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Vibrational Frequency Shifts and Relaxation Rates for a
Selected Vibrational Mode in Cytochrome c

Lintao Bu and John E. Straub
Department of Chemistry, Boston University, Boston, Massachusetts

ABSTRACT The vibrational energy relaxation of a selected vibrational mode in cytochrome c—a C-D stretch in the terminal
methyl group of Met80—has been studied using equilibrium molecular dynamics simulation and normal mode analysis
methods. As demonstrated in the pioneering work of Romesberg and co-workers, isotopic labeling of the C-H (to C-D) stretch in
alkyl side chains shifts the stretching frequency to the transparent region of the protein’s density of states, making it an effective
and versatile probe of protein structure and dynamics. Molecular dynamics trajectories of solvated cytochrome c were run at
300 K, and vibrational population relaxation times were estimated using the classical Landau-Teller-Zwanzig model and
a number of semiclassical theories of resonant and two-phonon vibrational relaxation processes. The C-D stretch vibrational
population relaxation time is estimated to be T1 ¼ 14–40 ps; the relatively close agreement between various semiclassical
estimates of T1 lends support to the applicability of those expressions. Normal mode calculations were used to identify the
dominant coupling between the protein and C-D oscillator. All bath modes strongly coupled to the C-D stretch are in close
proximity. Angle bending modes in the terminal methyl group of Met80 appear to be the most likely acceptor modes defining the
mechanism of population relaxation of the C-D vibration.

INTRODUCTION

Following fundamental events such as ligand binding or

electron transfer, heme proteins may be vibrationally

excited. Understanding the timescales and mechanisms of

vibrational energy relaxation (VER) is an essential compo-

nent of an understanding of the ultrafast conformational

changes and the reorganization of protein structures that

follow such fundamental events (Zewail, 1996). Much ex-

perimental and theoretical work has been done to investi-

gate the rate of vibrational energy relaxation for small

diatomic ligands (Hill et al., 1996; Ma et al., 1997; Park et al.,

2000; Okazaki et al., 2001), particularly CO in the heme

protein myoglobin. Metal carbonyls have high oscillator

strength, large absorption coefficients, and strong electronic

resonance in the visible and ultraviolet regimes, making

them excellent spectroscopic probes. Moreover, the stretch-

ing frequency of carbon monoxide, when bound to iron

(;1960 cm�1) or free (;2140 cm�1), falls in a transparent

region of the vibrational density of states of most proteins. In

myoglobin, ligand dissociation can occur when the ligand-

heme complex absorbs a visible or UV photon, which can

cause vibrational excitation of the ligand, heme, and

surrounding residues (Kholodenko et al., 2000; Asplund

et al., 2000) and a global conformational transformation of

the protein. The detailed analysis of vibrational relaxation of

heme proteins has provided important information about the

cooperative nature of protein dynamics (Muench and

Champion, 1975; Greene et al., 1978; Henry et al., 1986;

Anfinrud et al., 1989; Genberg et al., 1989; Lim et al., 1995,

1996; Hill et al., 1996; Karplus, 2000; Frauenfelder and

McMahon, 2001).

The relaxation kinetics and the structural evolution are

typically monitored experimentally using techniques such as

IR, Raman, or resonance Raman spectroscopy. By exciting

the heme with a selected pulse, time domain experiments can

monitor the decay of the excited vibrational modes. The

advantage of these methods of spectroscopy is their extreme

sensitivity to changes in molecular interaction and structure.

The difficulties encountered in interpreting crowded vibra-

tional spectra can be best overcome through the use of site

specific isotopic labeling. As opposed to fluorescence

methods that require the addition of a bulky probe, isotopic

labeling has the great advantage that it does not alter the

function of the protein and, therefore, is the method least

prone to misinterpretation.

Recently, Romesberg and co-workers have demonstrated

the ability to introduce selective deuterium labels on ali-

phatic carbons and to use the C-D stretch as a sensitive probe

of the proteins’ structure and dynamics (Chin et al., 2001,

2002). Their methodology holds the potential to dramatically

improve the ability of pump/probe spectroscopy to probe the

structure and dynamics of proteins during folding or in

response to an excitation resulting from ligand binding or

electron transfer events. Labeling sites of a large protein

presents a greater synthetic challenge, although correspond-

ing tools have been developed.

For a full exploitation of the information content of vibra-

tional spectroscopy, quantum chemical calculations are ne-

cessary (Augspurger et al., 1991). Calculations treating the

molecular group in a vacuum provide a basis for the

interpretation. For a better understanding of the structure and

interaction of molecular groups within the protein, however,

the environment must be taken into account (Oxtoby, 1979,

1981; Whitnell et al., 1992; Rey and Hynes, 1996; Ma et al.,
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1997). The molecular group and the rest of the protein

influence each other, and the challenge is to merge the

accurate vibrational dynamics of the small group with the

molecular mechanics of the surrounding protein (Vogel and

Siebert, 2000).

