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Abstract

The possibility of using path-integral simulations in a generalized ensemble based on the Tsallis statistics is explored.
The primitive model algorithm with the Tsallis ensemble replacing the canonical ensemble converges to the quantum-
mechanical result with a smaller number of beads in the isomorphic chain. Examples considered are the harmonic
oscillator, two double-well systems and a double-well system immersed in an adiabatic solvent. © 2001 Elsevier Sci-

ence B.V. All rights reserved.

1. Introduction

There is considerable interest in the use of
discretized path-integral simulations to calculate
thermodynamical averages using quantum-statis-
tical mechanics for many-body systems [1]. The
theoretical basis of such methods is the Feynman
path-integral representation [2] from which is
derived the isomorphism between the equilibrium
canonical ensemble of a quantum system and the
canonical ensemble of a classical system of ring
polymers of beads, or pseudo-particles. The
classical system of ring polymers can be simu-
lated with either Monte Carlo (MC) [3] or mo-
lecular dynamics [4] methods. Examples of the
applications of such simulations are the studies
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of the quantum-mechanical contributions to the
structure of water [5], the electron localization in
water clusters [6], and the reaction rates for in-
tramolecular proton transfer in acetylacetone [7].

For a system at temperature 7 = 1/kgf in
the potential V(x) and having the Hamiltonian
operator H =K +V = —(1*/2m)V? + V(x), the
coordinate-representation elements, p(x,x’;ff) =
(x|e=P|x'), of the density matrix operator in the
canonical ensemble are evolving in what is inter-
preted as an imaginary time f, according to the
Bloch equation, 0p/0f = Hp, and satisfy

/P(Xuxﬁﬁ)dxl
:/--~/P(x1’x2§ﬁ/P)---P(xP—l,xP;ﬁ/P)
Xp(xp,xl;ﬁ/P)dxl...dxp. (1)

For large P, 3/P is small and it is possible to find
a good short-time approximation to p. This is
usually done by employing the Trotter product
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formula for the exponentials of the non-commut-
ing operators K and V'

—pH : —BK/P BV /P\F
e/*;g}o(e//eﬁ/)' (2)
In the so-called primitive representation of the
discretized path-integral approach [2], the canoni-
cal partition function for finite P has the form

0= [otwxmar= ()"

<[ ool ()

x> (o — xi01) —I—%ZV(X,-))}dxl...dxp.

1 i=1

i

With neglect of the quantum effects that arise
from the exchange of identical particles [§], Eq.
(3) gives the exact quantum partition function for
P — oo. For finite P, Qp(f) is the canonical
partition function of a classical system composed
of ring polymers. Each quantum particle corre-
sponds to a ring polymer of P beads, in which
neighboring beads are connected by harmonic
springs with force constant mP/2/#*f> and each
bead is acted on by the interaction potential V' /P.
By simulating the classical system of ring poly-
mers for a large enough value of P, meaningful
convergence to the quantum-mechanical result
can been achieved. Quantum thermodynamic av-
erages can be calculated using appropriate esti-
mators. For instance, the estimator %, for the
internal energy, U = (%p) (the average is over
the canonical distribution), can be found using
the thermodynamic relation, U = —01In Q/0f, by
substituting Qp(ﬁ) for Q,

P 5 1 P

@/P Zﬁ thﬁz lz]: xm) + F IZ:]: V(x,-).
(4)
For systems exhibiting sizeable quantum effects,
a large value of P is needed. However, in addition
to increasing the number of degrees of freedom for
the polymer rings, this causes a slowing of the re-
laxation of the springs connecting the pseudo-
particles [1]. Thus, methods to either reduce the
number of beads or improve the sampling effi-

