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Novel methods of sampling phase space in the simulation of

biological systems
Bruce J Berne* and John E StraubT

New advances in molecular dynamics and Monte Carlo
simulations have led to impressive increases in the speed

of sampling phase space for complex biological systems.
These methods have been combined with new fast algorithms
for computing long range electrostatic interactions for

new polarizable force fields. In addition, new methods for
sampling low energy molecular conformations allow the rapid
determination of thermodynamically dominant regions on the
potential-energy surface. Accurate measures of the rate of
phase-space sampling should allow both the optimization
and the comparison of methods for a particular problem of
interest.
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Abbreviations

CPU central processing unit

DEM Diffusion Equation Method

FMM Fast Multipole Method

HMC Hybrid MC

MC Monte Carlo

MD molecular dynamics

PA Packet Annealing

PME Particle Mesh Ewald

r-RESPA reversible reference system propagator algorithms
Introduction

One of the problems encountered in applying molecular
dynamics (MD) to the simulation of biological systems is
the presence of both fast and slow degrees of freedom
in these systems. One must choose a small time step to
achieve stable integration of the equations of motion for
the fast motion and then generate a very large number
of time steps to achieve sufficient sampling of the slow
degrees of freedom. Another major bottleneck is the
calculation of the long range electrostatic forces.

Even with fast methods for generating MD or Monte Carlo
(MCQ) trajectories, the problem of searching for the global
energy minimum in complex systems such as proteins
remains unsolved. This problem raises another and more
serious type of multiple timescale problem —one due to
the presence of a rugged energy landscape that has the
attendant separation of timescales arising from activated
barrier crossing. In recent years, a variety of powerful new

MD and MC methods have been developed to address
these problems. We shall discuss the impressive progress
that has recently been made in this area.

Measuring the rate of phase-space sampling
in biomolecular simulations

When the results of a MD computer simulation are
used to determine the conformational equilibrium of
a biomolecule, the underlying assumption is that the
average over the simulation trajectory is equal to an
average over all states accessible to the system. This is the
‘ergodic hypothesis’, and it is a difficult thing to prove for
any system.

Fortunately, it is possible and easy to evaluate a stronger,
necessary criterion for the validity of the ergodic hypo-
thesis —at equilibrium, independent trajectories over an
ergodic system must be self-averaging. For example, take
a property such as the nonbonded potential energy of
an atom in a protein: if the system dynamics is ergodic,
averages of the nonbonded potential energy computed
over two independent trajectories, o and [, should be
equal. This condition of self-averaging must be satisfied if
one is to equate trajectory averages with statistical averages
over conformation space.

Thirumalai, Mountain and Kirkpatrick [1] have proposed a
simple means of estimating the simulation length needed
to guarantee self-averaging — the ‘ergodic measure.” They
calculate the mean-square difference between the average
taken over the o trajectory and the average taken over
the B trajectory, summed over all atoms of the protein.
This difference provides a measure of the convergence of
the two averages. In an ergodic system, the mean-square
difference will decay to zero as 1/Dt, where D is the
generalized diffusion constant that provides a timescale for
self-averaging in the simulation. The decay of the ergodic
measure to zero at long times is a necessary condition
for the system'’s average properties to correspond to equi-
librium thermodynamic averages. The ergodic measure
may also be used in the optimization of a computational
algorithm. One may choose the optimum value of a
variable parameter so as to maximize the generalized
diffusion coefficient and the rate of phase-space sampling,

Variations of the ergodic measure have been employed
in MD simulation studies of the S-peptide of RNase A
and the full RNase A enzyme [2]. The results prove that
the ergodic measure can be used successfully to examine
the rate at which a protein samples phase space. At
temperatures ranging from 40-400K, the ergodic measure
decays to only a quarter of its initial value within 10 ps,



182 Theory and simulation

and afterwards, a plateau occurs until 75 ps, indicating that
no additional contribution to self-averaging occurs on this
timescale. This result indicates the presence of energy
barriers between locally stable conformations which are
crossed slowly at room temperature. To effectively sample
phase space and accurately estimate thermodynamic
averages, we must employ other simulation methods or
significantly longer MD trajectories. Similar results have
been found in applications of the ergodic metric to
polypeptides [3]. The ergodic measure provides an easily
employed measure of the length of simulation sufficient
to adequately sample the thermodynamically important
conformations at a given temperature.

