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1. Introduction

A mide modes in peptides and proteins are
important probes to establish a structure-

spectroscopy relation for biomolecules [1, 2]. The
amide I modes, which are localized at the C=O
bond with frequencies of 1,600–1,700 cm−1, have
attracted special attention because they are sen-
sitive to the secondary structure of peptides [3].
This work is concerned with the vibrational energy
relaxation of amide I modes. Recent experimental
studies on model peptides and various small glob-
ular peptides have shown that the ν = 1 → 0
population decay time T1 of the amide I mode
is about 1 ps for all systems considered [4–6]. To
explain the ultrafast energy and phase relaxation
of amide I modes, a number of theoretical formu-
lations have been given [7–20], many of which focus
on N-methylacetamide (NMA, H3C-COND-CH3), a
peptide-like small molecule containing only a sin-
gle amide I mode. Employing standard biomolecular
potential energy functions (such as CHARMM [21]
or GROMOS [22]), quasiclassical trajectory simu-
lations [19] and time-dependent perturbation the-
ory calculations [20] have been performed, quali-
tatively reproducing the subpicosecond relaxation
time found for NMA in D2O [4–6].

Alternatively, various groups considered ab
initio based potential energy functions to describe
the dynamics of amide I vibrations [7–14, 16, 17].
Employing density functional theory (DFT) calcu-
lation at the B3LYP/6-31G+(d) level, we recently
constructed a quartic force field of isolated NMA
[16]. The dynamics of the amide I vibration was
studied using the vibrational configuration interac-
tion method [16, 23–25], including 24 vibrational
degrees of freedom. The study indicated that the
energy transfer pathways may sensitively depend
on details of the theoretical description. Hence, one
goal of the present paper is to examine the sensitiv-
ity of amide I relaxation with respect to the ab initio
level (DFT/B3LYP and MP2), basis set (6-31G+(d)
and 6-31G++(d,p)), and description of the solvent
(none or continuum model). Note that “relaxation”
means intramolecular one in this paper, and we
do not explicitly consider the effect of baths. In
the full quantum calculations below, an initial state
is one of basis configurations (a single VSCF con-
figuration, see below), which is assumed to be a
bright state created by a laser pulse, and the relax-
ation is represented by “mixing” among such basis
configurations.

As the vibrational configuration interaction
method gives a numerically exact quantum-
mechanical description of the vibrational dynamics
of the model system, it provides an ideal means
to test several approximations usually employed
in the description of vibrational energy relaxation
(Numerically exact quantum calculations of multi-
dimensional vibrational energy redistribution have
been also performed using the MCTDH method;
see for example [26]). The focus of this work is
therefore to study the applicability and accuracy
of (i) the quasiclassical trajectory method [19], (ii)
(time-dependent) second-order perturbation theory
[20, 27], and (iii) the instantaneous normal mode
description [28] of frequency fluctuations. Based
on the results, we discuss several strategies to
describe vibrational energy relaxation in biomolecu-
lar systems.

2. Theory and Methods

2.1. QUARTIC FORCE FIELD

Although there are various ways to construct ab
initio potential energy surfaces (PES) [29, 30], we
employ here a simple but accurate method called
quartic force field, which is useful if we consider
vibrational dynamics around a single equilibrium
state of a molecule [31–33]. In this approach, the PES
is approximated by a fourth-order Taylor expansion
around the equilibrium geometry
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2
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where Qk and ωk denote the kth normal coordi-
nate and the associated harmonic frequency, respec-
tively, and the coefficients tklm and uklmn represent the
third- and fourth-order derivatives of the PES. The
aforementioned expression can be recast in the form
of the n-mode coupling representation (nMR) [33–35]
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Note that we have omitted the 4MR terms
V4MR({Qi}) = ∑

i<j<k<l uijklQiQjQkQl. This strategy
has been successfully applied to several molecules
[35–38]. By adding the normal mode kinetic energy
K = ∑

k P2
k/2 (we neglect the so-called Coriolis and

Watson terms [25] because we restrict ourselves to
small-amplitude motions in a large molecule), we
obtain the vibrational Hamiltonian H = K + V({Qi})
for the system.