ciency for a finite value of P are highly desirable.
Several techniques have been devised for better
convergence as a function of P. For systems with
strongly repulsive interactions Barker [3] proposed
and Pollock and Ceperley [9] implemented a short-
time approximation scheme that replaces the po-
tential " with a ‘quantum’ potential calculated by a
numerical matrix multiplication; this scheme shows
better convergence with increasing P for systems
with hard-core repulsions. Reduction in the value
of P that is required can also be achieved by ren-
ormalization techniques [10] or by choosing a
higher-order short-time approximation [11]. Stag-
ing Monte Carlo (MC) [12], in which one grows the
polymer ring in stages, is another useful technique
for improved sampling. Normal mode decompo-
sition has also been used for improving the sam-
pling efficiency [13]. In addition, umbrella sampling
techniques have been employed to reduce P [14].
All of these methods are within the framework of
the standard primitive algorithm given in Eq. (3).
We present here a method which generalizes the
distribution of the classical ring polymers. On one
hand, the method shows better convergence, and
on the other hand it can be used as a framework for
all the other schemes (normal modes, staging, etc.)
that improve the standard primitive algorithm.

In previous work on enhanced configurational
sampling, Straub and Andricioaei [15,16] have
conjectured that a new method based on the
Tsallis generalization of the canonical ensemble
[17] would be expected to have faster convergence
with P. In this Letter we outline the approach and
demonstrate its performance for several model
systems. Results of the implementation of the
method for path-integral MC are presented, but
corresponding generalizations of path-integral
molecular dynamics algorithms and of centroid
molecular dynamics methods [18] are straightfor-
ward. The latter is of particular interest as an ap-
proach to quantum dynamics.

2. Theory of the method

In the Tsallis generalization of the canonical
ensemble [17], the probability density to be at
position x is
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Py(x) o< (1= (1= q) BV (x)""™, (3)
which has the property that lim, ., (1 — (1 —¢)
BV (x)/'™ = exp(—pV (x)); i.e., Boltzmann sta-
tistics is recovered in the limit of ¢ = 1. For values
of ¢ > 1, the generalized probability distributions
p,(x) are more delocalized ? than the Boltzmann
distribution at the same temperature (see Fig. 1).
This feature has been used as the main ingredient
for a set of successful methods to enhance the
configurational sampling of classical systems suf-
fering from broken ergodicity [23,24]. In what
follows, we present the application of this ap-
proach to quantum systems simulated via the
discretized path-integral representation.

If we put P = 1/(q — 1), the Tsallis probability
density becomes

m@«(t@%ﬁmf ©)

and the sequence P =1,2,3,...,00 is equivalent
to g = 2,2,3, ..., L. Instead of a small imaginary

time step for the standard density matrix operator,
e PHIP ~ o= PK/Pe=IV/P e write

1

—BH/P ~, o—BK/P 7
= (i) 7
which is exact up to order (1/P) [16].

By defining
_p B

(142
14 5 n( +PV) (8)

the generalized algorithm can be cast in a familiar
form, in which the canonical partition function of
the isomorphic classical system becomes

0(B) = (Znhz )m [ e an.

©)

2 Because of their power-law form (Lévy-like distributions
[19] are obtained as stable distributions in the Tsallis formalism
[20]), the generalized distributions appear naturally in systems
with fractal properties of the relevant space and time [21]. Note
that the structure of the chain of beads for highly quantum
systems exhibits fractal scaling: the variance of a polymer chain
of P beads equals P times the nearest-neighbor distance
variance [22].
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Fig. 1. The delocalization ¢ of the harmonic oscillator for
various number of beads P, using the generalized (in diamonds)
and the standard algorithm (in crosses). The continuous line is
the exact quantum result for the standard deviation, calculated
using Eq. (12). In the inset we show the probability density
functions for a harmonic potential (drawn with a thin line) in
the case of Boltzmann statistics, ¢ = 1, (dotted line) and in the
case of Tsallis statistics, ¢ = 2 (thick line). The Tsallis statistics
shows more delocalization than its regular counterpart.

where

P P
1 _
Wp = <2h2 >Z — Xit1) +F 2 V(x).

i=1 i

(10)