Methods for accelerating molecular dynamics
In complex systems, the set of fast degrees of freedom
arises from both the vibrations of stuff bonds and bond
angles, and from the molecules and molecular groups that
have either small masses or small moments of inertia.
An example of the latter is the fast librational motions
of water molecules in liquid water environments and in
solvation complexes. In systems with muluple timescales,
it is necessary to choose a time step much smaller than the
periods of the fastest motions and to recalculate the forces
after each small time step. It then requires very long runs
to sample the conformational space of the slower degrees
of freedom. To bypass this problem, some fast degrees of
freedom can be eliminated by constraining the length of
the stiff bonds [4]. Constraint MD suffers from several
problems: first, it doesn’t eliminate problems such as the
fast librational motion of water; second, the dynamics
accompanying it i1s neither dynamically reversible nor
symplectic. This latter problem means that constrained
dynamics cannot be used with MC methods, such as
Hybrnd Monte Carlo (HMC) [5}, that require reversible
and symplectic integrators to ensure detailed balance.

In the simulation of biomolecules, one is often interested
in computing the equilibrium averages of thermodynamic
quantities such as the free-energy difference between two
systems. For these purposes, the exact time dependence
1s not required, and the masses may be scaled to lower
the frequency of the fastest vibrational modes [6,7]. For
example, in MD protein simulations, a significant increase
in the ume step can be realized bv simplv increasing
the mass of the hvdrogen atoms, thereby lowering the
frequency of the C-H and N-H stretching motions.
More significant gains are harder to realize, however, and
mmproved numerical methods for accelerating molecular
dynamics calculations become essential.

Reversible reference system algorithms

Fortunately, a class of new reversible and symplectic
integrators has been invented that greatly reduces the
multiple timescale problem. By using a reversible Trotter
factorization to the classical propagator, one can generate
simple, accurate, reversible and symplectic integrators

that allow one to integrate the fast motions using small
time steps and the slow degrees of freedom using large
tme steps [8]. This approach allows one to split the
propagator up into a fast part, for the high frequency
vibrations, and slow parts, for short range, intermediate
range and long range forces, in a variety of ways. These
new integrators, or reversible reference system propagator
algorithms (r-RESPA), often require no more CPU time
than constrained dynamics and often lead to even larger
improvements in speed. Although r-RESPA are quite
simple to implement, there are many ways to factorize
the propagator. A recent paper shows how to avoid bad
strategies [9°]. Significant progress has recently taken place
in the application of these methods to systems of biological
relevance [10,11°12¢*,13].

Long range electrostatic forces

One of the most expensive parts of a MD or MC
simulation is the computation of long range interactions.
As the CPU ume required for the calculation of these
interactions forces scales as O(N2), where N is the number
of interaction centers within the system, direct calculation
of these interactions in large systems makes MD (or
MC) impractical for large protein-water systems. The
standard approach has been to truncate the long range
forces so that their calculation scales as 8(N) for large
systems. Unfortunately, truncation introduces significant
nonphysical effects. To eliminate surface effects and to
avoid the errors caused by truncation, it is now becoming
common to use periodic boundary conditions and to
invoke Ewald summation. The CPU time for optimal
application of Ewald boundary conditions also scales as
O8(N3/2) and thus becomes prohibitively expensive for
large systems. Procacci and Marchi [14*] have combined
Ewald with r-RESPA for protein solutions by including
the total Fourier sum in the intermediate time loop. A
better strategy for applying r-RESPA to Ewald boundary
conditions involves subdividing the Fourier space sum in
such a way that the short time contribution is placed in
the inner short time loop of r-RESPA, and the ‘true’ long
range slow part of the sum is put in the outer loop [9°].

