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Principles governing oligomer formation in amyloidogenic
peptides
John E Straub1 and Devarajan Thirumalai2,3

Identifying the principles that describe the formation of protein

oligomers and fibrils with distinct morphologies is a daunting

problem. Here we summarize general principles of oligomer

formation gleaned from molecular dynamics simulations of Ab-

peptides. The spectra of high free energy structures sampled

by the monomer provide insights into the plausible fibril

structures, providing a rationale for the ‘strain phenomenon.’

Heterogeneous growth dynamics of small oligomers of

Ab16�22, whose lowest free energy structures are like nematic

droplets, can be broadly described using a two-stage dock-

lock mechanism. In the growth process, water is found to play

various roles depending on the oligomer size, and peptide

length, and sequence. Water may be an explicit element of fibril

structure linked to various fibril morphologies.
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Introduction
According to the ‘amyloid hypothesis’ [1��], amyloid

disease (AD) is caused by the accumulation of the Ab-

peptide which is a normal byproduct of the metabolism of

amyloid precursor protein (APP). The cleavage of APP

resulting in Ab-peptide is achieved through the action of

secretases [2]. The primary component of Alzheimer’s

related amyloid plaques is the Ab-peptide, a 38-to-43

amino acid polypeptide of known sequence [3,4]. A

variety of natural mutations that occur close to the secre-

tase cleavage sites associated with variable AD pathology

also produce large variations in the fibril growth rates [5–
8]. The potential link between oligomer formation and

amyloidogenic diseases has made it necessary to under-

stand the energetics and dynamics of transitions from

monomers to oligomers and beyond. Delineating the

factors that contribute to the thermodynamics and

kinetics of oligomer formation, which is an essential step

in the cascade of events that turn the disordered ‘col-

lapsed coil’ form of Ab-peptide monomers [9,10] into

fibrils with the characteristic cross b structure, is an

important step in the discovery of methods that prevent

their formation.

Significant advances have been made in the determination

of high resolution crystal structures of a number of peptides

that form amyloid-like fibrils [11,12��], and in the descrip-

tion of molecular events in the transition from disordered

monomers to oligomers [13,14,15��,16�]. While the

dynamics and phase diagram of full length aggregating

proteins are expected to be considerably richer, the aggre-

gation tendencies of smaller peptides are excellent model

systems, which can be used to gain quantitative biophysical

insights into oligomer formation. In recent years, a com-

bination of experimental [11,17��,18–20] and compu-

tational studies [13,21��,22,23,24��,25�] has led to a

microscopic picture of the oligomerization process of pep-

tides including the role water of in their self-assembly. In

this perspective, we focus on the role molecular dynamic

simulations have played in elucidating some of the general

principles that govern the process of protein aggregation

with particular emphasis on the initial events in the assem-

bly of Ab-peptides and their implications for the growth

into mature amyloid fibrils.

General considerations in peptide and protein
aggregation
The routes to protein aggregation are intimately related

to the folding landscape of proteins [26] as a function of

several external factors protecting and denaturing osmo-

lytes, presence of crowding agents, and protein concen-

tration. The hallmark of amyloid forming peptides and

proteins is that they access one or more ‘assembly-com-

petent’ structures induced by denaturation, stress or

thermal fluctuations with lifetimes sufficient to allow

for interprotein interactions to occur. The molecular

details of the steps leading to the formation of amyloid

fibrils remain unknown because the species along the

aggregation pathways are highly dynamic and are likely to

be metastable. The overall growth process exhibits the

characteristics of a nucleation growth process [27]. Once

the critical nucleus (whose characteristics depend on

sequence as well as external conditions) forms, the fibril

formation process is essentially downhill in free energy.

From this perspective, the qualitative scenarios for

www.sciencedirect.com Current Opinion in Structural Biology 2010, 20:187–195



Author's personal copy

explaining aggregation kinetics are in place. However,

the details of the process, including the dependence of

oligomer formation on the specifics of the sequence and

the structural features of the intermediates in the

multiple stages leading to the nucleus, are not under-

stood.