As with the standard primitive path-integral algo-
rithm, it is possible to use any MC and molecular
dynamics method to calculate thermodynamical
averages of quantum many-body systems by sam-
pling the configuration space of the isomorphic
classical ring polymers according to exp(—pWp).
We note that the sequence limit P — oo needed
for convergence to quantum mechanics of the
standard primitive algorithm (Eq. (3)) yields also
the correct quantum mechanics for the generalized
primitive algorithm which makes use of the prop-
agator in Eq. (7). However, there exists a possible
advantage in using the generalized kernel since it
corresponds to a more delocalized distribution. In
this regard, it is important to note that, for the
case of a harmonic oscillator, the classical treat-
ment in the standard primitive representation for
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all finite P underestimates the delocalization of the
particle [25]. Using the generalized algorithm, we
show in applications to several model problems
(see Sections 3 and 4) that faster convergence (with
lower values of P) is obtained because of the fact
that the p,, for ¢ > 1, are more delocalized func-
tions than the Boltzmann distribution.

3. Harmonic oscillator in thermal equilibrium

To test the convergence properties of the gen-
eralized algorithm we consider a system of linear
harmonic oscillators at temperature 7. Each har-
monic oscillator is a point particle of mass m
moving in the potential ¥ (x) = mw?x*/2 with the
classical frequency w (see inset in Fig. 1). One can
calculate the thermodynamic properties of this
system from the exact quantum-mechanical parti-
tion function, Q= (2sinh(fhiw/2))"". For the
harmonic oscillator, the exact expression of the
canonical partition function Qp for finite P is also
available [25], Qp = f*?/(f* — 1), where f =1 +
R*/2 + /4 + R?R/2 and R = Bhiw/P.

For all P the classical treatment underestimates
the delocalization of the particle, as described by
the second moment of the probability distribution.
This is reflected in the lower value of the internal
energy relative to the exact quantum result. The
generalized method increases the delocalization
and is expected, therefore, to result in faster con-
vergence, as we show below. A good measure to
quantify the delocalization of the quantum particle
is the root mean square deviation of the beads
from the center of mass xcy of the polymer [4],
calculated as

o= %Z(x,-—xCM)z. (11)

i=1

This delocalization, for different values of P, in the
standard algorithm and the generalized Tsallis al-
gorithm, is shown in Fig. 1, together with the
quantum-mechanical result of the standard devi-
ation of the average probability density [2],

7
Tam = \/2mcu tanh(Bhiw/2)’ (12)

In Fig. 2 we show the convergence of the har-
monic oscillator internal energy to the exact
quantum result, (5iw/2) coth(fhiw/2), in two cases:

0 1 1 1 L 1
0 10 20 ?}9 40 50 60

0.055 T T T T
0.05

0.045

(b)

0.03

0.025

0.02 1 1 1 1
0 0.2 04 oy 0.6 0.8 1

Fig. 2. (a) Internal energy per particle for the harmonic oscil-
lator. The generalized method (in diamonds) converge faster to
the exact quantum-mechanical result than does the standard
one (in crosses). Parameters are w = 20, T = 1, m = 1. The inset
compares the convergence of the internal energy for large P as a
function of 1/P (continuous line) and 1/P* (dotted line) (see
text). (b) The displacement correlation function R?> for the
generalized algorithm (in diamonds) and for the primitive al-
gorithm (in crosses), both with P = 30 beads, together with the
exact result (continuous line). We used o = 5 (see Eq. (13)) and
we have ground state dominance with i = 20. A value two
times larger, P = 60, is required for the standard primitive al-
gorithm to achieve the same convergence as the generalized
method. Both algorithms ran for 20 000 MC cycles.
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for a MC algorithm using the standard approach
and for the generalized algorithm. Using the more
delocalized Tsallis distributions, the internal en-
ergy is shown to be closer to the full quantum-
mechanical result. The internal energy U was cal-
culated as the average of the estimator in Eq. (4)
over the distribution. With units such that kz = 1
and =1, for T = 1 and o = 20 the contribution
of the first excited state is exp(—20) times that of
the ground states; i.e., there is extreme dominance
of the ground state. We performed 200000 MC
cycles which are enough for convergence for all the
plotted values of P. One starts by constructing a
string of P beads in one-dimension. They have a
periodicity such that the string is closed,
x(P+1) =x(1). Each beads feels the harmonic
potential ¥ /P plus the spring potential from the
two neighbors. Each bead is moved left or right,
with the size of the move step randomly chosen
from an interval [—smax, Smax], Where sy, is varied
every 100 steps such as to keep the acceptance of
the moves to about 1/2. The inset of Fig. 2a shows
the convergence of the internal energy as a func-
tion of 1/P and 1/P2. For both the generalized and
the standard methods, the 1/P dependence is clo-
ser to a straight line on a larger interval of P values
than the 1/P? dependence, and reaches a plateau
for large P. This is expected from the fact that
both Eq. (7) and its standard counterpart are exact
up to order (1/P). Similar behavior is obtained for
other convergence plots presented later in the
Letter.