To manage the calculation of all of the interactions, several
groups have experimented with approximate schemes,
of which the most widely used are the Fast Mulupole
Method (FMM) [15-19], devised by Greengard and
Rokhlin, and its vanants [20-25]. FMM decreases the
computational burden to O(N) by cleverly exploiting a
hierarchy of clusters of atoms and by using multipolar
expansions to approximate the potental produced by
these clusters. Zhou and Berne [12*°] have incorporated
r-RESPA into a top-down FMM algorithm and applied it
to isolated all-atom proteins. They were able to achieve
speed-ups on the order of 15-fold for the photosynthetic
reaction center over the direct untruncated calculation of
the forces using the standard velocity verlet integrator.
FMM has been extended to periodic systems by Lee and
Schmidt [26]. A periodic FMM has been designed using



1-RESPA that scales as 8(N) (F Figueirido, RM Levy, R
Zhou, B] Berne, unpublished data).

Recently, another promising algorithm, Particle Mesh
Ewald (PME) [27-29], has been described, together with
similar ideas discussed by Shimada ez 4/. [24], and PME
has also been combined with r-RESPA (P Procacci, T
Darden, M Marchi, unpublished data). Because PME
scales as B(NInN) and periodic-FNIN scales as 6(N),
periodic-FMM  will be faster than periodic-PME  for
N>Ng. The break-even point for these two methods
combined with r-RESPA will be different because the
implementation of -RESPA will be different in these two
cases. This break-even point has not yet been determined
systematically. Figueirido e a/. (F Figueirido, RN Levy,
R Zhou, B] Berne, unpublished data) find that the
break-even point for this case is Ny =20000. Despite
the significant progress in the computation of long range
Interactions, the optimal strategy has vet to be found.

Polarizable force fields

For the simulation of many biological systems, more
realistic force fields are required than the usual nonpolar-
izable (fixed charge) force fields. Recent progress towards
generating polarizable force fields is encouraging. We will
review methods for rapidly sampling the phase space when
the force field is polarizable.

One class of models involves the assignment of gas-phase
charges and dipole polarizabilities to localized sites on
molecules [30]. In MD, one must then compute the
site—site interaction forces and energies. As the local field
at a site is the superposition of the bare Coulomb fields
from the other unscreened charges and the fields arising
from all other induced dipoles, it is necessary to solve
these linear field equations. This is usually done by
iteration and the cost of the force calculations is usually
a factor of between two and three times larger than for
fixed-charge force fields. An alternative is to represent
the polanizable sites by Drude oscillators and to assign
fictitious kinetic energies to these oscillators [31°,32]. If
the Drude oscillators have very high frequencies, they
will follow the nuclear dynamics and the fields generated
will be almost identical to the fields obtained by iteration
of the field equations above. Nevertheless, this method
has a larger number of degrees of freedom than the
iterative method and involves a very fast timescale due
to the Drude dynamics, as well as to possible energy
transfer between the fictitious modes and the modes due
to the nuclear motions. r-RESPA can be used to deal
with the fast imescale. Whether this extended Lagrangian
approach is faster than the traditional method is not vyet
clear.

Recently, a novel force field based on charge-equilibration
models has been introduced [31°°,33-36]. In this model,
one treats the charges on the molecular sites, as well
as on the nuclear positions, as dynamic quantities and
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one denves extended Lagrangian equations of morion.
The masses and the kinetic energies of the charges are
fictutious, but if they are chosen so that the charges can
rapidly follow the nuclear motion, one has a type of
Born-Oppenheimer dynamics. The major advantage of
these models over polarizable models is that they cost
little more than fixed-charge models in CPU time (e.g.
10% more for neat water), whereas dipole polarizable
models cost between a factor of two to three times more.
Moreover, these models benefit from the full technology
of the new methods for combining r-RESPA and Ewald
summation.

New Monte Carlo methods

A rugged energy landscape poses special problems for
MC calculations. As the system moves from one potential-
energy basin to another, it must cross barriers that are
large compared to the thermal energy, kgT. The crossing
of such barriers are rare events, and thus very long runs
are required to sample the configuration space. In such
systems, the barriers are due to at least two classes of
interactions: first, local barriers separate stable states of the
torsion angles; second, barriers arise from close encounters
of atoms on sidechains as well as on the primary
chain, which result from very repulsive (r-12) nonbonded
interactions. Proteins can fold into conformations in which
further motions are frustrated because only a very few
improbable paths allow the systems to depart from these
conformations. A variety of strategies deal with this
problem.