Despite the complexity of the aggregation process several

theoretical studies [21��,22,28�] show that the spectra of

the states sampled by the monomers can provide insight

into the tendency of specific sequences to form amyloid

structures. Two extreme scenarios, which follow from the

energy landscape perspective of aggregation [8], can be

envisioned in the description of the early events in protein

aggregation [29]. According to Scenario I, which applies to

Ab-peptides, fibril formation requires partial unfolding of

the native state [30] or partial folding of the unfolded state.

Both events, which are likely to involve crossing free

energy barriers lead to the transient population of an

ensemble of assembly-competent structures N�. According

to Scenario II, which describes aggregation of PrPSCS [31],

the ensemble of N� structures has a lower free energy than

the structures in the native state ensemble thus making the

folded (functional state) state metastable.

The scenarios based on the energy landscape perspective

provide a plausible connection to the strain phenotypes

that have been extensively studied especially in yeast

prion biology [32,33��]. Originally found in the context of

wasting diseases [34] and mammalian prions, strain phe-

notypes, which grow from the same protein but lead to

different heritable states, are found even in peptide fibrils

[35��] and amyloids grown from Ab-peptides [17��,36��].
At what stage of the growth of fibrils is a particular strain

‘encoded’ in the structure? The suggestion that the N�

structures are aggregation prone implies that the strain

phenotypes may be encoded in the monomer structures

themselves. We speculate that the various N� structures

can form oligomers with different structures, which can

subsequently lead to fibrils with structurally distinct

fibrils. Certainly, it is unlikely that that information for

polymorphism in amyloid fibrils is found in post-nucleus

structures, which makes monomers or low order oligomers

the likely candidates.

Folding spectra of Ab monomers
The analysis of protein aggregation in terms of N� leads to

two key predictions. The first is that ordered aggregation

starts in all likelihood from one of the structures that

encompass the N� ensemble. The second is that the ease

of aggregation is related to the probability of populating

the N� species, which implies that the free energy barriers

that separate the lowest free energy basin (unfolded U or

folded N states) and N� conformations should dictate the

growth kinetics. A number of studies have focused on the

characteristic structures that are sampled by the monomer

in the hope of gleaning insights into their amyloidogenic

tendencies [21��,22,28�,37�,38]. Before discussing the

free energy spectra of monomers it is useful to describe

the arrangements of Ab in two well-known fibril models.

The solid-state NMR-based structures [39,40] for the

fibrils of Ab1�40 (Tycko model) include, as a key struc-

tural element, a bend involving residues V24GSN27. The

structural motif with the V24GSN27 turn and intrapeptide

salt-bridge between D23 and K28 ensures that isolated

charges are not buried in the low-dielectric interior of the

fibril. Such a structural motif when stacked in parallel

leads to a fibril that satisfies the ‘amyloid self-organization

principle’ that the stability of amyloid fibril arises by

maximizing the number of hydrophobic and favorable

electrostatic interactions (formation of salt-bridges and

hydrogen bonds) [21��].

A different structural model (Luhrs model) for Ab1�42

fibril [41], which maintains the basic strand–bend–strand

motif of the Tycko model, suggests that residues

[17��,18–20,21��,22,23,24��,25�,26,27,28�,29–32,33��,34,

35��,36��,37�,38–42] form in-register parallel b sheets

formed from a minimum of two peptides. In this model

the side chains of strand 1 (b 1 spanning residues (18–26))

from the n th peptide interdigitate with those of strand

two (b 2 that runs from residues (31–42)) of the ðn� 1Þ th

peptide [41]. The arrangement of strands in this model is

somewhat reminiscent of a domain-swap mechanism,

which has been proposed as a generic way in which

ordered structures can form [42]. A natural consequence

of the Luhrs model is that the bend in the monomer

involves residues S26NKGA30 with K28 being positioned

in such a way that it can form a salt-bridge with D23 from

b 1 of the neighboring peptide. The possibility of forming

an interpeptide salt-bridge was also proposed by Tycko

and coworkers [18].