There exists the possibility that the delocaliza-
tion resulting from the use of the Tsallis distribu-
tion overemphasizes the delocalization of the
corresponding quantal system. This is the case
when P =1 for a harmonic oscillator, ¥ = x2. The
Tsallis probability density is the Cauchy—Lorentz
distribution, 1/(1 + px*), whose second moment
diverges. As a result the internal energy can be
higher than the exact result. This can be seen in
Fig. 2 and in the figures for the internal energy of
the systems discussed in Sections 4.1 and 4.2. As P
increases, there exists a critical value P, with the
property that the quantum delocalization is close
to the one of the Boltzmann distribution for
P > P. and overestimated relative to the Boltz-
mann distribution for P < P.. One expects the

Tsallis algorithm to be accurate for P > P. and
most effective for a value of P near P., for which
the number of beads is the smallest possible. Since
the parameter controlling the delocalization is
g(P), one should choose the decay schedule of ¢(P)
optimally in practical applications. This is analo-
gous to simulated annealing, where one chooses
the optimum cooling schedule for the temperature
decay. Here we introduce the ‘cooling schedule’ of
q for the appropriate Tsallis distribution by using

q(P)=141/aP, (13)

rather than g(P) =14 1/P. We show an example
of the effect of an optimal choice of the parameter
o in Section 4.1.

In Fig. 2 we also plot the displacement corre-
lation function,

R(t—1) = (Ir, — 1, "), (14)

where |i —i'| = (P/BR)(t — ). R*(t — '), the mean-
square distance between two beads of the chain
separated by an Euclidean time increment
0<t— ¢ < ph, is useful for the calculation of ab-
sorption spectra [26]. We compare the numerical
MC results for the harmonic oscillator using the
generalized and standard algorithm with the ana-
lytical formula for the harmonic oscillator [22]

h/mo

R*(t — 1) = h/(mw) coth (ﬁh—w> - m

2
x cosh (ﬁhTw—w(t—t’)) (15)

The results demonstrate that an accurate correla-
tion function can be obtained by the generalized
algorithm with a significantly lower number of
beads than in the standard algorithm.

4. Quantum systems in bistable potentials
4.1. Internal energy of a double oscillator system

A property that is of great interest in many
reactions, particularly those involving proton
transfer, is the contribution of tunneling. As a
simple example we have considered a quantum
particle in the one-dimensional double-well po-
tential
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V() = gme(l — )’ (16)
shown in Fig. 3. It could model a diatomic mole-
cule, (with positive and negative values of x cor-
responding to quantal barrier penetration of one
particle through the other) or a symmetric hy-
drogen bond.

The isomorphic classical system was simulated
with the MC algorithm to obtain U numerically,
using the standard and the generalized algorithm.
Initial positions of the particles in the polymer ring
were randomly chosen in the interval [—a,a]. We
ran 200 000 MC cycles and used an adaptative step
size to keep the acceptance ratio around 1/2. Fig. 3
shows the internal energy U of the double oscil-
lator in the potential /5(x) as a function of P.
Together with the MC results, the quantum-me-
chanical internal energy result calculated by solv-
ing the corresponding Schroedinger equation is
presented. We used as a basis set the first 15 har-
monic oscillator eigenfunctions to construct the
Hamiltonian matrix of the double-well system and
diagonalized it to find its eigenvalues. To optimize
the convergence, we have varied the parameter « in

0 10 20 30 p 40 50 60 70

Fig. 3. Internal energy of the double oscillator, as a function of
the number of beads, with a = 0.4, kT = 1, hw = 20. The gen-
eralized algorithm results are shown in diamonds (o = 1) and
squares (« = 0.6), the ones obtained using the standard primi-
tive algorithm are in crosses. The inset shows the double os-
cillator potential ¥5(x) (Eq. (16)).

