with a 5′-His6 tag and TEV cleavage site (sequence MRGSHHHHHHGLENLYFQG), the eluent from the Ni2+ column was desalted into 20 mM Tris, 20 mM KOAc, pH 8.0, and 0.1 mg of TEV protease was added. Enzymatic cleavage was allowed to proceed overnight at 4 °C. The TEV protease was removed the following day with Ni2+ resin, and the remaining protein was concentrated and purified using the Superdex 75 10/300 GL column in 20 mM Tris, 20 mM KOAc, pH 8.0. The protein was flash-frozen in this buffer and stored at −80 °C until use. All other constructs were desalted using a HiPrep 26/10 desalting column (GE Healthcare) into 20 mM potassium acetate, pH 5.5, and then purified by reverse-phase HPLC using a C4 column (Grace/Vydac). Fractions containing the purified protein were pooled, lyophilized, and stored at −80 °C for future use. Protein stocks were reconstituted in 0.2-μm filtered water and quantified with a NanoDrop UV-visible spectrometer (Thermo Scientific) before use. The sequence for the 3′-c-Myc tag was EQKLISEEDL.

Alexa Fluor 488-labeled mouse PrP(23–109)

Alexa Fluor 488 C5 maleimide (Thermo Fisher Scientific) was dissolved in water at a stock concentration of 1 mM. Lyophilized 23–109-cys (N1-cys) was dissolved in 20 mM MOPS, pH 7.4, and 0.5 mM TCEP to a concentration of 100 μM, and Alexa Fluor 488 was added dropwise with stirring to a final ratio of 1:1, giving a final concentration of 50 μM N1-cys, 500 μM Alexa Fluor 488. This solution was protected from light and allowed to incubate at room temperature for 2 h on a benchtop rotator. After 2 h, 1 ml of the solution was injected into an analytical C3 column (Zorbax 300SB C3, Agilent) on an Agilent 1200 Infinity HPLC system, and the peptide peak was collected and lyophilized. Confirmation of successful linkage was made by MALDI-TOF mass spectrometry.

Analytical SEC

Analysis of monomer depletion during Aβ polymerization was performed using an Agilent Bio Sec-3 300 Å column running in PBS on an Agilent 1200 Infinity HPLC system. Aβ samples were spun down at 16,000 rpm in a benchtop centrifuge.
and filtered with a 0.2-μm filter to remove insoluble aggregates before injecting 500 μl onto the column.

Circular dichroism

Far-UV spectra (193–250 nm, 1-nm bandwidth) were collected at 37 °C from samples of 20 μM Aβ that had been polymerized for different times using a Jasco J-815 spectropolarimeter (Jasco, Inc.) with a 1-mm path length quartz cell. Raw data (in millidegrees) were converted to mean residue ellipticity using a molecular mass for Aβ(1–42) of 4514.1 Da.

Electron microscopy

To prepare fibrils for imaging, samples of Aβ were spun down at 100,000 × g in a TLA 55 fixed-angle rotor (Beckman Coulter) for 30 min. The initial sample volume was 900 μl. 890 μl of the supernatant was removed before diluting the remaining sample 1:2 in ultrapure water. The sample was applied as a 4.5-μl droplet to a glow-discharged, 300-mesh copper grid and allowed to incubate for 4 min before washing 12 times with filtered, ultrapure water. The grid surface was then stained for 1 min in 2% uranyl acetate and dried for 3 min. Images were taken using a Philips CM12 120KV transmission microscope. Scale bars were added to images, and measurements of fibrils were made using ImageJ, with each reported size representing an average of 30 independent measurements.

Semidenaturing detergent-agarose gel electrophoresis

SDS-AGE of Aβ fibrils was performed as described previously (49). The gel was prepared with 1.5% agarose in Tris acetate buffer (25 mM Tris acetate, pH 8.5, 250 mM glycine, 0.1% SDS). Samples were not boiled after Laemmli loading buffer was added to avoid further aggregation. The gel was allowed to run for 4 h at 100 mV at 4 °C to achieve best separation of samples. The samples were capillary-transferred overnight to a 0.2-μm PVDF membrane in Tris acetate buffer with 20% MeOH. Membranes were blocked overnight in 3% (w/v) BSA in TBS, washed. For Aβ oligomers, membranes were incubated for 15 min before time-resolved fluorescence was measured in a Synergy H1 multimode microplate reader (BioTek) (excitation 320 nm; emission 615 nm, 100-ns delay).