Hybrid Monte Carlo

In standard MC, only single particle moves are tried and
accepted or rejected. Attempts to make many particle
moves of the system before applying the Metropolis accep-
tance criterion fead to such small acceptance probabilities
that this method is not efficient [37]. Moreover, the
recalculation of the whole potential after each attempted
move 1s required, a costly computation, especially if the
move is likely to be rejected. One efficient method for
generating collective moves is the Hybrid Monte Carlo
(HMC) method invented by Duane and Kennedy [5].
In this method, one starts with a configuration of the
system and one samples the momenta of the particles
from a Maxwell distribution. MD is used to move the
whole system for a time At and, because this time may be
sufficiently large as to cause a reasonable energy change
because of the lack of strict energy conservation, one then
accepts or rejects the move using the Metropolis criterion
on the basis of exp(—H), where H is the Hamiltonian
of the system. This step is repeated over and over again.
It 1s important that the integrator used for generating
the solution to the equations of motion be reversible,
because only then will this method satisfy the detailed
balance, and only then will the method generate the
canonical distribution and the Boltzmann distribution.
A number of groups have further elaborated the HMC
method [382,39°,40-44].
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The HMC method guarantees that the resulting dis-
tribution will be canonical and thereby the Boltzmann
distribution function will be sampled. Of course, other
MD-based methods exist for generating Boltzmann distri-
butions, such as the constant temperature BGK method
(strong collision) of Andersen [4] and the Nosé thermostat
methods [45], but none of them can be proved to
give the canonical distribution. Andersen’s method will
work 1if the equations are solved exactly, but in MD
this i1s not done, and Nosé dynamics does not generate
ergodic flow in the nonergodic (KAM) regime of classical
dynamics. Thus, in our view, HMC is superior to such
methods. HMC, like BGK dynamics, gives rise to one
practical problem. As the momenta are constantly being
refreshed, the accompanying dynamics will be similar to
Smoluchowski dynamics [4] and will thus give a spatial
diffusion process superposed on the inertial dynamics. It
1s well known from the theory of barrier crossing that this
added spatial diffusion can lead to smaller rates for barrier
crossing. Thus, the HMC or BGK methods may suppress
barrier crossing. Tuckerman ez a/. [46] have found that
in some systems the Nosé thermostat [45] may have a
more beneficial sampling of different basins. One way to
improve these methods is to couple them to the J-walking
method discussed in the next section.

J-walking

Frantz, Freeman and Doll [47] have invented an interest-
ing method for exploring the configurations of clusters that
may well be useful in studying proteins. Their method is
called J-walking [47-52]. In the usual MC method, one
samples a small move and accepts or rejects the move
according to the Metropolis criterion at the temperature
of interest. The sampling distribution is usually a uniform
sampling of the step size between 0 and A. In J-walking,
this normal sampling is infrequently punctuated by
sampling from a higher temperature distribution for the
same system determined either from running a second
walk at this higher temperature in tandem with the
primary walk or from a prior run. Usually the high
temperature configuration involves a large move because
any of the high temperature conformations are available.
Of course, this infrequent sampling is then accepted or
rejected with a Metropolis criterion that preserves the
detailed balance in such a way that the low temperature
distribution results. The infrequent sampling of the high
temperature distribution gives rise to moves from one
basin to another and thus shortens the time required to
sample conformation space. We are presently evaluating
this method combined with HMC [5] for sampling the
conformational states of proteins.

Fluctuating-potential methods

Liu and Berne [53] have devised a MC strategy based
on the recognition that if the nonbonded interaction is
softened, the rugged landscape will be smoothed, and if
the torsion-angle potentials can be replaced by ones that

chop the barriers off whilst leaving the wells where they
are, the sampling of the space would be much faster.
Thus, they use the potential function U=AU; +(1-1)Us,,
where A is a parameter that can fluctuate between 0
and 1. Uy is the full potential and U; is the softened
potential. Liu and Berne [53] infrequently switch between
the two potentials and use umbrella sampling techniques
to reconstruct the sampling according to U;. They discuss
many different strategies. In one strategy, they allow
the Lennard-Jones ¢ parameter to fluctuate. They also
suggest that this same approach can be used in MD. Liu
and Berne [53] show that if applied only to the torsion
angles of long hydrocarbon chains, this approach leads to a
sevenfold increase in the sampling of conformations. Many
possible improvements can be made on this strategy; it can
be applied in a manner that recalls J-walking. One can
sample the conformations infrequently from exp(—BUj;)
and accept or reject the new conformation according to
exp(—B[U1-U;]) where B=1/kgT. This method can also
be combined with HMC and J-walking.