In this work, we have studied the relaxation rate of

a selected vibrational mode in the protein cytochrome c (cyt

c). Cyt c is one of the most thoroughly physicochemically

characterized metalloproteins (Sivakolundu and Mabrouk,

2000). It consists of a single polypeptide chain containing

104 amino acid residues and is organized into a series of five

a-helices and six b-turns. The heme active site in cyt c

consists of a 6-coordinate low-spin iron that binds His18 and
Met80 as the axial ligands. In addition, two cysteines (Cys14
and Cys17) are covalently bonded through thioether bridges

to the heme. Crystal structures of cyt c show that the heme

group, which is located in a groove and almost completely

buried inside the protein, is nonplanar and somewhat dis-

torted into a saddle-shape geometry. The reduced protein,

ferrocytochrome c (ferrocyt c), is relatively compact and very

stable, due to the fact that the heme group is neutral.

The vibrational mode we have chosen for study is the

isotopically labeled C-D stretch in the terminal methyl group

of the residue Met80, which is connected to Fe in the HEC

plane (see Fig. 1). The C-H and C-D stretching bands are

located near 3000 cm�1 and 2200 cm�1, respectively. In

contrast with the modeling of photolyzed CO in myoglobin

(Sagnella and Straub, 1999; Sagnella et al., 1999), essentially

a diatomic molecule in a protein ‘‘solvent,’’ we are interested

in the relaxation of a selected vibrational mode of a larger

molecule. As a result, the modeling is more challenging.

There is no clean separation between the system and bath

modes. We demonstrate that the classical and semiclassical

models provide a physically reasonable estimate of both the

timescale of vibrational relaxation and the pathways of the

energy flow. The methods employed in the detailed analysis

of the vibrational energy relaxation process in cytochrome c

provide an effective method for the analysis of vibrational

energy relaxation in proteins.

COMPUTATIONAL MODEL AND METHODS

Molecular dynamics

The proposed computational protocol follows closely that of Sagnella and

Straub (Sagnella and Straub, 1999; Sagnella et al., 1999). An x-ray structure

of the horse heart cytochrome c molecule (Bushnell et al., 1990) was used as

the initial configuration. (Please note that this structure, 1HRC, is an oxi-

dized form of cyt c, but it is also the only high resolution x-ray crystallo-

graphy structure for horse heart cyt c in the PDB. Since the difference

between structures of the reduced and oxidized forms of cyt c is in the limit

of resolution of x-ray and NMR instruments, we take 1HRC as our initial

structure, then we use reduced heme, i.e., Fe(II) heme, parameters in

CHARMM force field to equilibrate the structure.) That structure was then

introduced into a 55.8723 55.8723 55.872 Å3 truncated octahedral box of

equilibrated TIP3 water molecules and simulated using the CHARMM

program (Brooks et al., 1983). The all-hydrogen parameter set (version 27)

with CHARMM (MacKerell, Jr. et al., 1998) was used. Equilibrated water

molecules lying within 2.5 Å of the protein molecule were removed, while

the original water molecules of the x-ray structure were preserved. The

excess potential energy due to bad contacts and strain was then reduced

using the steepest descent energy minimization method.

Using classical molecular dynamics, the system was gradually heated to

300 K. One molecular dynamics trajectory was run for 20 ps at constant

pressure and temperature. During equilibration, the velocities were

resampled according to the Maxwell distribution to maintain a constant

temperature. The molecular dynamics employed the Verlet algorithm, which

is time-reversible and symplectic (Verlet, 1967; Tuckerman et al., 1992;

Frenkel and Smit, 2001), with a time step of 1 fs. The van der Waals

potential was truncated using a group switching function extending from 8.0

to 12.0 Å, and the electrostatics force was truncated using a switching

function extending from 8.0 to 12.0 Å. During the equilibration run, the

volume of the box was found to fluctuate around a well-defined average

value. At that point, it was assumed that an equilibrium state had been

reached and data could be collected from the constant energy dynamics with

a fixed volume of 53.934 3 53.934 3 53.934 Å3. Molecular dynamics

trajectories were run for 200 ps at constant energy and volume. Snapshot

configurations were saved every 20 ps. From each of the 10 configurations

obtained in this way, 40 ps trajectories were run at constant energy and

volume during which the coordinates were saved every 200 fs for analysis.

Computational methods for computing T1

The process of vibrational relaxation involves the dissipation of excess

vibrational energy into the surroundings. The time decay of the vibrational

energy relaxation may be a single exponential (the Landau-Teller result)

(Zwanzig, 1961)

hEnðtÞi � hEnð‘Þi
hEnð0Þi � hEnð‘Þi

¼ expð�t=T1Þ; (1)

where T1 is the vibrational relaxation time. (In general, hEn(‘)i will be

assumed to take the thermal value kBT.) By beginning with a specified value

of hEn(0)i, we can, in principle, determine T1 through molecular dynamics

simulations. In this article, we employ Eqs. 3 and 4 below to calculate T1
with use of equilibrium MD.