In this study, the quartic force field was derived
using the B3LYP or MP2 methods with the 6-
31G+(d) or 6-31G++(d,p) basis set. First, the equilib-
rium structure and the harmonic frequencies were
obtained for trans-NMA using the Gaussian03 pro-
gram package [39]. Then, the third and fourth-order
derivatives were calculated by numerical differen-
tiation of the analytic Hessian [33] using the Sindo
code developed by Yagi [40] or by the “anharmonic”
option of Gaussian 03.

2.2. VIBRATIONAL CONFIGURATION
INTERACTION METHOD

In a first step, we calculated the vibrational ener-
gies and eigenstates of the above described model of
NMAusing the vibrational configuration interaction
(VCI) method developed by Bowman and cowork-
ers [25]. To generate basis functions for the VCI
calculations, we first performed a vibrational self-
consistent field (VSCF) calculation of the vibrational
ground state. The VSCF wave function is expressed
as a direct product of one-mode functions or modals
[41] as

�VSCF
n =

f∏
i=1

φ(i)
ni

(Qi), (6)

where n and f denote the vibrational quantum num-
bers and the number of degrees of freedom, respec-
tively. The modals are determined by the VSCF
equation
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which yields the vibrational ground state (n = 0)

and the virtual modals. The VCI wave function
is expressed as a linear combination of VSCF
configurations

�VCI
n =

∑
m

Cmn�
VSCF
m . (8)

The VCI wave functions and energy levels are
obtained by diagonalization of the VCI matrix

Hmn = 〈
�VSCF

m |H|�VSCF
n

〉
. (9)

All VSCF/VCI calculations were carried out using
the Sindo code [40] for nonrotating molecules. The
modals were expanded in terms of harmonic oscil-
lator wave functions. The number of wave functions
employed were 11, 9, 7, and 5 for {φ(7), φ(8)}, {φ(9)-
φ(12)}, {φ(13)-φ(23)}, and {φ(24)-φ(30)}, respectively. The
mode index was labeled in increasing order of the
frequency and the six lowest-lying modes were kept
frozen. The VSCF configurations were selected by
increasing energy until a cut-off energy of ∼5,000
cm−1, resulting in NCI � 6,000.

Once all eigenvalues {En} and eigenfunctions
{�VCI

n } are obtained, it is straightforward to calculate
the time-dependent wave function

|�(t)〉 =
∑

n

〈
�VCI

n |�(0)〉e−iEnt/�|�VCI
n

〉
, (10)

which represents a numerically exact description of
the aforementioned quartic force field model.

In all calculations discussed below we assume
that the initial state is given by a single VSCF
configuration �(0) = �VSCF

i , representing the n = 1
state of the amide I vibration. We thus obtain for the
wave function

|�(t)〉 =
∑

j

Oj(t)
∣∣�VSCF

j

〉
(11)

with

Oj(t) =
∑

n

CjnCnie−iEnt/� (12)

and Pj(t) = |Oj(t)|2 for the time-dependent prob-
ability of state �VSCF

j . This allows us to define the
harmonic energy of vibrational mode i as

Ei(t) = �ωi

∑
j

Pj(t)n
(i)
j , (13)
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where the zero point energy of the mode was disre-
garded. Equation (13) will be used below to discuss
the vibrational energy relaxation in NMA.

2.3. TIME-DEPENDENT PERTURBATION
THEORY

Employing time-dependent perturbation theory,
recently Fujisaki et al. have extended Fermi’s Golden
Rule to the non-Markovian regime [20, 42]. As a
stringent test of this formulation, we wish to com-
pare the perturbative results to the exact VCI results
obtained for NMA. Assuming zero temperature, the
perturbative expression for the amide I ground state
population is given by [20]

P0(t) = ρ00(t) � �

8ωS

∑
α,β

t2
Sαβ

ωαωβ

1−cos(ωS−ωα−ωβ)t
(ωS − ωα − ωβ)2

≡
∑
α,β

F2
Sαβ[1 − cos(ωS − ωα − ωβ)t], (14)

where ωS is the system frequency, ωα denote the
(harmonic) frequency of the bath modes, and tSαβ

represents the third-order coupling elements [20].
Moreover, we have introduced a Fermi resonance
parameter [43]

FSαβ ≡
∣∣∣∣∣
√

�

2ωS

�

2ωα

�

2ωβ

tSαβ

�(ωS − ωα − ωβ)

