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I. INTRODUCTION

How many variables or parameters are required to reveal the process of the
evolution or the changes of the states in complex systems such as complex chemical
networks or proteins? Consider a system of N degrees of freedom interacting with
the surrounding environment of M degrees of freedom. If M is zero, the system
is regarded as being isolated and usually described in a microcanonical ensemble
of constant energy E. On the contrary, the case of M being infinity corresponds
to condensed phase dynamics with dissipation and fluctuation arising from the
surrounding environment, which is often characterized by constant temperature T

and a distribution of atomic friction coefficients.
First, let us briefly review isolated reacting systems, that is, M = 0. The dy-

namic evolution takes place in the phase space of 2N dimensions at a constant
energy E. In principle, one should be required to use 2N − 1 independent vari-
ables to describe the events. However, as described in Chapter 4, in the well-known
statistical reaction theories such as transition state theories, the rate of reaction can
be formulated in terms of a substantially smaller number of parameters. For the
case of condensed phase systems, the relative ratio of the number of parameters
required to describe the reaction rate per the actual dimension of the system is far
smaller in condensed phase than for the isolated system. For instance, Kramers
theory characterizes the effects exerted by the environment through the tempera-
ture T , potential of mean force, random force, and friction. The rate of reaction can
be again formulated in terms of a substantially smaller number of parameters such
as barrier height, friction, and temperature with a chosen “reaction coordinate.”

What is the fundamental assumption that enables us to substantially reduce the
actual dimension of the system to represent the rate of complex chemical reactions?
The key concept is (local) ergodicity and the resulting separation of timescales;
that is, the characteristic timescale to attain ergodicity just within the reactant states
is significantly shorter than the timescale of the reaction from the reactant to the
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product states. As a result, the rate of reaction is found to be independent of the
initial condition at the reactant state under constant temperature or energy. This
is crucially relevant to the fundamental question of how complex, chemical and
biological systems evolve or change their states in time.

A. Ergodicity

The best known definition of ergodicity often used in statistical mechanics is the
property that the time average of a characteristic of an ergodic system is indistin-
guishable from the ensemble average for the distribution over all accessible points
in the system’s phase space. More precisely, the time average of an arbitrary func-
tion f , which is complex-valued in general, defined in a space (mathematically a
smooth manifold M) in the phase space of the system, is indistinguishable almost
everywhere on the M from the ensemble average over all accessible points on the
M. Here, the propagation in time t obeys the behavior of a dynamical system,
denoted here by Ut , which maps a point on the M uniquely (one-to-one) to a point
on the M while preserving the measure on the M through Ut . Expressed as an
equation, it is described as

∫
M

f (x)dP(x) = lim
t→∞

1

t

∫ t

0
f (Ut′x(0))dt′ (1)

where P(x) denotes a measure defined on the M that can be normalized (i.e.,
probability measure

∫
M

dP(x) = 1), x are continuous variables defined on the M,
and Ut′x(0) is the time propagation of x(0) from 0 to t, corresponding to x(t′).

Let us exemplify this concept in terms of several systems: A two-dimensional
dynamical system well studied in the context of ergodicity may be the “stadium
billiard," almost a circle but with the two semicircles separated by parallel straight
lines. Almost all trajectories in this enclosure pass through the entire interior of
the enclosure; the exceptions are trajectories perpendicular to the straight sections
and the one trajectory that passes between the centers of the two hemicircles.

The introduction of probability measure plays an essential role to establish
the concept of ergodicity. It is because the integration in terms of the probability
measure singles out such events of measure zero whenever the probability measure
exists. For Hamiltonian systems, the probability measure is given by the phase
space volume suitably normalized because the measure-preserving condition is
guaranteed by the Liouville theorem. We discuss the case in which there is no such
a measure to be normalized in Section II.

The second example is a two-dimensional torus where the ratio of the two
frequencies ω1 and ω2 is irrational, that is, ω1/ω2 /= n/m (n, m: arbitrary positive
integers). If the system satisfies this irrational condition, no trajectory can be closed
on the torus (one calls such motions quasiregular) and every trajectory densely
covers all the surface of the torus. Hence, we recognize the motion as being ergodic
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on the torus. It should be noted that the question of ergodicity depends on which
space M one considers. In the case of a torus defined by two invariants of motion,
there exists no other independent invariant of motion on the torus to decompose
the M into disjoint sets. This implies that the invariants of motion on the torus
are regarded as global (and trivial) invariants of motion on that space because no
invariant of motion exists to divide that space into disjoint sets. Note, however, that
if one considers the M as the whole phase space of constant energy, the invariants of
action surely prevent the system from wandering through accessible phase space
almost everywhere. The system does not behave as ergodic in the whole phase
space of constant energy.