Semiclassical theories of VER rates

We have shown how direct computation of the classical force autocorre-

lation function on a selected vibrational mode can be used to compute the

FIGURE 1 The active site of cytochrome c showing the heme group and

residues His18 and Met80 which ligate the heme Fe atom. The heme is

covalently attached to the apoprotein by two thio-ether linkages, formed by

addition of the thiol groups of two cysteine residues, Cys14 and Cys17, to

vinyl groups of the heme side chains.
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vibrational population relaxation time for a selected mode in a protein

environment (Sagnella and Straub, 1999; Sagnella et al., 1999). Following

Skinner, we employ a number of semiclassical theories to estimate the rate of

energy relaxation (Skinner and Park, 2001). Through comparison with the

results of the classical theory, we might estimate the importance of quantum

corrections and the reliability of our classical models.

An estimate of the rate constant for the n ¼ 1 to n ¼ 0 vibrational

transition, assuming the vibration to be harmonic for the n ¼ 0 to n ¼ 1

states, can be written

k1!0 ¼
1

2m�hv0

ð‘

�‘

dte
iv0thFðtÞFð0Þiqm: (2)

If we assume that the Fourier transform of a quantum time-correlation

function can be replaced by its classical analog, multiplied by a quantum-

correction factor (Skinner and Park, 2001), the rate becomes

k1!0 ¼
Qðv0Þ
2m�hv0

ð‘

�‘

dte
iv0thdFðtÞdFð0Þicl; (3)

where the rate constant

k1!0 ¼
1

1� e
�b�hv0

1

T1

: (4)

The force correlation function includes the effects of the density of states

and coupling strength to the surrounding solvent. The scalar force along the

bond is computed as

F ¼ � dV

drCD
¼ �m

1

mC

@V

@r̂rC
� 1

mD

@V

@r̂rD

� �
� r̂rCD

¼ m
F̂FC

mC

� F̂FD

mD

� �
� r̂rCD; (5)

where F̂Fi is the force felt by the atom i of the C-D mode due to the

surrounding ‘‘bath’’ of protein and solvent atoms, V is the potential energy

interaction between the C-Dmode and the bath, and r̂rCD is the C-D bond unit

vector. During the simulation, the C-D bond is constrained to its equilibrium

length using the SHAKE algorithm (Ryckaert et al., 1977) and the force

along the bond is determined. The fluctuating force autocorrelation function

and its Fourier transform are then used to determine the vibrational

relaxation time of the C-D stretch mode (Sagnella and Straub, 1999;

Sagnella et al., 1999).

What Q(v) should be depends on the mechanism of the vibrational

relaxation (Skinner and Park, 2001). In the case of energy transfer from

a vibrational mode of frequency v to a resonant bath mode, the quantum

correction factor may be Q ¼ QH(v) where the harmonic QCF is

QHðvÞ ¼
b�hv

1� e
�b�hv : (6)

In the case of nonresonant energy transfer, a vibrational mode of fre-

quency v may transfer vibrational energy to one dominant accepting mode

of frequency vi with the remainder, corresponding to w� vi, being taken up

by the nonvibrational energy bath. The quantum-correction factor, QCF,

may then be either Q ¼ QH(vi)QH(v � vi) or Q ¼ QH(vi)QHS(v � vi),

where the harmonic/Schofield QCF (Skinner and Park, 2001) is

QHSðvÞ ¼ e
b�hv=4 b�hv

1� e
�b�hv

� �1=2

: (7)

Classical theory of VER rates

If we take a purely classical view and assume the C-D bond is a Brownian

oscillator, the motion of the solute can be described by the Langevin

equation

m̈r1
dwðrÞ
dr

1 gm_rr ¼ RðtÞ; (8)

where r is the solute coordinate, g the friction constant, and R(t) the

fluctuating random force acting on the r coordinate. A more accurate

microscopic model is to assume the motion is governed by the generalized

Langevin equation,

m̈r1
@WðrÞ
@r

1

ð t

0

mzðtÞ_rrðt � tÞdt ¼ RðtÞ; (9)

where z(t) is the time-dependent friction and W(r) is the potential of mean

force.

For a system that is well-described as an anharmonic oscillator bilinearly

coupled to a bath of harmonic oscillators, the above-mentioned generalized

Langevin equation model is accurate and the relaxation time can be

approximated by a Landau-Teller result of the form (Oxtoby, 1979, 1981;

Zwanzig, 1961),

1

T1ðv0Þ
¼

ð‘

0

cosðv0tÞzðtÞdt ¼ ~zzðv0Þ; (10)

where v0 is the frequency of the oscillator as determined by the en-

vironment. A remarkable result of Bader and Berne (1994) is that this

estimate of T1 for a classical solute in a classical solvent is, for the harmonic

model, identical to the T1 for the quantum solute in the quantum bath. We

will exploit this result to use classical simulations to derive quantum

relaxation times.

By the second fluctuation-dissipation theorem, the time-dependent

friction is proportional to the equilibrium time correlation function of the

fluctuating random force, R ¼ dF ¼ F � hFi, acting on the oscillator

zðtÞ ¼ 1

mkBT
hdFðtÞdFð0Þi; (11)

where m is the reduced mass of the oscillator.