∣∣∣∣∣
≡

∣∣∣∣ τSαβ

ωS − ωα − ωβ

∣∣∣∣ (15)

which is proportional to

η ≡
∣∣∣∣ 〈i|
V|f 〉


E

∣∣∣∣ , (16)

where |i〉 and |f 〉 are the initial and final harmonic
states, 
V = V−∑

k ω2
k Q2

k/2 denotes the anharmonic
vibrational coupling, and 
E is the energy difference
between |i〉 and |f 〉. The Fermi resonance parameter
is a key ingredient in the interpretation of vibrational
energy transfer processes [20]. This concept has been
useful for the classical dynamics characterization of
the vibrational relaxation pathways in water [44] and
in myoglobin [45], although there may be differences
in the mechanism of quantum and classical energy
transfer [46].

2.4. CLASSICAL DESCRIPTION

Quasiclassical trajectory calculations are a well-
established approach to approximately calculate the
energy redistribution in molecular systems [47]. In
this method, the initial state of the quantum sys-
tem (e.g., the n = 1 state prepared by an infrared
laser pulse) is represented by a phase-space distribu-
tion (e.g., the Wigner distribution), which is sampled
by an ensemble of classical trajectories. Starting by
construction with the correct initial state and recall-
ing that classical mechanics can be considered as a
short-time approximation to quantum mechanics, a
classical simulation should be a good approxima-
tion to quantum-mechanics in the case of ultrafast
relaxation dynamics [48].

In this work, we solved Newton’s equation on the
PES defined in Eq. (1), using Yoshida’s sixth-order
symplectic integrator with a 0.5 fs time step [49].
To generate classical initial conditions for the posi-
tions and momenta, we represent the normal modes
{Qk, Pk} in terms of classical action-angle variables
{nk, φk} [47]

Qk = √
(2nk + γ )�/ωk sin φk, (17)

Pk = √
(2nk + γ )�ωk cos φk, (18)

where the factor γ = 1 accounts for the zero-point
energy of the mode. To obtain the initial positions
and momenta of the initially excited amide I mode,
we associate the action nk with the initial quantum
state of the amide I mode, i.e., nk = 1 for the first
excited state. The remaining modes are for T = 0
K initially in the ground state nk = 0 and only
vibrate according to their zero-point energy. In all
cases, the vibrational phases φk are picked randomly
from the interval [0, 2π ]. Using this initial conditions,
the classical energy content of vibrational mode i is
defined as

Ei(t) =
〈
P2

i (t)
〉

2
+ ω2

i

2

〈
Q2

i (t)
〉 − EZPE

i , (19)

where 〈. . . 〉 represents an ensemble average over
100 nonequilibrium trajectories and EZPE

i denotes the
zero-point energy of mode i.

Although Eqs. (17) and (18) represent a correct
quasiclassical representation of the initial state of
the system (in the sense that the vibrational energy
distribution is correct), it may give rise to unphys-
ical behavior due to the well-known zero-point
energy problem of classical mechanics [50]. In quan-
tum mechanics, each oscillator mode must hold an
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amount of energy that is larger or equal to the
zero-point energy of this mode. In a classical trajec-
tory calculation, on the other hand, energy can flow
among the modes without this restriction. In the case
of our ab initio model of NMA, for example, we have
found that the high zero-point energy contained in
the C–H stretch modes (≈1600 cm−1) may be trans-
ferred to a large amount to low-frequency modes
of NMA, thus yielding unphysical and unstable
trajectories.

Various approaches have been proposed to fix
the zero-point energy problem [50], however, most
of these techniques share the problem that they
manipulate individual trajectories, whereas the con-
servation of zero-point energy should correspond
to a virtue of the ensemble average of trajectories.
Here, we adopt the method introduced in Ref. 51,
which invokes quantum corrections to the classi-
cal calculation in order to restrict the classically
accessible phase space according to the rules of quan-
tum mechanics. At the simplest level of the theory,
these corrections have been shown to correspond
to including only a fraction γ (0 ≤ γ ≤ 1) of the
full zero-point energy into the classical calculation.
The quantum correction γ can be determined by
requiring that some observables of the system are
reproduced [51], e.g., that the amide I energy remains
larger than the zero-point energy for all times under
consideration. In the present case, we assigned full
zero-point energy to the initially excited amide I
mode, while for the remaining modes we choose γ

according to the classical thermal energy at T = 300
K. This protocol is simple to implement in standard
MD codes and was shown to give good results in pre-
vious quasiclassical trajectory studies of vibrational
energy redistribution [19].