Fluorescence polarization

Fluorescently labeled PrP(23–109) was mixed with Aβ samples in PBS. Fluorescent polarization was measured on a Synergy H1 multimode microplate reader fitted with a Green FP (485/528) filter cube (BioTek). Polarization values were calculated using the Synergy Gen 5 software (BioTek).

Acknowledgments—We thank Alex McDonald for providing some of the vectors used to make the PrP constructs. We also thank Don Gantz for assistance with the electron microscopy and development of the images in Fig. 1 and Elena Klimchuk, who assisted in collecting the CD curves.

References

The prion protein prevents amyloid-β fibril elongation

The prion protein prevents amyloid-β fibril elongation

16871
SUPPLEMENTAL DATA FOR

The prion protein targets amyloid-beta fibrils ends via its C-terminal domain to prevent elongation

Erin Bove-Fenderson¹, Ryo Urano², John E. Straub², and David A. Harris¹

From the ¹Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, and
²Department of Chemistry, Boston University, Boston, MA 02215

Running title: The prion protein prevents amyloid-beta fibril elongation

Master Equation Analysis

An approximate analytical master equation for protein aggregation including a secondary nucleation pathway was proposed by Cohen et al.(1-3). An alternative master equation including fragmentation rather than secondary nucleation was also proposed but is not considered here, as experiments were conducted under quiescent conditions. The integrated rate law for the normalized fibril mass (total mass excluding monomer mass), M(t), is given by

\[\frac{M(t)}{M(\infty)} = 1 - \left(\frac{B_- + C_+ e^{\beta t}}{B_+ + C_- e^{\beta t}} \right)^{k_{\infty} \frac{M(\infty)}{k_{\infty}}} e^{-k_{\infty}t}, \]

(1)

where

\[B_{\pm} = \frac{k_{\infty} \pm \bar{k}_{\infty}}{2\kappa} \]

\[C_{\pm} = \pm \frac{\lambda^2}{2\kappa^2} \]

\[k_{\infty} = \frac{2\kappa^2}{\sqrt{n_2(n_2 + 1) + \frac{2\lambda^2}{n_c}}} \]

\[\bar{k}_{\infty} = \sqrt{k_{\infty}^2 - 4C_+C_-\kappa^2}, \]

assuming \(M(0) = 0 \) and the initial concentration of fibril \(P(0) = 0 \) (4). The model parameters can be reduced to two independent degrees of freedom captured by the parameters

\[\lambda = \sqrt{2m(0)^{n_2+1}k_+k_2} \]

\[\kappa = \sqrt{2m(0)^{n_2+1}k_+k_2} \]

where \(m(0) \) is the initial concentration of monomer. These two parameters, \(\lambda \) and \(\kappa \), separately govern the contributions of the primary nucleation pathway and secondary nucleation pathway, respectively.

In the current experiments, the initial concentration of monomer was fixed to be \(m(0) = 3 \mu M \). Previous work (4) suggests that reasonable values of \(n_c \) and \(n_2 \) are 2.

The rate constants were first determined by global fitting using a Levenberg–Marquardt non-linear least-squares algorithm for inhibitor free conditions. In the global fitting, the function to be minimized is defined as
The prion protein prevents amyloid-beta fibril elongation

\[\Delta = \sum_{j} \sum_{t=0}^{n_{\text{exp}}} (M_{\text{pred},j}(t) - M_{\text{exp},j}(t))^2, \]

where \(n_{\text{exp}} \) is the number of independent experimental data points for a given inhibitor concentration, \(M_{\text{pred}}(t) = M(t)/M(\infty) \) is given by Eq. (1), and \(M_{\text{exp}}(t) \) is the similarly normalized experimental value.