Analysis of normal modes

To detect the mechanism of energy relaxation, it is important to identify the

protein and solvent ‘‘bath’’ vibrational modes that are most strongly coupled

to the C-D bond stretching mode. As the discussion in the previous section

makes clear, this can be done through a normal mode analysis based on

quenched normal modes (QNM) or instantaneous normal modes (INM). In

each case, the normal mode spectrum is determined by taking ‘‘snap-shot’’

configurations from the dynamical trajectories. For the QNM spectrum, the

configuration is optimized to the nearest local minimum of the potential

energy, then the normal mode analysis is performed for the quenched states.

QNM is a straightforward way to separate and examine the vibrational

density of states of the system and bath modes. In the INM spectrum, the

normal mode analysis is carried out on the snap-shot configuration itself.

INM is suitable for short-time dynamics of simple solutes in liquids (Seeley

and Keyes, 1989; Goodyear and Stratt, 1996, 1997) and has been applied to

proteins (Sagnella et al., 2000). Using the vibrational frequency shifts for the

C-D stretching mode derived from the normal mode analysis, we can detect

the configuration transformation of the local environment of the C-D mode

during the vibrational energy relaxation process.

When using a normal mode model to calculate the friction along

a vibrational coordinate, we assume that the system can be described as an

anharmonic oscillator bilinearly coupled to a bath of harmonic oscillators xi
(atom positions) of the surrounding protein and solvent

H ¼ HOSCð p; rÞ1 +
i

1

2
mi _xx

2

i 1
1

2
kix

2

i 1 cixir

� �
; (12)
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where

HOSCðp; rÞ ¼
1

2m
p
2
1VOSCðrÞ: (13)

This Hamiltonian can also be written as

H ¼ T1V; (14)

where

T ¼ 1

2m
p2

1 +
i

1

2
mi _xx

2

i (15)

and

V ¼ VOSCðrÞ1 +
i

1

2
kix

2

i 1 cixir

� �
: (16)

It follows that

ci ¼
@

@xi

@V

@r
¼ � @F

@xi
(17)

and the potential of mean force is

WðrÞ ¼ VOSCðrÞ
1

2
+
i

c
2

i

miv
2

i

� �
r
2
: (18)

We use mass-weighted coordinates �rr ¼ ffiffiffiffi
m

p � r and qi ¼
ffiffiffiffiffi
mi

p � xi. The
Hamiltonian becomes

H ¼ HOSCð�pp;�rrÞ1 +
i

1

2
p
2

i 1
1

2
v

2

i q
2

i 1Ciqi�rr

� �
; (19)

where pi are the conjugate momenta, and vi are the frequencies of the normal

modes. The time-dependent friction can then be written as a sum over the

bath modes coupled to the oscillator coordinate (Zwanzig, 1973)

zðtÞ ¼ +
i

Ci

vi

� �2

cosðvitÞ ¼
1

mkBT
hdFðtÞdFð0Þi: (20)

We can compare the results for z(t) with the molecular dynamics

calculations. The coupling constant Ci between the bath coordinates and the

oscillator (C-D) stretching coordinate is defined as

Ci ¼
@

@qi

@V

@�rr
¼ +

j

@�xxj
@qi

@xj
@�xxj

@

@xj

@r

@�rr

@V

@r

¼ 1ffiffiffiffi
m

p +
j

Ui;j

1ffiffiffiffiffi
mj

p
@
2V

@xj@r

� �
¼ 1ffiffiffiffi

m
p +

j

Ui;j

1ffiffiffiffiffi
mj

p cj; (21)

whereUi,j are the coefficients of the eigenvector matrix of the normal modes.

Normal mode calculation can also be used to determine the role of

collective motions in the dynamics of the system. The density of states of

a given system can provide insight into possible modes available for

vibrational relaxation of the C-D bond, and is given by

DðvÞ ¼ 1

3N
+
3N

i

d½v� vi�
� �

: (22)

We define the participation ratios as

R
I

i ¼ +
3N

j

ðUi;jÞ4; (23)

and

R
II

i ¼ +
Mresidues

l

½+
3Nl

j

U
2

i;j�
2
; (24)

where 1=RI
i is the number of degrees of freedom involved in the ith mode and

1=RII
i is the number of protein residues and water molecules participating in

that mode. The participation ratios provide a measure of the degree of

localization of each mode. If a mode is completely localized, only one of the

eigenvector coefficients will be nonzero, which means 1=RI
i will be equal to

unity. On the contrary, if a mode is completely delocalized, each degree of

freedom will be equally involved in that mode and 1=RI
i will be equal to 3N.

Using the participation ratios together with the distribution of C2
i ; also called

the ‘‘influence spectrum,’’ we can determine the identity and character of the

principal modes responsible for the C-D bond vibrational relaxation.

For normal mode calculations, 100 configurations were picked from 10

independent trajectories. For each of these configurations, any residue whose

center of mass was outside a 12.0 Å radius from the center of mass of the

C-D oscillator was removed. The cutoff distance of 12.0 Å was chosen based

on Fig. 2, which shows the variation in the frequency of the C-D vibration as

a function of the cutoff distance. Beyond a cutoff of 12.0 Å, the C-D stretch

frequency has converged to the infinite or ‘‘no cutoff’’ value, justifying the

use of a 12 Å cutoff in the computation of D(v). For the QNM calculations,

the system subset of atoms within 12.0 Å of the C-D bond was then energy-

minimized using the adopted basis Newton-Raphson method (Brooks et al.,

1983).