3. Results and Discussion

3.1. QUANTUM DYNAMICS AT VARIOUS
LEVELS OF AB INITIO THEORY

The theoretical description of the amide I vibra-
tion of NMA first of all depends on the quantum-
chemical parameterization of the quartic force
field. Here, the following four levels of theory
were employed: DFT/B3LYP with 6-31+G(d) or 6-
31++G(d,p) basis set and MP2 with 6-31+G(d) or
6-31++G(d,p) basis set. To facilitate the compari-
son to experiment, we first consider the vibrational
frequencies of NMA, as obtained from the diago-
nalization of the VCI matrix (9). Figure 1 compares

these frequencies to experimental values obtained
under argon matrix conditions [52], focusing on
vibrational modes between 1,000 and 2,000 cm−1.
MP2 somewhat overestimates the anharmonic fre-
quencies in comparison to DFT/B3LYP. Applying
the 6-31+G(d) basis set, we obtain an overall devi-
ation (mean absolute deviation) of 52 and 26 cm−1 at
the MP2 and DFT/B3LYP level, respectively. As the
improvement due to the larger 6-31++G(d,p) basis is
relatively small (compared to the increased effort),
in the following we only show results using the 6-
31+G(d) basis. We confirmed that the energy transfer
pathways are nearly the same in both cases.

Although all levels of theory at least qualitatively
reproduce the vibrational frequencies of NMA, the
deviations may be more significant when the vibra-
tional energy relaxation of the amide I vibration is
considered. Figure 2 shows the time evolution of the
energy content [Eq. (13)] of the initially excited amide
I mode (# 23) as well as of the remaining modes
of the molecule. As discussed previously [16], in
the B3LYP/6-31G+(d) calculation most of the amide
energy goes to the 9th vibrational mode at 869 cm−1

via the pathway |231〉 → |92〉 and to the 7th and
12th modes via the pathway |231〉 → |71121〉. As dis-
cussed in Ref. 16, these normal modes correspond to
motion of the C-terminal methyl-group atoms. The
pathways can be explained by considering the Fermi
resonance parameter FSαβ defined in Eq. (15), which
describes within time-dependent perturbation the-
ory the intensity of transition |S1〉 → |α1β1〉. Figure 3
shows the Fermi resonance parameters for all mode
combinations (α, β) together with its resonance fac-
tor |1/(ωS −ωα −ωβ)| and the anharmonic coefficient
|τSαβ |. Interestingly, it is the resonance factor rather
than the anharmonic coefficient that determines FSαβ

and thus the relaxation pathway, i.e., the shape of
|FSαβ | mainly reflects that of |1/(ωS − ωα − ωβ)|.
This underlines the importance of an accurate cal-
culation of vibrational frequencies. Another point is
that |τSαβ | is nearly equal for both calculation levels
(DFT or MP2). This fact is the basis for multireso-
lution methods to calculate vibrational frequencies
by combining high and low level quantum-chemical
methods [30, 31].

Employing the force field obtained from the
MP2/6-31G+(d) calculations, Figure 2 shows a qual-
itative change of the amide I relaxation dynamics
as compared to the results at the DFT/B3LYP level.
Although the same vibrations are involved in the
process (i.e., mainly modes # 9, and # 7 and # 12), the
amide I energy decreases only by ≈20% instead of
≈80%. Figure 3 reveals that this is caused by the fact
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FIGURE 1. Vibrational frequencies of isolated
N -methylacetamide (NMA), calculated from the quartic
force field using the VSCF/VCI method. Compared are
experimental [52] and calculated frequencies at various
levels of theory. The amide I vibration corresponds to
mode # 23 and amide II to # 22. [Color figure can be
viewed in the online issue, which is available at
www.interscience.wiley.com.]

that the value of the corresponding Fermi resonance
parameters for MP2 are only half of the value of
the DFT parameters. (Note that FSαβ enters quadrati-
cally in the relaxation rate, which explains the overall
factor of four.)