Several experimental and simulation studies have

examined the interactions that stabilize the ‘folded’ (low-

est free energy states) of the Ab21�30 fragment [37�,43–
45]. Detailed MD studies of Ab10�35 and Ab9�40 mono-

mers validate a key prediction of the ‘N� postulate,’

namely, structural elements resembling those in the

fibrils manifest themselves in soluble monomers

[21��,38]. Using extensive simulations and novel analysis

of the data, it was shown that the formation of a stable

structure with an intact D23–K28 salt bridge and the

VGSN turn is highly improbable in the monomer. Our

results suggest that overcoming the large barrier to des-

olvation of D23 and K28, which can only occur at finite

peptide concentration, must be an early event in the

oligomer formation. The spectrum of conformational

states of Ab10�35 (Figure 1) suggests that a variety of

high free energy states are accessible to the monomer.

Among them the structures that belong to Basin 4, with

the D23–K28 salt-bridge and V24GSN27 formed,

resemble those found in the Tycko model for Ab1�40.

Similar conclusions were reached in MD simulations of

188 Theory and simulation
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Ab9�40 monomer (see Figure 5 in [38]) and Ab21�30

monomer [43]. It is likely that in the interaction-driven

aggregation process such a monomer structure will be

accessed relatively early in the fibril formation process.

Interestingly, the salt-bridge is absent and K28 is in the

interior in the ensemble of structures in Basin 3. The

burial of charged residue is compensated by additional

electrostatic interactions between the ammonium group

of K28 and the backbone carbonyl oxygen of F20 and E22

and the hydrophobic interactions between the aliphatic

side chain of K28 and the side chains of V24 and I31. It

appears that the burial of K28 necessarily distorts the

V24GSN27 turn, and perhaps displaces the turn region to

S26NKGA30, as in the Luhrs model [41]. The ensemble of

structures in Basin 3 has a significant overlap with the

fibril model for Ab1�42. We speculate that if the mono-

mers in Basin 3 are packed to form fibrils, with intact

S26NKGA30, then the uncompensated charge on K28 can

only be accommodated by an intermolecular D23–K28

salt-bridge. The N� postulate explains the plausible

differences in the different fibril morphologies in terms

of the monomer seeds from which they are likely to grow.

We should stress that the N� ensemble alone cannot

determine the diverse structures observed in the fibrils.

The heterogeneous fibril morphologies with helical twists

and striations, domain-swapped fibrils, and distinct sym-

metry arrangements can only be predicted using inter-

actions between multiple chains. These intriguing

variations even among fibrils grown from identical

sequences cannot be anticipated by focusing on the

conformational diversity of the monomers alone. After

all, ‘More is Different’ [46]. Nevertheless, the structures

in the different basins of a monomer suggest potential

candidates whose packing might provide insights into

some of the morphologies observed in amyloid fibrils.

Free energy landscape for Ab10�35 dimer
formation
In order to characterize the early stages of Ab-peptide

aggregation pathway, formation of the Ab10�35-peptide

dimer was studied in aqueous solution [47��]. Dimer

structures were evaluated for stability relative to the

separated monomeric peptides, using computed esti-

mates of the desolvation and electrostatic interaction

energies, in an effort to identify putative stable dimer

structures. The potential of mean force associated with

the dimerization of the peptides in aqueous solution was

computed using umbrella sampling and classical molecu-

lar dynamics simulation at constant temperature and

pressure.

Two extreme models for monomer association — one

which supposes that the principal mechanism stabilizing

the dimer structure is the burial of hydrophobic surface

and the other that supposes that the electrostatic inter-

action is the primary associative stabilizing interaction —

were examined. It was found that the former leads to

more energetically favorable dimerization [47��]. It is

more efficient to remove the entropically unfavorable

structured water between the opposing hydrophobic

regions of the two monomers than to stabilize the mono-

mer solely through electrostatic interactions.