RESULTS

In this section, the value of T1 is estimated, normal mode

methods are used to determine important doorway modes for

energy transfer from the C-D stretch to the protein and

solvent bath, and the dominant contributions to the C-D bond

vibrational relaxation process are identified.

C-D vibrational population relaxation times

Relaxation times of high frequency oscillators can be directly

related to the Fourier transform of the fluctuating force-force

autocorrelation function hdF(0)dF(t)i of the force along

a rigid bond. In determining the vibrational relaxation time,

the value of the friction kernel at the frequency of the

FIGURE 2 The variation of the C-D vibrational frequency as a function of

the cutoff distance for a number of different configurations.
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oscillator is used. The Fourier transform of the classical

fluctuating force correlation function was computed as a

function of frequency from our simulations. The result of the

fluctuating force autocorrelation function hdF(0)dF(t)i,
averaged over 10 trajectories, is shown in Fig. 3. Using this

method and

1

T1

¼ Qðv0Þ
m�hv0

ð‘

0

dt cosðv0tÞhdFðtÞdFð0Þicl; (25)

the relaxation time of the C-D oscillator was estimated using

a variety of possible quantum correction factors.

The power spectrum was computed using a step in

frequency of Dw ¼ 0.67 cm�1. To remove noise, the spec-

trum was smoothed by locally averaging over nine data

points. This provided an average value of the power spec-

trum at the frequency of the oscillator (see Fig. 3).

Observing the exponential decay of the power spectrum

over the whole frequency region, we note that in the high

frequency region above 600 cm�1, there is some structure

coupled to the exponential decay. The peaks at the fre-

quencies of;1340 and 1450 cm�1 correspond to the H-C-H

or H-C-D angle bending ofMet80, respectively. The peaks at
the frequencies of ;830 and 920 cm�1 are associated with

the S-C bond stretch and angle bending of Met80, re-

spectively. The peak at a frequency of ;690 cm�1 is due to

a torsional mode of the heme. We conclude that the vibra-

tional modes strongly coupled to the C-D oscillator are in

close proximity to the C-D bond.

Normal mode calculations—searching
for mechanism

The densities of states determined using the QNM and INM

formalisms are shown in Fig. 4. As expected, the INM

spectrum possesses imaginary modes, plotted here in the

standard way along the negative frequency axis. The

imaginary modes make up ;5% of D(v). That fraction of

imaginary modes is similar in magnitude to results for

crystals or ordered liquids such as liquid water (Cho et al.,

1994) and other proteins (Straub et al., 1994). In both

spectra, there is an obvious separation of states—a trans-

parent region—between 2000 and 2800 cm�1. That

frequency separation effectively isolates the C-D vibration

from the remainder of the system. As a result, the C-D

vibrational coupling to the system is weak.

Fig. 5 displays the inverse participation ratios for the INM

calculations. The low frequency modes are delocalized with

the lowest frequency modes corresponding to translational

and rotational motion. With increasing frequency, the modes

become more localized. Modes from 2000 to 3000 cm�1

involve only 1–2 residues. At higher frequencies, we see

a decrease in localization due to the numerous O-H and N-H

stretching modes. However, the overall degree of localiza-

tion is still considerable.

The distribution of the square of the coupling constants

found in Eq. 22, also called the influence spectrum, is shown

in Fig. 6. The most noticeable peak is at a frequency of

;1400 cm�1 corresponding to the angle bending withMet80
playing a key role. The second most prominent peak can

be seen in the region of ;1000 cm�1. Those modes are

associated with the bond stretching and angle bending

motions still predominantly localized on the Met80. The
region near ;700 cm�1 contains torsional motion of the

heme. The residues that affect the C-D stretch are those that

have direct through-bond interaction with the S atom in

Met80-Tyr67, the heme, and of course, Met80 itself. Other

residues that are within a short distance of the C-D bond

include Phe82 and a water molecule. Although some solvent

coupling is evident between 3200 and 3300 cm�1, the effect

appears to be minimal.

FIGURE 3 The classical fluctuating force correlation function for the C-D

oscillator, proportional to z(t) and computed through the force acting on the

C-D bond, after smoothing over nine points. The =marks the C-D oscillator

frequency at 2133 cm�1. The data have been smoothed for clarity. Displayed

in the inlay is the fluctuating force autocorrelation function for the C-D bond

stretch. This function was averaged over 10 independent trajectories.

FIGURE 4 The vibrational density of states of the cytochrome c protein,

as defined by Eq. 22 derived from quenched normal mode, QNM, and

instantaneous normal mode, INM, calculations.
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This information, combined with that from the participa-

tion ratios shown in Fig. 5, suggests that the principal modes

responsible for C-D relaxation in cytochrome c are highly

localized. Large-scale collective motions are relatively un-

important in the relaxation process. The residues most

strongly involved in the relaxation tend to be those in close

proximity to the C-D oscillator.