Multicanonical sampling

In the canonical ensemble, the probability of visiting
a point in phase space of a given energy, E, will be
proportional to the Boltzmann factor exp(—BE) multiplied
by the density of states n(E). When a MC algorithm
samples the canonical-ensemble distribution, the proba-
bility of moving over barriers that are much larger than
the thermal energy kgT is very small. Berg and Neuhaus
[54] have defined a multicanonical ensemble in which the
probability of visiting a state of energy, E, is constant. This
is accomplished by replacing the probability exp(—BE)
with the multicanonical probability n(E)~1. This allows the
system to move freely as a one-dimensional random walk
in energy and guarantees that a barrier of any energy may
be overcome.

To apply the multicanonical-sampling algorithm, one must
make an estimate of the multicanonical weighting factor
n(E)~!, which has been done in a study of Met-enkephalin
by initially generating a high temperature MC trajectory
and making a histogram of the energies sampled as a first
guess at the density of states [38°]. A multicanonical MC
trajectory is then generated using the calculated weights
to generate a new set of weights. The weighting factor is
refined in this iterative process until it converges.

An appealing aspect of the multicanonical-sampling al-
gorithm is that it allows for the exact calculation of
the thermodynamic averages in the canonical ensemble
computed over trajectories sampling the multicanonical
ensemble. Hansmann and Okamoto [55,56°] have applied
the multicanonical-sampling method to locate low energy
conformations of peptides [55] and to investigate helix-coil
transitions in peptides [56°]. MD, Langevin dynamics and
HMC simulation algorithms that sample the multicanon-
ical ensemble have also been proposed and applied to
simulations of Met-enkephalin [38%]. Hao and Scheraga



[57] have employed an equivalent algorithm to study the
folding transition of a model protein.

Tsallis statistical MC

A variety of other distribution functions may be used
to provide enhanced sampling in a MC simulation. Any
ensemble that generates an enhanced probability of
visiting barrier regions of high potential energy, relative to
the canonical-ensemble probability, should provide greater
mobility in phase space. An intriguing family of probability
distributions have been derived by Tsallis, on the basis
of a modification of the standard Gibbs entropy formula,
S=kp(1 - py)/(q—1) [58]. When q =1, the standard and
physically relevant formula S =—kpX  py In pi is recovered.
When q<1, the distributions are strongly localized near
low energy regions of the potential-energy surface. When
q>1, the distributions can be strongly delocalized with
a high probability of visiting high energy barrier regions
of the potential-energy surface. For example, for the
harmonic oscillator potential, the equilibrium Boltzmann
distribution (q =1) is a Gaussian function of the oscillator
stretch, whereas in Tsallis statistics, the equilibrium
distribution (q =2) is the Cauchy-Lorentz function, which
provides a much higher probability of the oscillator
reaching high energy regions of the potential. Moreover,
there is a relatively weak temperature dependence of
the Tsallis distributions relative to the Gibbs—Boltzmann
distributions of the canonical ensemble. This leads to
a greatly enhanced probability of barrier crossing and a
MC walk that is very effective at exploring phase space
relative to the standard MC algorithm. Moreover, unlike
the J-walking and multicanonical algorithms, no additional
simulations at higher temperature are required.

Andricioaei and Straub [59°] have developed a generalized
MC algorithm that obeys detailed balance and samples the
equilibrium Tsallis distributions. Their implementation
is based on a HMC protocol. A simulated anneal-
ing algorithm based on this generalized MC method
has provided dramatic improvements over a standard
HMC-based simulated annealing for the global energy
minimization of an alanine tetrapeptide [59°*]. Generalized
MD and Langevin dynamics algorithms that sample the
equilibrium Tsallis statistical distributions have also been
derived (I Andricioaei, JE Straub, unpublished data).