This finding agrees with the experimental observation

that the mutation E22Q — where a charged glutamic acid

residue is replaced by a polar glutamine residue —

increases the propensity for amyloid formation [48,7]

and our previous computational studies of solvation of

the E22Q mutant and wild type (WT) peptides [49]. In

more recent simulations of the Ab16�35 peptide mono-

mers and dimers, no significant secondary structure for-

mation was observed, while the key E22DVGSNK28

region is observed to form a ‘loop’ structure similar to

that observed in shorter fragments and peptide fibrils. It

would be profitable to carry out a more detailed energy

landscape analysis as has been done for the aggregation of
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Figure 1

Free energy spectrum of Ab10�35 monomer obtained from MD

simulations. States with the disrupted salt-bridge are more favorable,

and a large barrier makes the transition between the formed and

disrupted substates improbable. Burying K28 in the peptide interior is an

unfavorable process. The number of microstates associated with each

of the four basins is indicated in parentheses. D23–K28 on stands for

salt-bridge present, while D23–K28 off stands for salt-bridge broken.

Reprinted from [21��].
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human transthyretin protein fragments [50] and KFFE

tetrapeptide [51] to better evaluate the energetics of the

aggregation ensemble.

Recent experiments have shown that the congener,

Ab1�40 [D23–K28], in which the side chains of residues

Asp23 and Lys28 are linked by a lactam bridge, forms

amyloid fibrils that are structurally similar to the WT Ab-

peptide at a rate that is nearly one thousand times faster

than the WT [52�]. All-atom molecular dynamic simu-

lations of the WT dimer, as well as a monomer and dimers

of Ab10�35 [D23–K28] with constrained D23–K28 salt-

bridge in explicit solvent, have been used to explore the

origin of the observed enhanced rate of fibril formation

[38].

Those simulations show that the assembly-competent

monomers (N�), with strand conformations in the residues

spanning the N and C termini and a bend involving

residues D23VGSNKG29, are populated to a greater

extent in Ab10�35 [D23–K28] than in the WT, which

has negligible probability of forming N�. The salt-bridge

in N�, whose topology is similar to that found in the fibril,

is hydrated. The reduction in the free energy barrier to

fibril formation in Ab10�35 [D23–K28], compared to the

WT is attributed to entropic restrictions that arise from

the salt-bridge constraint (see Figure 2). A decrease in the

entropy of the unfolded state and the lesser penalty for

conformational rearrangement, including the formation of

the salt bridge in Ab-peptides with D23–K28 constrained,

results in a reduction in the kinetic barrier in the con-

strained Ab1�40 [D23–K28] compared to the WT peptide.

Although a number of factors determine the growth of

fibrils, the decrease in the free energy barrier of formation

of N� in the Ab1�40 [D23–K28] congener, relative to the

WT peptide, is a major factor in the rate enhancement for

fibril formation [52�]. Qualitatively similar results were

obtained using simulations of Ab9�40 peptides. These

results support the N� conjecture that mutations or other

constraints that preferentially enhance the population of

N� species would enhance aggregation rates.

Probing the structural characteristics of
oligomers of Ab-peptides
The unstable nature of oligomers makes it difficult to

determine their dynamics and structures. Simulations

using coarse-grained (CG) models [25�,53,54,55��] have

revealed that the formation of oligomers and sub-

sequently fibrils involves a number of distinct stages

during which the monomers, oligomers, and protofila-

ments undergo substantial conformational changes. Inter-

estingly, it has been proposed the mutations that diminish

b-strand propensity in the monomeric peptides may

diminish fibril formation (by reducing the population of

N�) while enhancing the formation of potentially toxic

oligomeric structures [55��]. Typically, it is found that

disordered oligomers form readily and the peptides then

adopt ordered conformations even when the size of the

oligomer is less than the critical nucleus size

[13,15��,47��]. While the results from the CG models

establish the generic features of protein aggregation,

detailed all-atom MD simulations are often necessary

to identify the driving force for protein aggregation and

the formation of ordered structures.