Eq. (13). A value of o = 0.6 shows that a reduction
by an order of magnitude in the number of beads
is feasible with the generalized algorithm. For the
case of the simulation whose results are shown in
Fig. 3, the internal energy stays within 1% of the
exact quantum result for P > 70 in the case of the
standard MC scheme, while values of P > 30 are
needed for the same accuracy when we use the
generalized algorithm.

For a temperature 7 = 1 with fiw = 20, only
the lowest two eigenvalues contribute significantly
(see above) and the partition function can be
written:

AE AE
Q0 =exp (—ﬁE((’) - 7) + exp (—ﬂE(O) + 7)

(17)

with E® = aw/2 and AE, the energy splitting of
the ground state due to tunneling. The analytic
expression for the internal energy (U = —0ln Q/

3p) is

UE(O)AZEtanh<ﬁ§E). (18)

We also plot, in Fig. 4, the results of the calcula-
tion of the tunnel splitting AE from Eq. (18) cor-
responding to the parameters in Fig. 3.

4.2. Internal energy of a quartic bistable system;
coupling to an adiabatic solvent

To show that the fast convergence with P is not
restricted to linear or piecewise-linear differential
equations (see Figs. 1 and 3), we have performed
simulations for the quartic bistable potential

1 mw?

8 a2
illustrated in Fig. 5. It is a widely used test system
for approximate quantum calculations, although
there is no exact analytic solution. We calculate
the internal energy U = —0In Q/0f of the quan-
tum system using the standard primitive algorithm
and the generalized one for different values of P by
MC techniques. The result for U shown in Fig. 5a
converges to the exact quantum-mechanical result,
U =17.92, obtained by solving numerically the

V3(x) (x —a)’(x +a)’ (19)
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AE

Fig. 4. Tunnel splitting for the standard algorithm (in crosses),
and the generalized algorithm (o = 1 in diamonds, and « = 0.6
in squares), together with the exact splitting AE = 1.78 (dotted
line) calculated from the eigenvalues of the Schroedinger
equation. Parameters are a = 0.4, o = 20.

corresponding Schroedinger equation. The pa-
rameters used were w =20, f =1, a=0.5. As in
the case of the double oscillator system, the con-
vergence as a function of P is more rapid with the
Tsallis ensemble than the standard primitive
method.

The quartic potential V3(x) system was then
coupled to a fluctuating adiabatic bath that rep-
resents the solvent, i.e., the time scale of the fluc-
tuations of the bath is much longer than the
relaxation time of the double-well system. This
model, which has been used previously in path-
integral calculations [10,25], has a coupling energy
of the form —u&, where u = x/|x| is the dipole
moment of the system and & is the electric field due
to the bath. For each value of P, values of the
random field & are taken from a Gaussian distri-
bution, and the internal energy is averaged over
the values of &. The variance of the Gaussian
distribution is chosen to be 2kT¢, where o is the
solvation energy of the unit dipole. This spin-bo-
son [22] system has non-trivial quantum proper-
ties, especially in the high tunnel-splitting regime,
which are very difficult to simulate with the stan-
dard primitive scheme, in the sense that large
values of P are needed.

(a)

(b)

0 Il 1 1 1 | L

0 10 20 30P 40 50 60

Fig. 5. Internal energy of isolated bistable system (a) and in
fluctuating adiabatic solvent (b), for « =20, o =1, kT =1,
o = 1. The exact results are shown with dotted line. When the
solvent was considered, we averaged over 500 Gaussian random
values of & and ran for 200000 MC sweeps at each value of &.
The inset shows the quartic bistable potential 75(x).