As an approximative way to include solvent
effects into the parameterization of the quartic force
field, we have employed the implicit solvent model
as implemented in Gaussian03 [39] and repeated
the aforementioned calculations. As an example,
Figure 4 shows results obtained for implicit water
and implicit methanol at the DFT/B3LYP level of
theory. In both cases, one obtains a relatively weak
amide I relaxation, which mainly involves the modes
#7, #8, #11, and #12. However, it should be stressed
that in experiment [4, 5] as well as in simulations
using explicit water solvent [19, 20] there is a strong
flow of vibrational energy into the solvent degrees
of freedom which is, of course, not captured by
an implicit model. Hence, one should regard these
calculations as another example of energy transfer
dynamics on different PESs.

3.2. CLASSICAL RELAXATION DYNAMICS

The numerically exact quantum calculations
shown in Figures 2 and 4 provide a stringent test for
quasiclassical trajectory simulations of vibrational
energy transfer. The comparison of both methods in

FIGURE 2. Time evolution of the energy content of the initially excited amide I mode and the remaining modes of the
NMA. Compared are quantum (red lines) and classical (green lines) calculations, obtained at the DFT/B3LYP (left) and
MP2 (right) level of theory. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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FIGURE 3. Fermi resonance parameter FSαβ [Eq. (15)] together with its resonance factor |1/(ωS − ωα − ωβ)| (cm) and
the anharmonic coefficient |τSαβ | (cm−1). Compared are quantum calculations, obtained at the DFT/B3LYP (left) and
MP2 (right) level of theory. Note that the sharp peaks in |τSαβ | are due to the self-anharmonicity of the amide I mode.
[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

these figures reveals that for all cases considered the
quasiclassical approximation yields at least qualita-
tive agreement with the reference calculation. It is
interesting to note, though, that the classical results
deviate already at short times. This is a consequence
of the fact that we have not employed the full zero
point energy in initial conditions (17) and (18). Doing
so, we indeed obtain the correct dynamics for the
first few hundreds of femtoseconds, but also observe
unphysical flow of zero point energy at longer times
(data not shown) [19]. By employing full zero point
energy in the initially excited amide I mode and

thermal energy in all remaining vibrational modes,
on the other hand, we obtain a reasonable classical
approximation.

Nonetheless, certain care should be taken when
a quasiclassical approximation to quantum dynam-
ics is employed. In classical mechanics, energy can
flow among the vibrational modes without the
restrictions of quantum mechanics. For example,
one may observe classical energy transfer, if the ini-
tially excited vibrational mode ωS is about half of
the frequency of a high-frequency bath mode ωα

(i.e., 2ωS ≈ ωα), even though the initially excited
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FIGURE 4. Vibrational energy relaxation of NMA, obtained from DFT/B3LYP calculations using an implicit solvent
model. Compared are quantum (red lines) and classical (green lines) calculations, obtained for implicit water (left) and
implicit methanol (right). [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

mode contains only the energy of a single quantum.
For the present force field, this behavior occurred
when the amide II mode was excited and energy
transfer to the C-H stretch modes was observed
(data not shown). As in the case of the zero point
energy problem, it is therefore always advisable
to check the main energy pathways of classical
calculations, in order to make sure that the clas-
sical energy flow could also happen in quantum
mechanics.

3.3. PERTURBATIVE DESCRIPTION OF
RELAXATION DYNAMICS

Apart from classical approximations, Golden
Rule-type methods as described in Sec. 2.3 have
be proven useful to describe vibrational relaxation
dynamics [20, 42]. The comparison of this method to
the reference calculations in Figure 5 reveals that the
perturbative expression gives quantitative results for
the first few hundreds of femtoseconds. This may be

FIGURE 5. Comparison of exact and perturbative calculation of vibrational energy relaxation of the amide I mode of
NMA, employing (left) B3LYP and (right) MP2 level of theory. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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FIGURE 6. Instantaneous normal mode frequencies of selected high-frequency modes of NMA, assuming (left)
nonequilibrium and (right) equilibrium initial conditions, respectively. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

expected, because the initial process is given by the
energy transfer between the amide I mode and the
doorway states (or first tiers) [53], which is correctly
taken into account by the perturbative formula. At
longer times, higher-order interactions and the sub-
sequent relaxation of the doorway states into other
degrees of freedom may become important, which
is not included in the second-order perturbative
description. Nevertheless, in the present case the
perturbative calculation yields qualitatively correct
results for the first few picoseconds.