Estimates of quantum correction factors from
semiclassical theory

Our analysis suggests that the dominant mechanism for the

C-D vibrational relaxation is the transfer of one quantum

from the C-D stretch to one quantum of a well-coupled angle

bending mode of Met80, with the remainder being absorbed

either by one quantum of a low-frequency harmonic

vibration or by translations and/or rotations.

The semiclassical quantum corrections described in the

subsection called Computational Methods for Computing T1
may be used to construct an overall quantum correction

factor for these multiphonon relaxation mechanisms, as we

show in Table 1. For a one-phonon resonant energy transfer

from the C-D stretch v ¼ 2130 cm�1 to a harmonic bath

mode, the quantum correction factor would be Q ¼ QH(v)¼
10.23. If the quantum of C-D vibrational energy, v ¼ 2130

cm�1, is accepted by an angle bending mode vi ¼ 1450

cm�1 and a lower frequency bath vibration v � vi ¼ 680

cm�1, the quantum correction would be QH(vi)QH(v � vi)

¼ 23.70. Alternatively, if the quantum of C-D vibrational

energy is transferred to an angle bending mode of Met80 at

vi ¼ 1450 cm�1 with the remaining energy being accepted

by translation/rotation modes of the bath, the hybrid

harmonic/Schofield correction predicts Q ¼ QH(vi)QHS

(v � vi) ¼ 29.15. It is very encouraging that there is re-

latively little variation in the magnitude of the various quan-

tum correction factors. It should be noted that it is unlikely

that vibrational relaxation occurs via a 1:1 Fermi resonance

within a bath vibration, as the use of the QH(v) quantum

correction factor implies. However, that value is included as

it is equivalent to the estimate of the classical theory derived

from the generalized Langevin equation. Therefore, we

interpret the value of T1 derived using Q ¼ QH(v) to be the

standard, uncorrected classical estimate of the relaxation

time.

It is helpful to compare our predicted timescales for the

vibrational population relaxation of the C-D stretch with

observed timescales for vibrational relaxation of selected

modes in other proteins. This predicted timescale for C-D

relaxation is similar to that for CO relaxation in the A-states

of myoglobin (17 6 2 ps) (Owrutsky et al., 1995) and rests

between the generic fast relaxation of the amide I vibration

FIGURE 5 The inverse participation ratios determined from the eigen-

vectors of the QNM and INM calculations. The results may be interpreted as,

a, the number of degrees of freedom participating in a given mode, or b, the

number of residues or water molecules participating in a given mode.

FIGURE 6 The square of the vibrational coupling constants plotted

against a backdrop of the INM density of states for cytochrome c at 300 K.

TABLE 1 Quantum-correction factor for vibrational relaxation

of a C-D stretch in the terminal methyl group of Met80 in cyt c

based on different mechanism

QH(v) QH(vi)QH(v � vi) QH(vi)QHS(v�vi)

QCF 10.23 23.70 29.15

QCF/QH(v) 1 2.3 2.8
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(roughly 1.2 ps) (Mizutani and Kitagawa, 2002) and the far

slower relaxation of CO in the B-states of myoglobin (6006

150 ps) (Sagnella et al., 1999).

Testing the assumption of a harmonic bath

A simple test to probe the validity of the harmonic ap-

proximation in treating the bath is to analyze the distribution

of the fluctuating force along the bond. If the harmonic

approach is appropriate, the distribution should be Gaussian.

The result of this test is shown in Fig. 7, in which a Gaussian

fit to the data has been overlayed. As can be seen, the data do

exhibit a strict Gaussian character and are reasonably ap-

proximated by a Gaussian distribution shifted to the right by

only 0.15 kcal/(mol Å).

Another test of the harmonic approximation is to use INM

theory to calculate a force correlation function for our system

through Eq. 20. The result is pictured in Fig. 8 and compared

with the results from the MD simulation. The computed

density of states shows little variation when compared be-

tween different configurations, but the influence spectra and

fluctuating force autocorrelation functions vary consider-

ably. This is in agreement with the work of Goodyear and

Stratt (1996), who have demonstrated that INM friction

spectra can differ significantly from configuration to con-

figuration. This indicates that the frequencies of the bath

modes are fairly constant, but the magnitude of coupling to

the C-D stretch depends upon the specific configuration. To

demonstrate convergence in the INM friction kernel, the

INM calculations were performed for 100 different config-

urations from 10 independent trajectories. Considering the

underlying approximations, we conclude that the INM

friction kernel approximates the time dependence of the full

MD trajectory average reasonably well on the picosecond

timescale for the high frequency motion of the C-D stretch.

Based on the molecular dynamics simulation, we can

calculate the potential of mean force felt by the C-D bond as

wðrÞ ¼ �kBT ln pðrÞ; (26)

where p(r) is the probability for the C-D bond to have a bond

length r. The potential of mean force can also be derived

from Eq. 18 based on the harmonic approximation. VOSC(r)
is the CHARMM potential energy of the C-D bond with

force constant k ¼ 322 kcal/(mol Å2). The force constant for

the coupling terms between the C-D bond and the bath

modes is 10 kcal/(mol Å2). Therefore, the total force constant

from the harmonic approximation is ;312 kcal/(mol Å2) by

Eq. 18. Fig. 9 shows the potential of mean force derived from

molecular dynamics simulation and normal mode analysis.