The third example is a one-dimensional harmonic oscillator. One can regard
this as a system composed of a particle with a finite angular velocity confined to a
circle where the particle moves along a diameter of the circle, bouncing elastically
each time it reaches the circular boundary. This integrable system also satisfies the
condition of ergodicity; that is, irrespective of the initial condition on the circle,
the system can cover all the accessible points and hence the time average of any
function defined on the circle is equivalent to the ensemble average. Note that
this is different from the case of two-dimensional torus whose ratio of the two
frequencies is rational. In the latter case, depending on the initial condition on the
torus, trajectories cover different regimes on the torus because of the difference in
phase.

What type of property must dynamical systems possess in order to be ergodic?
It has been proved that at least for a time evolution Ut defined on the phase space
X that is one-to-one and preserves the probability measure P (e.g., Hamiltonian
systems), if either P(M) = 1 (more in general P(M\X) = 0) or P(M) = 0 holds
for any subset M in X with M = U(−t)(M) (namely, if a set M is invariant under Ut

in X and such an invariant set exists solely as global or empty), the system cannot
have (nontrivial) invariants of motion to decompose the M into disjoint sets but can
have only (trivial) global invariant of motion almost everywhere through the M.
(Here,M\X denotes the subset ofX that contains all the elements that do not belong
to M.) Followed by several theorems, the resultant dynamics is known to satisfy the
ergodic condition by Eq. (1) on the M [1]. The most important consequence here
is that ergodicity implies neither the existence of chaos nor the loss of correlation
in dynamics. (The more detailed discussions are given in Section II.)

The notation U(−t)(M) above should be understood in general as an inverse
image of Ut , that is,

U(−t)(M) ≡ U−1
t M = {x|Utx ∈ M} (2)

If the time evolution of the system is invertible, that is, U(−t)x can be defined
uniquely for each x ∈ X, it coincides with the backward propagation of M:

U(−t)(M) = {U(−t)x|x ∈ M} (3)
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However, if, for example, two different points x and y are mapped into the same
point z = Utx = Uty, the image U(−t)z of the point z cannot be well defined while
the inverse image of {z} can be defined as a set U(−t){z} = {x, y}. In either case,
U(−t)(M) is a measurable set for any measurable set M if the time evolution Ut is
given by a measurable map.

B. Mixing

Most systems that interest us in the fields of chemistry and biology are more or less
related to the property called “mixing,” which results from the existence of chaos.
The explanation of mixing is rather simple: suppose coffee in a cup; add milk to
the coffee in a ratio of, for example, 70% coffee and 30% milk by volume. After
stirring the (mixed) solution many times enough to mix them up, whenever one
takes any arbitrary fraction of the solution, the ratio of the coffee and the milk one
will find is 70% versus 30%. This situation is represented in general as follows:
Suppose two arbitrary subsets A and B in the phase space X and the inverse image
U(−t)B of the subset B. The mixing condition is formulated mathematically as

lim
t→∞ P(A ∩ U(−t)B) = P(A)P(B) (4)

This equation means that the probability that an arbitrary point x in A will end
up in B after t iterations (t is considered to be an effectively infinite number) [the
left-hand side of Eq. (5)] is just the same as that of finding the B in the whole X

and independent of the position of A and B in X [the right-hand side of Eq. (5)]:

limt→∞ P(A ∩ U(−t)B)

P(A)
= P(B) (5)

A less restrictive condition is called weak mixing, which states that the long-
time average of the difference between P(A ∩ U(−t)B) and P(A)P(B) vanishes:

lim
t→∞

1

t

∫ t

0

∣∣P(A ∩ U(−t′)B) − P(A)P(B)
∣∣ dt′ = 0 (6)

If a system is strong mixing, it satisfies the condition of weak mixing. The converse
is not true. Intuitive interpretation of the weak mixing is that the mixing condition
P(A ∩ U(−t)B) ≈ P(A)P(B) for very large t is satisfied for “most of the time” [1]
since exceptional instances are wiped away by the process of averaging.