The quantum-mechanical partition function
relative to the bath can be found analytically for
the case of a two-level system (i.e., if 7w > kT) by
mapping to an Ising model in a magnetic field
[10,25] and has the expression

Z= \/l/n/ ‘dqﬁe"DchoshD, (20)

where D= \/(/3MZ/2)2 +4Bpo®*, and &=
\/p/oé /2. The internal energy of solvation is thus
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Uy = —0InZ/0p
7 d@e? sinh D(B(AE/2)’ + 2687 /D
B [ dde=*" coshD '

(21)

This result for Uy, together with the solution of
the Schroedinger equation for U are used to cal-
culate a value of 7.386 for the internal energy of
the system plus solvent. Convergence with the
generalized Tsallis algorithm is much faster, as
shown in Fig. 5b; i.e., convergence to within 1% of
the quantum result is achieved by the algorithm at
P =20, while the standard algorithm requires
values of P > 50 to achieve a similar degree of
convergence. In the simulation, to keep the argu-
ment of the logarithm in Eq. (8) positive, a po-
tential energy shift [24] was added to V' and then
removed at end of the simulation from the aver-
aged result.

5. Discussion

By considering a number of quantum properties
(delocalization, zero-point vibration, quantum
thermodynamical averages, tunneling effects,
quantum solvation) for several model systems, we
have demonstrated that the generalized path-inte-
gral treatment based on using a Tsallis distribution
with the primitive algorithm converges more rap-
idly as a function of the number of beads than the
standard Boltzmann distribution. This is a conse-
quence of the delocalization properties of the
Tsallis probability density. We expect that the
faster convergence properties of the generalized
algorithm are conserved for more complex poten-
tials so that the method has general applicability.
Tests are now in progress for a parahydrogen so-
lid, which displays many-body effects, as well as
strong quantum behavior [27]. Although the
Tsallis distribution is non-Boltzmann, we do not
correct for this (i.e., we do not reweight the states
such that averages of the Boltzmann distribution
are calculated), in contrast to ordinary enhanced
sampling algorithms based on non-Boltzmann
distributions [28]. Instead, we use the Tsallis dis-
tributions as an approximation to the quantum-

mechanical distribution, motivated by the fact that
the Boltzmann distribution always underestimates
the quantum-mechanical delocalization for the
harmonic oscillator. This result is the principal
motivation for the use of quantum effective po-
tentials to enhance convergence in path-integral
calculations. For instance, for systems with strong
repulsions, the use of a quantum effective potential
[3,9] is beneficial because it is a smoother version
of the original ‘bare’ potential V. In other words, it
is better if the potential term varies slowly (in
space) relative to the kinetic term. The Tsallis ef-
fective potential ¥ in Eq. (8), has this qualitative
feature required, that is, it is a smoother version of
V because of the logarithm which reduces high
energy barriers.

For large systems we expect an additional
benefit from the use of the generalized distribution.
The centroids of the polymer rings move in these
cases on a more rugged potential surface so that
the sampling of the configurations should be en-
hanced in the generalized algorithm because of the
smoother shape of the Tsallis effective potential;
i.e., the corresponding classical distributions are
more delocalized thus favoring faster escape from
energy basins surrounded by large barriers [24].
This suggests that, in addition to a result closer to
the quantum-mechanical case, the form of the
propagator we have proposed should lead also to
enhanced sampling of chain conformations rela-
tive to the standard primitive form. Moreover, for
large P, the relaxation time of the polymer chain is
large due to the stiffness of the bonds [1] (whose
force constant increases with P), so that the gen-
eralized algorithm with lower P is expected to re-
duce this relaxation problem.

Since the computer time is approximately a
linear function of P for distinguishable particles
(and approximately quadratic for indistinguish-
able particles), an important speed-up in practical
applications is expected because of the reduction in
the number of beads.

Because the choice of the optimal ‘cooling’
schedule in Eq. (13) is crucial for practical appli-
cations, we now suggest a scaling formula for
systems with ng degrees of freedom. Following
scaling arguments used for classical simulations
with the Tsallis statistics [29], ¢ should scale as
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1 + 1/ng. Consequently, we expect that o scales
linearly with the number of degrees of freedom in
multi-dimensional applications.
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