The force constant derived from the molecular dynamics

simulation, based on a fitted function, is roughly 331 kcal/

(mol Å2), which is in excellent agreement with the result of

the normal mode analysis.

The decomposition of the fluctuating force
autocorrelation function

Further insight into the relaxation mechanism of the C-D

oscillator can be gained via the decomposition of the

fluctuating force autocorrelation function into contributions

from the protein, heme, and solvent as

hdFð0ÞdFðtÞi ¼ hdFprotð0ÞdFprotðtÞi1 hdFhemeð0ÞdFhemeðtÞi
1 hdFsolvð0ÞdFsolvðtÞi1 crossterms; (27)

where Fprot, Fheme, and Fsolv indicate the force acting along

the C-D bond due to the protein, the heme, and the solvent,

respectively. The independent binary collision model (IBC)

(Litovitz, 1957) has been used successfully to describe

vibrational relaxation in solution. The IBC dynamical model

views the events contributing to the force acting on the

vibration as resulting from the separate independent

collisions. In other words, the IBC model assumes that the

cross correlations, although contributing to the overall

FIGURE 7 Comparison of the distribution of the fluctuating force with

a Gaussian fitting function. The Gaussian fit was performed about the center

of the original distribution and not about the zero.

FIGURE 8 The fluctuating force correlation function, proportional to z(t),

derived independently from the INM and molecular dynamics calculations at

300 K.
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fluctuating force in the time domain, have little influence on

the power spectrum in the vicinity of the C-D vibrational

frequency.

Several decompositions of the fluctuating force autocor-

relation function were examined. The first involved

separating the system into three segments—the protein, the

heme, and the solvent. From Fig. 10, it is obvious that the

‘‘self’’ terms of the protein, heme, and solvent closely

reproduce the total spectrum. Any cooperative interactions

between these groups is negligible, with the exception of

contributions due to modes in the very low frequency region

\500 cm�1. In the low frequency region, interactions

between these three different segments may influence the

vibrational relaxation rate and mechanism of C-D oscillator.

The second decomposition in terms of the contributions of

individual residues was performed to aid in defining the

mechanism of the vibrational relaxation. Based on the

fluctuating random force acting on the C-D bond contributed

by each residue, it was found that residues Met80, Phe82,

Tyr67, and the heme play dominant roles in the relaxation of

the C-D stretch. Solvent effects cannot be ignored.

Romesberg and co-workers have studied the vibrational

frequency of the �CD3 group in cytochrome c (Chin et al.,

2001). They have argued that these vibrations are sensitive to

hyperconjugative interactions with S-based orbitals. Such

interactions depend on electronic properties of the S atom,

not on the overall electrostatic field at Met80. The short-

range interactions are fixed by through-bond interactions,

such as the strength of the Fe-S bond or the strength and

number of hydrogen bonds to other protein residues, rather

than by through-space interaction.

For Tyr67, there exists a hydrogen bond between the S

atom and the H atom in the hydroxide group in Tyr67. As
shown in Fig. 11, we can see the distance between the S atom

and the H atom in the hydroxide group is usually \4 Å,

which demonstrates the existence of the hydrogen bond.

However, we find the distance dependence is also important.

The Phe82 is the closest residue to the C-D bond besides

FIGURE 9 (Top) The distance between the C and D atoms in the C-D

oscillator during the molecular dynamics simulation. (Bottom) The potential
of mean force along the C-D oscillator is depicted as crosses. A fitted

function is found to be in close agreement with the predictions derived from

the harmonic approximation potential function calculated from normal mode

analysis (see Eq. 18).

FIGURE 10 A separate analysis of the protein, heme, and solvent

contributions to the total power spectrum of the autocorrelation function

of the force acting on the C-D bond at 300 K. (a) The total spectrum and the

spectrum obtained by decomposing the force autocorrelation function into

separate protein, heme, and solvent contributions and ignoring cross

correlation. (b) The spectrum of the separate components of the protein,

heme and solvent. All spectra have been smoothed for visual clarity.
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Met80 itself. The average distance between the center of the

C-D bond and that of Phe82 is only 4.1 Å. The high

electronic density at the phenyl group in Phe82 may also

influence the vibration of the C-D bond.

Finally, interaction with solvent may also play an

important role. The average distance between the center of

the C-D bond and that of the closest water molecule is only

3.2 Å. Therefore, we argue that both through-bond and

through-space interactions are important for the vibrational

energy relaxation of the C-D bond.