Any weak mixing transformation [satisfying Eq. (6)] directly results in ergod-
icity [2]. Assume that B is an invariant set with respect to the time propagation Ut ,
that is, U(−t)B = B. Take A to be a complement to B so that P(U(−t)B ∩ A) = 0.
We substitute this in the left-hand side of Eq. (6), and obtain

0 = lim
t→∞

1

t

∫ t

0
|P(A)P(B)| dt′ = P(B)P(A) = (1 − P(A))P(A) (7)
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Thus, P(A) must satisfy either P(A) = 1 or P(A) = 0. This means that weak
mixing implies ergodicity (one can prove easily that strong mixing also does so).
It should be noted that ergodicity does not necessarily imply mixing, or even weak
mixing. As just introduced above, the typical system is an integrable Hamiltonian
system such as a two-dimensional torus whose ratio of the two frequencies is
irrational, or just the one-dimensional pendulum. The timescale for approaching the
mixing state (“equilibrium state”) or that of losing memory of the initial condition
or correlation in dynamics in the phase space is approximately regarded as the
inverse of Kolmogorov–Sinai entropy [3].

In the literature on chemical physics, relatively little attention has been paid to
the conceptual difference between mixing and ergodicity. It may be because most
systems of chemical and biological interest are expected to be inherently subject,
to some extent, to both chaotic and mixing properties of nonlinear systems.

C. Multiplicity of Ergodicity in Complex Systems

Ergodicity is a property that can be verified only if one can examine both time and
(phase) space averages. However, an interesting challenge arises if the system of
interest has a rough, complicated potential surface. The reason is that the system
may explore local regions thoroughly on short timescales yet require much longer
times to escape from one, such local region, and move to another. If the potential
surface has two or more relatively deep local minima that are separated by high or
very narrow saddles, even if the system can, in principle, pass over those saddles,
such passages can be relatively rare events, compared to the frequency of exploring
all the places in the region of one of those local minima. Consequently, it is not
unusual to find that a complex system can display two or more degrees of ergodicity.
On a fairly short timescale, the system may exhibit only local ergodicity, but on a
sufficiently long timescale, the system can explore its entire accessible space and
be fully ergodic. If the landscape is sufficiently complex, there may be more than
two or even more identifiable stages to the evolution of ergodicity.

An illustration of this behavior appears in small atomic clusters, particularly in
the range of temperatures and pressures within which the cluster may exist as a
“solid” or a “liquid,” with the two phases in dynamic equilibrium, like two isomers.
Under these conditions, one can see each phase-like form for some well-defined
time interval, easily long enough for the internal vibrational modes to equilibrate,
yet the system passes from one form to the other in some random fashion. If one
tests for ergodicity using an ensemble and a single dynamical system on a long
trajectory, one can probe for this property on a short or long timescale. If one looks
on a very long timescale, one sees a single kind of behavior that involves exploring
the entire accessible phase space, including the solid and liquid regions. If, on the
other hand, one looks at a relatively short timescale with the probe (which we
shall discuss shortly), then one sees two distinct kinds of behavior. One is ergodic
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but only in the liquid region, and the other is ergodic in the solid-like region; the
timescales on which one sees this kind of behavior are too brief for the system to
be able to pass between solid and liquid. Presumably, the same kind of timescale
separation holds for structural isomers that correspond to structures accessible to
a molecule but only on a relatively long timescale.

The demonstration of this behavior appears in the distributions of sample values
of Lyapunov exponents, the values of the exponential rates at which neighboring
trajectories diverge. If these are obtained from long trajectories, then the distribu-
tions are unimodal, centered around the single most probable value. However, if
the distributions are taken from shorter trajectories, then they are bimodal, with
one maximum for the clusters in the liquid region and another for those in the solid
region [13, 14] (see also Section III). The other illustrative example may be free
energy landscape. In Section V, it is indicated that the morphological feature of
the landscape depends on a timescale of observation. The longer the timescale, the
more the number of detectable metastable states decreases, and the smoother the
landscape implied by the observation.