Oligomer growth mechanism of Ab16�22
fragments
The fragment Ab16�22 (K16LVFFAE22) that encompasses

the central hydrophobic cluster (CHC) L17VFFA21 is

predominantly a random coil in isolation [13] with some

tendency for the hydrophobic residues (especially V18) to

adopt b conformation [56]. In the fibril state the peptides

are arranged in an antiparallel manner [57], which results

in salt-bridge formation and maximization of hydrophobic

interaction between the residues in the CHC. Trimers of

Ab16�22 coalesce to rapidly form disordered aggregates

driven primarily by hydrophobic interactions between the

CHC residues. In the process, the peptide transiently

adopts a-helical conformations even though there is no

evidence for the isolated monomer to be found in the a-

helical basin [13]. At longer times the peptides are

arranged in an antiparallel fashion as in the fibril with

substantial excursions to other basins of attraction in

which the peptides adopt alternate structures [15��,58–
60]. The mutants G16LVFFAG22 and K16SVSSAE22 are

unstable [13], thus establishing the importance of both

the hydrophobic and electrostatic interactions in stabiliz-

ing the oligomer and presumably the fibrils [61].

The growth mechanism of ðAb16�22Þn for n> 3 probed by

monitoring the reaction ðAb16�22Þn�1 þ Ab!ðAb16�22Þn

190 Theory and simulation

Figure 2

Free energy landscape of Ab1�40 and the Ab1�40 [D23–K28] peptide

congener. By constraining the D23 and K28 residues to be proximate,

through a theoretical constraint or formation of a covalent b-lactam

bond, the free energy barrier between the monomer and the aggregation

competent N� is reduced. Reprinted from [38].
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for n ranging from 4 to 6 has provided a detailed picture of

the growth dynamics of oligomers [15��]. In this reaction

the unstructured monomer is added to a preformed ‘fluid-

like’ template composed of ðn� 1Þ monomers. The low-

est free energy structures of the oligomers ðAb16�22Þn
resemble nematic droplets with the b-strands aligned

along a director resulting in a value of � 0:9 for the liquid

crystal order parameter. The process of adding a mono-

mer to a preformed nematic droplet can be globally

described by a two-stage dock-lock (DL) mechanism,

which was first suggested to describe the addition of a

monomer to a growing fibril [62].

According to the DL mechanism[62,8], in the first stage

the monomer rapidly and nonspecifically docks onto the

preformed nematic droplet. In the locking stage the

monomer adopts the b-strand conformation of the tem-

plate nematic droplet. The qualitative aspects of the DL

mechanism capture essential features of the time-de-

pendent changes in the b-strand content of the peptides

in the nematic droplet and the monomer for the reaction

ðAb16�22Þ5 þ Ab!ðAb16�22Þ6 [15��]. In the absence of

interaction with the nematic droplet the probability of the

monomer adopting b-strand is negligible. Interaction

with the nematic droplet first results in an increase in

the end-to-end distance with a concomitant increase in

the b-strand content. The high initial b-strand content of

the nematic droplet is maintained during the course of the

simulation.

The b-strand content of the added monomer grows in two

stages. In the first phase, the b-strand content increases

substantially from its initial low value, which shows that

most of the growth occurs immediately upon docking.

The extent of strand formation continues to increase over

a period of tens of ns during which there are large changes

in the structure of the nascent monomer. In the second

stage the monomer adopts a b-strand conformation on a

very long time scale.

A few comments about the DL mechanism are in order.

First, although discussed in the context of addition of

Ab16�22 to a preformed nematic droplet the global

description of the growth process in terms of a broad

two-stage dynamics is applicable to other systems as well

[63��]. The locking time scale, which increases as the

number of peptides increases, can be approximately

described using the Lifschitz–Slyazov growth mechan-

ism, that is, tlock� t0ðNÞM3 [28�], where M is the number

of peptides, and the prefactor t0ðNÞ depends on the

length of the peptide. Second, the description of growth

dynamics in terms of a two-stage DL mechanism is

simplistic. When examined carefully, the assembly of

the oligomers consists of multiple stages characterized

by a range of time scales. In addition, there is considerable

structural heterogeneity in the growth of oligomers (and

indeed fibrils [63��]) that cannot be captured by the DL

mechanism. The nuances discovered in computer simu-

lations can only be captured using single molecule exper-

iments [64��] and theoretical models that capture the

structural fluctuations in the monomers and the oligomers

(or fibrils) as they grow.