A possible approach to extend the application of
Golden Rule-type methods to the condensed phase is
to take into account the fluctuations of the solvent by
calculating the instantaneous normal mode frequen-
cies of the solute [54]. To study the validity of this
approach, we have calculated instantaneous normal
mode frequencies for the present model, assuming
both equilibrium and nonequilibrium initial con-
ditions. As shown in Figure 6, the instantaneous
normal mode frequencies of the amide I mode and
other high-frequency modes of NMA may undergo
fluctuations of several hundred wavenumbers. Even
under equilibrium conditions, the amide I mode
may vary by more than two hundred wavenumbers.
This behavior is quite unrealistic, when we recall
that, in experiment, typically fluctuations of tens
of wavenumbers are observed [4–6]. We conclude
that instantaneous normal mode frequencies cannot
be regarded as “true” vibrational frequencies, when
strongly anharmonic ab initio PES are employed.
A more realistic description of the time-dependent

frequencies is obtained, if we perform a geome-
try optimization of the solute molecule, leading to
“quenched normal modes” [44, 54]. Because of the
absence of a fluctuating solvent, however, in the
present case this procedure only leads to the global
minimum of the molecule and therefore to time-
independent (standard) normal mode frequencies.

4. Conclusions

Following the previous work [16], we have con-
structed various quartic force fields of isolated
N-methylacetamide (NMA) and performed numeri-
cally exact VSCF/VCI calculations of the vibrational
energy relaxation of the amide I mode of NMA. All
levels of ab initio theory considered (DFT/B3LYP
and MP2 with 6-31+G(d) or 6-31++G(d,p) basis set)
reproduced the vibrational frequencies of NMA at
least qualitatively. However, the various theoretical
levels were found to lead to significant deviations
of the vibrational energy relaxation. This behavior
could be explained through the Fermi resonance
parameter [Eq. (15)], which includes the anhar-
monic coupling as well as the resonance condition
of the energy transfer. The latter was found to
predominantly determine the efficiency of the pro-
cess. It should be noted that this sensitivity to the
accurate description of vibrational frequency is par-
ticularly high in the case of isolated NMA. Larger
peptides and proteins in aqueous solution provide a
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much higher vibrational level density, which facili-
tates efficient relaxation, since there are always some
approximately resonant modes available [42]. Com-
bined with the overall averaging effect of solvent-
induced frequency fluctuations, this may render
a more qualitative quantum-chemical description
sufficient.

Taking the VSCF/VCI results as reference calcu-
lations, we have studied the validity and accuracy
of various approximations usually employed. It was
found that second-order perturbation theory pro-
vides a faithful description of the first few hundreds
of femtoseconds of the relaxation dynamics. This
is because the initial energy transfer between the
amide I mode and the doorway states is correctly
described by the perturbative formula. At longer
times, this approximation yields only qualitatively
correct results, since higher-order interactions and
the subsequent relaxation of the doorway states
into other degrees of freedom may become impor-
tant. To extend this method to the condensed phase,
instantaneous normal modes are often invoked in
order to account for the solvent-induced frequency
fluctuations of the system. In the present case of
strongly anharmonic ab initio PES, however, the
resulting instantaneous normal mode frequencies
were found to undergo unrealistically high fluctua-
tions of several hundred wavenumbers. A more real-
istic description of the time-dependent frequencies
may be obtained, if we perform a geometry optimiza-
tion of the solute molecule, leading to “quenched
normal modes” [44, 54].

We have also performed quasiclassical trajectory
simulations of vibrational energy transfer, which
were found to be in at least qualitative agreement
with the reference calculation. However, in classical
mechanics, energy can flow among the vibrational
modes without the restrictions of quantum mechan-
ics. A well-known example is the zero-point energy
problem, which in the present case was circum-
vented by employing full zero point energy only
in the initially excited amide I mode and thermal
energy in all remaining vibrational modes. More-
over, in classical mechanics energy transfer may
also occur to high-frequency bath modes. To assure
that the classical energy flow also would happen in
quantum mechanics, it is therefore always advisable
to check the main energy pathways of a classical
calculation.