The fluctuating frequency autocorrelation function calcu-

lated from INM theory

CðtÞ ¼ hdvCDð0ÞdvCDðtÞi; (28)

where dvCD(t) ¼ vCD(t) � hvCDi, is shown in Fig. 12 b.
Based on the fitted exponential decay function, the time

constant T is 0.14 ps. The distribution of dvCD is shown in

Fig. 12 a. As we can see from this figure, the frequency is

slightly blue-shifted. Using Kubo’s theory (Kubo, 1963,

1969), the correlation time tc is defined by

tc ¼
1

ðDvÞ2
ð‘

0

CðtÞdt; (29)

where Dv is the variance characterized by

Dv ¼ hdv2

CDi
1=2
: (30)

From Fig. 12 a, Dv is found to be 3.40 cm�1 through the

fitted Gaussian. From Fig. 12 b, tc is calculated as 0.06 ps

through Eq. 29. Therefore, Dv � tc ¼ 0:006 � 1. In such

a fast modulation case, the spectrum will show the pheno-

mena of motional narrowing and the associated line shapes

should be sharp with a Lorentzian form (Kubo, 1963, 1969).

Both van der Waals interaction and external electric field

will induce the vibrational frequency shift on the C-D bond.

The van der Waals interaction results in a frequency shift of

the center of the frequency distribution, while the electric

field leads to the detailed inhomogeneity in the spectrum

(Ma et al., 1997). If we assume that the frequency shift is

primarily induced by a Stark shift due to the electric field in

the protein, then

DnCD � � 1

h
D~mmCD �~EEprotein (31)

where h is Planck’s constant and D~mmCD is the difference in

the dipole of the ground and first excited vibrational states.

Therefore, the frequency autocorrelation function can be

rewritten as

CðtÞ ¼ hdnCDðtÞdnCDð0Þi

¼ Dm
2

h
2 hð~EEðtÞ � ûuCDðtÞÞð~EEð0Þ � ûuCDð0ÞÞi; (32)

where ûuCD is the unit vector along the C-D bond. To aid in

comparison, the frequency autocorrelation function, C(t)
from Eq. 32, is calculated without the pre-factor Dm2/h2 and
is then scaled by a factor 0.003. The result is shown in Fig.

12 b. The frequency autocorrelation function calculated from

FIGURE 11 The distance between S in Met80 and H of the hydroxyl

group of Tyr67, demonstrating that there is a hydrogen bond between those

key groups throughout the simulation.

FIGURE 12 (a) The distribution of the fluctuating frequency dvCD

plotted against the fit to a Gaussian function of frequency. (b) The fluc-

tuating frequency autocorrelation function plotted against the fit to an

exponential function of time. Plotted for comparison is the prediction based

solely on the modulation in the C-D frequency through a Stark effect.
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the Stark effect approximates that from the normal mode

analysis based on Eq. 28 reasonably well. The relaxation of

the INM frequency modulation is on the same time scale as

the modulation due to the Stark shift.

SUMMARY AND CONCLUSIONS

This work has investigated several aspects of vibrational

relaxation of a C-D bond in the terminal methyl group of

residue Met80 in cytochrome c. Inspired by the innovative

studies of Romesberg and co-workers (Chin et al., 2001),

who have demonstrated the ability to use selective deuterium

labels of aliphatic carbons in combination with femtosecond

spectroscopy to probe protein structure and dynamics, we

have demonstrated how molecular dynamics simulation may

be used to model and interpret vibrational relaxation from

such C-D stretching modes. The data suggest that a harmonic

treatment of the surrounding protein and solvent is a reason-

able approximation for protein dynamics on the timescale of

the C-D stretch vibrational relaxation. Using classical and

semiclassical theories, we find that the vibrational population

relaxation time should occur on a timescale of 14–40 ps.

Considering the underlying approximations, the INM

friction kernel provides a reasonable approximation to the

time dependence of the full MD trajectory. A detailed

analysis led to the identification of key residues in the

relaxation process—residues that have direct through-bond

interaction with the S atom in Met80—Tyr67, the heme, and

of course, Met80 itself, or those groups within a short

distance of the C-D bond, Phe82, and water molecule. These

results demonstrate that our modeling of the relaxation

dynamics of selected vibrational modes may be analyzed

using a combination of molecular dynamics calculations,

semiclassical theory for timescales, and normal mode anal-

ysis for energy pathways.

An important conclusion of this work is that our results

suggest that the semiclassical quantum corrections to the

estimates of T1 fall within a factor of 3. This close agreement

was also noted previously by Skinner and co-workers in their

analysis of vibrational relaxation of photolyzed CO in the

heme pocket of myoglobin (Skinner and Park, 2001). They

found that quantum corrections led to a variation in estimates

of T1 by a factor of 2–4, consistent with our results in this

study. In contrast, applications of such theories to liquid state

systems has often led to substantial differences between

various semiclassical estimates (Skinner et al., 2001; Egorov

et al., 1999). These results suggest that vibrational relaxation

of selected modes in proteins are well-suited for analysis by

semiclassical theories. This success may be due to the re-

sponse of the protein bath which is well-approximated as

harmonic on the timescales of interest. It is also possible that

the consistency in these predictions is due to the fact that the

broad density of vibrational states of the protein guarantees

that there will be a bath vibrational mode, in close proximity,

to serve as a principal doorway mode and accept a majority

of energy from the relaxing oscillator.
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