Monte Carlo stochastic molecular dynamics

Guarnieri and Still [60] have introduced a method for
rapidly sampling phase space if the molecule of interest
has torsion-angle barriers. In their method, stochastic MD
1s used to generate a trajectory for a period of time and
then a large move is sampled by ordinary configurational
MC for one of the torsion angles. Even if the large
torsion-angle move is accepted according to the Metropolis
criterion, this method keeps the same velocities for the
sites as they had before the move. In this way, the small
amplitude motions in the potential wells are sampled by
MD, and the large infrequent barrier crossings are sampled
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by standard MC. When a large torsion-angle move is made,
a large segment of the molecule may sweep through a large
distance. If the molecule is in explicit solvent, its atoms
would very probably overlap with solvent atoms, and the
resulting increase in repulsive energy would be rejected
by the Metropolis criterion. Thus, this method would fail
to adequately sample phase space in explicit solvent. The
method does dramatically speed up the sampling of phase
space of molecules in continuum solvents such as the
Generalized Born solvent model used by Guarnieri and
Stll [60]. In a recently devised extension of this method,
smart MC moves are generated from conformational search
data [61]. This allows conformational interconversions that
require collective motions.

It should be obvious that these methods, as well as
HMC, should not be used to calculate dynamic processes
as the sampling is not based on the true Hamiltonian
dynamics of the system but involves fictitious dynamics
generated by the MC move. The same can be said for
all of the constant temperature methods as they introduce
fictitious dynamics into the system. Thus, although these
methods are good for determining equilibrium averages,
they should be avoided for dynamics unless one carries out
significant testing for the dynamics being studied.

Potential-smoothing methods

The potential-energy landscapes of biomolecular systems
have been recognized for a long time to be rugged.
Many local minima separated by barriers ranging in
height from tenths to tens of kcal mol-! exist. In order
to explore the potential surface, it is possible to leave
the potenual as it is and develop effective methods,
such as those described above, for navigating the rugged
landscape. In addition, it is possible to transform the
potential surface into a smoother function that is more
easily explored. In this section, we describe a number of
effective potential-smoothing transformations (see also the
above subsection on fluctuating-potential methods).

Antlion method and Gaussian potential smoothing
Stillinger and coworkers [62,63] recognized that increasing
the range of the long range interactions whilst softening
the short range repulsive interactions can lead to a
significant decrease in the number of local minima on a
potential surface [62]. If the potential transform is well
defined, a sole surviving minimum exists on the smoothed
surface. The hope is that the surviving minimum shares
the symmetry or structure of the global energy minimum
of the untransformed potential energy. Stillinger and
coworkers [62,63] have referred to this strategy as the
Antlion Method.

Accomplishing such a potential transformation is possible
in many ways, including a Gaussian ‘coarse-graining’ of the
potential-energy function or, more simply, changing the
powers appearing in the Lennard-Jones potential from 12
and 6 to 2p and p, varying p from 61 [62]. Applying the
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Antlion method to the polypeptide mellitin, in addition
to smoothing the nonbonded potenual, Sullinger and
coworkers [63] also biased the backbone-torsion potential
towards a particular type of secondary structure using data
derived from a statistical database analysis [63].

In the Diffusion Equation Method (DEM) of Scheraga
and coworkers [64], the potenual surface is smoothed
using a Gaussian integral transform. This coarse-graining
tends to join potential-energy minima that are separated
by distances shorter than the width of the Gaussian
smoothing function. By initially choosing a broad Gaussian
smoothing, the potential surface is simplified to a surface
with few (perhaps only one) minima. These minima are
found and subsequently followed using a local energy
minimizer as the Gaussian smoothing function’s width
1s reduced and the untransformed ‘physical’ potental is
recovered. In one dimension, one is guaranteed to isolate
the local energy minimum of the greatest volume. The
hope is that in many dimensions, such as in applications
to oligopeptides [65,66*], the lowest energy minimum will
be found.

An appealing method based on a Gaussian transformation
of the Boltzmann probability, exp(—BV), rather than
the potential, V, has been proposed by Shalloway and
coworkers [67,68*%]. This ‘Packet Annealing’ (PA) method
replaces the potential, which may have singularities due
to short range repulsive interactions, with the probability
distribution, which is better behaved. Moreover, it can be
argued that minimization of the probability distribution
is closer to a minimization of the free energy which
could potentially isolate the thermodynamically dominant
minimum at a finite (nonzero) temperature. A significant
computational overhead, however, is associated with the
Gaussian smoothing of the probability distribution for
large biomolecular systems.