We first obtained the kinetic rate constants for the inhibitor free condition with the initial values of \(k_+ = 3 \times 10^6 [1/\text{Ms}], k_n = 3 \times 10^{-4} [1/\text{Ms}] \), and \(k_2 = 1 \times 10^4 [1/\text{M}^2\text{s}] \) from Cohen et al. (4). For finite inhibitor concentrations, the global fitting was performed in a systematic manner, changing only a single rate constant at a time while holding other parameters fixed to the inhibitor free values. In this way, \(\Delta \) was independently minimized for datasets representing each inhibitor concentration.

Stochastic Simulation Analysis

We define stochastic rate constants as \(a_+, a_2, a_n \) for elongation, secondary nucleation, and primary nucleation, respectively. Using these constants, kinetic rate coefficients for each process are given by

\[
\begin{align*}
 k_{+,0M}(t) &= 2a_+ m(t) p^{tot}(t), \\
 k_{2,0M}(t) &= a_2 m(t)^{n_2} M(t), \\
 k_{n,0M}(t) &= a_n m(t)^{n_n}
\end{align*}
\]

To model stochastic chemical kinetics in the presence of an inhibitor, two assumptions are required. First, that a sufficient concentration of inhibitor exists, stoichiometric for each unbound protein, and second, that inhibitor binding occurs much faster than the production of new unbound molecules, so that inhibitor binding is assumed to be at equilibrium (5).

The total concentration of fibrils, \(p^{tot} \), included contributions from three species of fibrils including inhibitor-free fibrils, \(p^0 \), fibrils bound to one inhibitor at one end, \(p^1 \), and fibrils bound to two inhibitors, one at each end, \(p^2 \). Considering the equilibrium constant of the inhibitor binding, \(K_{eq\text{End}} \), mass conservation, concentrations, and rate, we find

\[
\begin{align*}
 p^{tot}(t) &= p^0(t) + p^1(t) + p^2(t) \\
 p^2(t) &= K_{eq\text{End}} c_i^{tot} p^1(t) \\
 p^1(t) &= K_{eq\text{End}} c_i^{tot} p^0(t) \\
 p^0(t) &= 1 + K_{eq\text{End}} c_i^{tot} + (K_{eq\text{End}} c_i^{tot})^2 \\
 k_+ &= 2 + K_{eq\text{End}} c_i^{tot} \frac{1}{2 + (K_{eq\text{End}} c_i^{tot})^2}
\end{align*}
\]

where \(c_i^{tot} \) is the inhibitor concentration.

The ratio of the kinetic rate constant for elongation in the presence, \(k_+ \), and absence, \(k_{+,0M} \), of inhibitor is given by

\[
\frac{k_+}{k_{+,0M}} = \frac{2p^0(t) + p^1(t)}{2p^{tot}(t)} = \frac{2 + K_{eq\text{End}} c_i^{tot}}{2 + 2K_{eq\text{End}} c_i^{tot} + 2(K_{eq\text{End}} c_i^{tot})^2} = f(K_{eq})
\]

Assuming independent binding on available protein sites, specific binding of the inhibitor to the surface of a fibril results in a Langmuir-type adsorption of the inhibitor to the surface. This provides the amount of deactivated monomer with inhibitor bound, \(M_{\text{bound}} \), as
The prion protein prevents amyloid-beta fibril elongation

\[M_{\text{bound}}(t) = K_{\text{eqSurf}} C_i^{\text{Tot}}(t) \]

\[k_2 = a_2(M(t) - M_{\text{bound}}(t))m(t)^{n_2} = (1 - K_{\text{eqSurf}} C_i^{\text{Tot}})a_2 M(t)m(t)^{n_2} \]

\[= k_{2,0M}(1 - K_{\text{eqSurf}} C_i^{\text{Tot}}). \]

The computational analysis of this set of stochastic equations was performed using R (6-9).

Table S1: Polymerization half-time at each PrP concentration. The half-time, \(t_{\text{half}} \), of polymerization obtained from fitting rate constants, \(M_{\text{pred}}(t_{\text{half}}) = 0.5 \), is shown for various conditions. To obtain the best fit rate constants, the global fitting was performed in a systematic manner by varying three rate constants from the initial values of Cohen et al. (4) above for each condition.