ACKNOWLEDGMENTS

The authors thank P.H. Nguyen, S.M. Park, and A.
Dreuw for discussions and helpful comments. H.F.

deeply appreciates Prof. Kimihiko Hirao’s hospital-
ity and generosity during H.F.’s visit to Prof. Hirao’s
laboratory.

References

1. Krimm, S.; Bandekar, J. Adv Prot Chem 1986, 38, 181.

2. Barth, A.; Zscherp, C. Q. Rev Biophys 2002, 35, 369.

3. Torii, H.; Tasumi, M. J Chem Phys 1992, 96, 3379.

4. Hamm, P.; Lim, M. H.; Hochstrasser, R. M. J Phys Chem B
1998, 102, 6123.

5. Zanni, M. T.; Asplund, M. C.; Hochstrasser, R. M. J Chem Phys
2001, 114, 4579.

6. DeFlores, L. P.; Ganim, Z.; Ackley, S. F.; Chung, H. S.; Tok-
makoff, A. J Phys Chem B 2006, 110, 18973.

7. Torii, H.; Tasumi, M. J Raman Spec 1998, 29, 81.

8. Gregurick, S. K.; Chaban, G. M.; Gerber, R. B. J Phys Chem A
2002, 106, 8696.

9. Schmidt, J. R.; Corcelli, S. A.; Skinner, J. L. J Chem Phys 2004,
121, 8887.

10. Ham, S.; Hahn, S.; Lee, C.; Cho, M. J Phys Chem B 2005, 109,
11789.

11. Hayashi, T.; Jansen, T. l. C.; Zhuang, W.; Mukamel, S. J Phys
Chem A 2005, 109, 64.

12. Bounouar, M.; Scheurer, Ch. Chem Phys 2006, 323, 87.

13. (a) Gorbunov, R. D.; Nguyen, P. H.; Kobus, M.; Stock, G.
J Chem Phys 2007, 126, 054509; (b) Kobus, M.; Gorbunov, R.
D.; Nguyen, P. H.; Stock, G. Chem Phys 2008, 347, 208.

14. Kaledin, A. L.; Bowman, J. M. J Phys Chem A 2007, 111, 5593.
15. (a) Leitner, D. M. Adv Chem Phys 2005, 130B, 205; (b) Leitner,

D. M. Annu Rev Phys Chem 2008, 59, 233.
16. Fujisaki, H.; Yagi, K.; Hirao, K.; Straub, J. E. Chem Phys Lett

2007, 443, 6.
17. Dijkstra, A. G.; Jansen, T. l. C.; Bloem, R.; Knoester, J. J Chem

Phys 2007, 127, 194505.
18. Pouthier, V. J Chem Phys 2008, 128, 065101.
19. Nguyen, P. H.; Stock, G. J Chem Phys 2003, 119, 11350.
20. Fujisaki, H.; Zhang, Y.; Straub, J. E. J Chem Phys 2006, 124,

144910.
21. (a) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.;

Swaminathan, S.; Karplus, M. J Comp Chem 1983, 4, 187; (b)
MacKerell, A.D. Jr.; Brooks, B.; Brooks, C. L., III; Nilsson, L.;
Roux, B.; Won, Y.; Karplus, M. The Encyclopedia of Compu-
tational Chemistry 1: Schleyer, P. v. R., et al., Eds.; Chichester:
Wiley, 1998; pp. 271–277.

22. van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark,
A. E.; Berendsen, H. J. C. J Comp Chem 2005, 26, 1701.

23. Bowman, J. M. J Chem Phys 1978, 68, 608.
24. Carter, S.; Bowman, J. M.; Handy, N. C. Theor Chem Acc 1998,

100, 191.

25. Bowman, J. M.; Carter, S.; Huang, X. Int Rev Phys Chem 2003,
22, 533.

26. (a) Gatti, F.; Meyer, H.-D. Chem Phys 2004, 304, 3; (b) Kühn,
O. Chem Phys Lett 2005, 402, 48.

2056 INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY DOI 10.1002/qua VOL. 109, NO. 10



VIBRATIONAL RELAXATION DYNAMICS OF N -METHYLACETAMIDE

27. (a) Egorov, S. A.; Skinner, J. L. J Chem Phys 1996, 105, 8973; (b)
Egorov, S. A.; Everitt, K. F.; Skinner, J. L. J Phys Chem A 1999,
103, 9494; (c) Lawrence, C. P.; Skinner, J. L. J Chem Phys 2002,
117, 5827.