Quantum mechanical annealing

Amara ¢ al. [69] proposed a quantum mechanical an-
nealing algorithm for isolating low energy minima on
a potential surface. The molecule’s conformation is
represented by a Gaussian wave packet. Initially, Planck’s
constant, h, is set to a very large value such that the
kinetic energy of the wave packet i1s greater than any
energy barriers on the potential surface. The best guess
at the ground state wave function is subsequently found
by solving the imaginary-time Schrodinger equation. For
the large value of h, the wave function is delocalized over
the potential surface. In the next step, Planck’s constant is
reduced and the wave function updated to be the new best
guess at the ground state wave function. This procedure
1s repeated, slowly reducing h to zero or its physical value,
and thereby localizing the wave function in a low energy
minimum of the potential surface. As the wave function
evolves, 1t uses nonlocal information to find the lowest
energy minimum. In this way, it is expected to be more

effective than a simulated annealing algorithm based on
a representation of the system as a single point in phase
space where only local information (such as the force at a
point) informs the system moves [69].

Classical analogs of this method, based on wave packets
evolving in time according to the classical Liouville
equation [70] or in temperature according to the Bloch
equation [71°], have been as successful in exploring
phase space and locating low energy regions of the
potential-energy surface in applications involving a model
protein [72°]. We note that similar results have been
obtained by Elber and coworkers [73,74] using the clever
Locally Enhanced Sampling algorithm for both energy
minimization [73] and calculation of thermodynamic
properties [74]. Doll and coworkers [75] have proposed a
similar method based on a Diffusion MC algorithm. The
DEM of Scheraga and coworkers [64] can be shown to be
a special case of the quantum annealing method based on
Gaussian wave packets [71°].

Method of bad derivatives

The potential-smoothing algorithms based on a Gaussian
smoothing transformation of the potental-energy surface
are quite effective for a large number of systems [71°].
For a complicated biomolecular potential-energy surface,
it 1s possible to carry out the smoothing transforma-
tion approximately, by fitting the nonbonded potential
functions to Gaussians or exponentials. In addition, a
computational overhead is associated with computing
these transformed functions. Andricioaei and Straub [76°]
have recently shown that it i1s possible to derive all
the benefits of the Gaussian smoothing transform whilst
carrying out no explicit transform of the potenual-energy
function. The method substitutes a ‘top hat’ (impulse)
function for the Gaussian in the smoothing transform. In
one dimension, the force on the smoothed potential is
simply the difference in the potental energy evaluated
at each side of the top hat divided by twice the top hat’s
width — that is, a finite difference formula for the force. As
the width of the smoothing function is not always small,
this exact force derived for the smoothed potential can be
thought of as a ‘bad derivative.’

We normally think of the finite difference as an approxi-
mation to a derivative. This bad derivative, however, is an
exact expression for the force on the smoothed potential
surface; therefore, it is possible to search the smoothed
potential surface using local energy minimization (as
in DEM) or MD simulated annealing while requiring
evaluation of the potential energy only. The generalization
from one to three dimensions is straightforward. Extension
of this trick to a smoothing of the Boltzmann probability,
as appears in the PA algorithm of Shalloway and coworkers
[68°°], 1s readily accomplished and again requires no
explicit integral transform [76°].



Conclusions

We have reviewed some of the recent progress in
the development of fast MD algorithms, which allow
for extended dynamical simulations, and of enhanced
sampling MC methods, for the computation of equilibrium
averages. This progress will continue. What appears to
be lacking is a set of standard test cases and criteria to
compare the relative efficiency of various algorithms. We
have discussed the ergodic measure, which provides one
such useful tool for optimizing and comparing algorithms.

In the case of energy minimization, the measure of
effectiveness (isolating the global energy minimum) is
clear and standard test cases do exist. The most generally
accepted is the minimization of Met-enkephalin. More
modern and challenging standards, however, need to
emerge to test the next generation of energy-minimization
algorithms. Good candidates are solvated peptides for
which solution phase NMR data provides evidence that
the structural equilibrium is dominated by one or a few
conformers.
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