<table>
<thead>
<tr>
<th>PrP concentration</th>
<th>Half-time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 nM</td>
<td>361.5</td>
</tr>
<tr>
<td>125 nM</td>
<td>198.0</td>
</tr>
<tr>
<td>62.5 nM</td>
<td>143.3</td>
</tr>
<tr>
<td>31.3 nM</td>
<td>104.1</td>
</tr>
<tr>
<td>15.6 nM</td>
<td>102.7</td>
</tr>
<tr>
<td>7.8 nM</td>
<td>102.4</td>
</tr>
<tr>
<td>0 nM</td>
<td>88.8</td>
</tr>
</tbody>
</table>

Table S2: Average experimental values and fits derived from varying the elongation, secondary nucleation, and primary nucleation rate constants, \(k_+ \), \(k_2 \), and \(k_n \), respectively.

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>(k_+) (raw)</th>
<th>(k_2) (raw)</th>
<th>(k_n) (raw)</th>
<th>(k_+) (scaled)</th>
<th>(k_2) (scaled)</th>
<th>(k_n) (scaled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 nM</td>
<td>1.4e+05</td>
<td>3.5e-04</td>
<td>1.5e-10</td>
<td>5.9e-02</td>
<td>5.2e-08</td>
<td>3.7e-07</td>
</tr>
<tr>
<td>125 nM</td>
<td>4.7e+05</td>
<td>1.9e+02</td>
<td>1.1e-06</td>
<td>2.0e-01</td>
<td>2.9e-02</td>
<td>2.7e-03</td>
</tr>
<tr>
<td>62.5 nM</td>
<td>9.4e+05</td>
<td>1.4e+03</td>
<td>1.9e-05</td>
<td>3.9e-01</td>
<td>2.1e-01</td>
<td>4.7e-02</td>
</tr>
<tr>
<td>31.3 nM</td>
<td>1.8e+06</td>
<td>4.3e+03</td>
<td>1.7e-04</td>
<td>7.6e-01</td>
<td>6.5e-01</td>
<td>4.3e-01</td>
</tr>
<tr>
<td>15.6 nM</td>
<td>1.8e+06</td>
<td>4.5e+03</td>
<td>1.8e-04</td>
<td>7.7e-01</td>
<td>6.8e-01</td>
<td>4.6e-01</td>
</tr>
<tr>
<td>7.8 nM</td>
<td>1.8e+06</td>
<td>4.3e+03</td>
<td>1.8e-04</td>
<td>7.6e-01</td>
<td>6.5e-01</td>
<td>4.6e-01</td>
</tr>
<tr>
<td>0 nM</td>
<td>2.4e+06</td>
<td>6.7e+03</td>
<td>4.0e-04</td>
<td>1.0e+00</td>
<td>1.0e+00</td>
<td>1.0e+00</td>
</tr>
</tbody>
</table>
SUPPLEMENTARY FIGURE 1. Analysis of PrP binding to Aβ monomers, fibrils, and ADDLs. (a) ADDLs were subjected to SPR analysis as in Fig. 5 a, b. (b) PrP binding of the indicated concentrations (in monomer-equivalents) of Aβ monomers (fresh and frozen), fibrils (polymerized for 16 hrs), and ADDLs was analyzed by DELFIA. Averages are for triplicate measurements.
SUPPLEMENTARY FIGURE 2. Sonication of Aβ fibrils increases binding to PrP. Aβ fibrils polymerized for 16 hours were subjected to sonication for 10 minutes, and binding to PrP was compared to unsonicated fibrils at identical monomer-equivalent concentrations by DELFIA.
The prion protein prevents amyloid-beta fibril elongation

References

Cellular prion protein targets amyloid-β fibril ends via its C-terminal domain to prevent elongation
Erin Bove-Fenderson, Ryo Urano, John E. Straub and David A. Harris

doi: 10.1074/jbc.M117.789990 originally published online August 23, 2017

Access the most updated version of this article at doi: 10.1074/jbc.M117.789990

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2017/08/23/M117.789990.DC1

This article cites 46 references, 23 of which can be accessed free at
http://www.jbc.org/content/292/41/16858.full.html#ref-list-1