The role of water in Ab fibril formation
Simulations of ðAb16�22Þ3 formation [13] showed the

ordered state can form in multiple ways. The rapid

formation of disordered oligomers is typically driven by

the interaction between hydrophobic residues in the

CHC. The observation that the interior of the small

orientationally disordered structures is dry implies that

expulsion of water molecules occurs on timescales that

are far shorter than the timescale on which ordering of the

peptides occurs. Mutation of F19 renders the oligomers

unstable [13], which further supports the conclusion that

the lack of water in the interior of Ab16�22 is largely due to

side chain contacts (see Figure 3a and c in [13]) between

the residues in the CHC (L17VFFA21). The antiparallel

orientation requires the formation of the salt-bridge be-

tween K16 from one peptide and E22 from another,

Principles governing oligomer formation Straub and Thirumalai 191

Figure 3

Structure of the hydrated monomer in Ab1�40 fibril. The blue shade represents trapped water molecules that are localized in a hydrophobic pocket.

Reprinted from [68��].
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which underscores the importance of both the hydro-

phobic and electrostatic interactions in stabilizing the

ordered state. In contrast, there are very few stable

hydrogen bonds that persist between the peptides

[15��].

The expectation that water might play a subtle role as n
increases was clearly demonstrated in the assembly of

protofilaments of Ab16�22 [65�]. In some of the trajectories

water is expelled early before assembly. In other trajec-

tories, the two processes are observed to be coincident.

The predominant interactions that mediate protofilament

formation are hydrophobic with interactions involving

Phe playing a major role, as was previously shown in

the context of oligomer formation [13,66,67].

It is remarkable that atomically detailed structures of

fibrils grown from a large number of small peptides [11]

show that the interior of two sheets is ‘bone dry.’ This

finding has led to the suggestion that a key structural

motif of fibrils could be pair of peptides held together by a

‘steric zipper’ in which the side chains are fully inter-

digitated. As the size of the peptide increases the com-

plexity of the assembly dynamics must increase,

including the way water molecules mediate oligomer

and fibril formation. In addition, given the presence of

multiple fibril morphologies and the observed hetero-

geneities in the oligomer formation, we expect many

variations in the way water mediates amyloid formation.

Subtle roles played by water are starting to be elucidated.

Using 2D IR spectroscopy it was recently shown that

water molecules (roughly 1.2 per monomer) are trapped

in Ab1�40 (Figure 3) fibrils [68��]. The formation of water

channels near the salt-bridge (D23–K28) has been

observed in simulations of a solid-state NMR-derived

structural model [69,70]. However, the experimental

finding that there are water molecules in the hydrophobic

pocket (L17, V18, L34, and V36) that interact with the

amide backbone of L17 and L34 is a surprise [68��].
There are two possible explanations for this finding. If

mobile water molecules are not part of the fully mature

fibrils, it is likely that the fibril structures with trapped

waters are metastable. Only by performing careful

kinetic experiments can one assess if the water-trapped

fibrils undergo further rearrangements. Alternatively, it

is possible that these structures represent another fibril

morphology. In light of these results [68��], it is likely

that in Luhrs model incorporating interpeptide D23–K28

salt-bridge is soaked with mobile water molecules. The

disparate experimental reports show that many of the

questions pertaining to the roles discrete water mol-

ecules play in the formation of oligomers and fibrils

formed from full length Ab-peptides stand unanswered.

In this regard, oligomer formation in reverse micelles

with varying hydration levels [71��] should provide a

quantitative basis for describing how water mediates

amyloid assembly.

Conclusions
Studies of amyloid-forming small peptides have provided

valuable lessons, which may be useful in shedding light

on the intriguing questions surrounding the considerably

more complex process of fibril formation in proteins.

Revealing the additional complexities that invariably

arise when considering longer proteins will require a

combination of new computational tools and experiments

that can provide detailed structural and kinetic data. It is

also necessary to bridge the gap between the biology and

biophysics of fibril formation in order to decipher the

structural basis of functional amyloids as well as those

implicated in diseases. Finally, we suspect that the idio-

syncratic role water plays in leading to distinct strains,

which is surely one of the most perplexing aspects of fibril

formation, will challenge researchers from all disciplines.
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