28. (a) Stratt, R. M. Acc Chem Res 1995, 28, 201; (b) Keyes, T. J
Phys Chem A 1997, 101, 2921.

29. Giese, K.; Petkovic, M.; Naundorf, H.; Kühn, O. Phys Rep
2006, 430, 211.

30. Yagi, K.; Hirata, S.; Hirao, K. Theo Chem Acc 2007, 118, 681.

31. Rauhut, G. J Chem Phys 2004, 121, 9313.

32. (a) Kongsted, J.; Christiansen, O. J Chem Phys 2006, 125,
124108; (b) Toffoli, D.; Kongsted, J.; Christiansen, O. J Chem
Phys 2007, 127, 204106.

33. (a) Yagi, K.; Hirata, S.; Hirao, K. J Chem Phys 2007, 127, 034111;
(b) Yagi, K.; Taketsugu, T.; Hirao, K.; Gordon, M. S. J Chem
Phys 2000, 113, 1005.

34. Carter, S.; Culik, S. J.; Bowman, J. M. J Chem Phys 1997, 107,
10458.

35. Yagi, K.; Hirao, K.; Taketsugu, T.; Schmidt, M. W.; Gordon, M.
S. J Chem Phys 2004, 121, 1383.

36. Barone, V. J Chem Phys 2005, 122, 014108.

37. Taketsugu, T.; Yagi, K.; Gordon, M. S. Int J Quantum Chem
2005, 104, 758.

38. Krishnan, G. M.; Kühn, O. Chem Phys Lett 2007, 435, 132.

39. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven,
T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.;
Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.;
Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara,
M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Naka-
jima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.;
Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo,
C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala,
P. Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J. J.;

Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.;
Farkas, O.; Maiick, D. K.; Rabuck, A. D.; Raghavachari,
K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;
Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko,
A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.;
Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe,
M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonza-
lez, C.; Pople, J. A. Gaussian 03, Revision C.02, Gaussian, Inc.,
Wallingford CT, 2004.

40. Yagi, K. SINDO Version 1.3, 2006.

41. Bowman, J. M. Acc Chem Res 1986, 19, 202.

42. Fujisaki, H.; Straub, J. E. J Phys Chem B 2007, 111, 12017.
43. Cremeens, M.; Fujisaki, H.; Zhang, Y.; Zimmermann, J.; Sagle,

L. B.; Matsuda, S.; Dawson, P. E.; Straub, J. E.; Romesberg, F.
E. J Am Chem Soc 2006, 128, 6028.

44. (a) Ohmine, I.; Tanaka, H. J Chem Phys 1990, 93, 8138; (b)
Ohmine, I.; Tanaka, H. Chem Rev 1993, 93, 2545.

45. (a) Moritsugu, K.; Miyashita, O.; Kidera, A. Phys Rev Lett
2000, 85, 3970; (b) Moritsugu, K.; Miyashita, O.; Kidera, A.
J Phys Chem B 2003, 107, 3309.

46. (a) Voth, G. A.; Marcus, R. A. J Chem Phys 1985, 82, 4064; (b)
Ka, B. J.; Geva, E. J Phys Chem A 2006, 110, 13131.

47. Schinke, R. Photodissociation Dynamics; Cambridge Univer-
sity Press: Cambridge, 1993.

48. Ankerhold, J.; Saltzer, M.; Pollak, E. J Chem Phys 2002, 116,
5925.

49. Yoshida, H. Phys Lett A 1990, 150, 262.
50. Guo, Y.; Thompson, D. L.; Sewell, T. D. J Chem Phys 1996, 104,

576.
51. (a) Stock, G.; Müller, U. J Chem Phys 1999, 111, 65; (b) Müller,

U.; Stock, G. J Chem Phys 1999, 111, 77.
52. Ataka, S.; Takeuchi, H.; Tasumi, M. J Mol Struct 1984, 113, 147.
53. (a) Gruebele, M. J Phys: Condens Matter 2004, 16, R1057; (b)

Gruebele, M.; Wolynes, P. G. Acc Chem Res 2004, 37, 261.
54. Fujisaki, H.; Stock, G. J Chem Phys 2008, 129, 134110.

VOL. 109, NO. 10 DOI 10.1002/qua INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 2057