D. The Ergodic Problem in Real Systems

The traditional concept of ergodic behavior is derived from mathematical analyses
that, in turn, treat infinitely long pathways and arbitrarily large ensembles. Physical
systems are finite and many of those of great interest now are small, and the
timescales on which we may wish to observe them can be very brief indeed.
Hence, it is appropriate to introduce heuristic analogues of the rigorous properties
of ergodicity and chaos, based on the system in question satisfying some chosen
criterion based on a finite, perhaps very long, time interval. If the system satisfies
the chosen criterion, we may safely treat it as if it were truly chaotic or ergodic,
within time intervals shorter than that of the criterion. (Sometimes this behavior
has been called “cryptoergodicity” or “cryptochaos.”)

In chemistry, ergodicity has been one common central property that one assumes
in establishing several theories such as reaction rate theory, free energy landscape,
and so on. One has also known many cases, for example, non-RRKM kinetics and
the intramolecular vibrational energy redistribution (IVR) problem, that do not
satisfy ergodicity. However, one has paid little attention to validating the concept
of ergodicity in systems in which it is probably valid, and furthermore little has
been done to explore new insights concerning the system’s dynamics in terms of
the concept. What we want to address here is what the appropriate tests or criteria
should be, which enable us to use the concept of ergodicity, or, more precisely,
to avoid invalidating the application of the concept of ergodicity in the problems
of real systems in chemical physics. In that spirit, we are really asking for tests
of cryptoergodicity, in the sense that we want to know when we can suppose
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a system appears, in whatever ways are significant for our investigation, to be
ergodic. We are concerned not with the rigorous mathematical property but with
the observable behavior of the system. It is expected that plausible tests of this
property, cryptoergodicity, depend on the size of system or the condition on our
knowledge about the system (e.g., whether we can know the equation of motion
of the system or we can solely monitor a physical quantity of the system).

The finiteness of timescale is even essential and rather inherent to a lot of
phenomena of chemical interest. A typical illustrative example is a bimolecular
reaction: Two molecules (reactants) collide with each other to form a metastable
intermediate complex. After some time, the complex dissociates into a different
set of two molecules (products). While the motion in the complex can be chaotic
involving most of all degrees of freedom and subject to the issue of ergodicity,
in the products and the reactants limits there are two separate molecules. Since
the two molecules far apart cannot interact with each other, the system cannot be
ergodic in all its dimensions before the formation and after the dissociation of the
complex. The intermediate complex is the only form to be subject to ergodicity
through the full dimension but the lifetime of the intermediate complex is finite.
The finiteness and the value of lifetime in this case are determined by the system
(not the problem of observation).

Another example is a system that exhibits transitions among multiple well
regions. The degree of chaos and ergodicity can be different for different wells.
They are subject to the competition between the strength of chaos and the residence
time of each well, and depend on the extent that the system can attain ergodicity (or
rather cryptoergodicity) in that well. This is essential for heterogeneity to emerge
in establishing cryptoergodicity (we will discuss this aspect in more detail for
proteins in Section IV). The more important question to be addressed is what we
actually learn from the concept of ergodicity about complexity of systems such
as the question of what the system actually feels under a thermally fluctuating
environment.

Here, it must be noted that the introduction of the term “cryptoergodicity” is not
only due to the limitation of observation but also inherent to the problems them-
selves whenever they invoke the change in their states. We will also come back
to this issue from the viewpoint of open phase space in Section II.B. This chapter
addresses the ergodic problems relevant to real complex systems from small-body
systems such as atomic clusters to proteins. Here, we start with an overview, the
historical background of the concept of ergodicity, and the implication of the con-
cept in the sense of statistical mechanics in Section II. Then in Section III, we show
how the local Lyapunov exponent distribution can unveil the ergodic property of
inert gas clusters. This system may be regarded as representative of small-body
systems, in contrast to systems with complex internal constraints, for example,
proteins, but cluster dynamics is rich enough to start to discuss because clusters
exhibit phase transition-like behavior even with small, finite number of degrees of
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freedom. However, when the system of interest becomes much larger than those,
although one can still compute the local Lyapunov exponent distribution, the device
of the local Lyapunov exponent distribution becomes almost impossible to use. In
Sections IV, we turn to the so-called ergodic measure developed for elucidating the
rate of self-averaging of physical observables and characterizing the timescale of
quasithermalization, and show the existence of heterogeneous multiple timescales
to attain ergodicity, depending on the moiety of a protein. In Section V, we review
our recent studies on the other measure to evaluate attainability and multiplicity
of ergodicity in complex protein systems when one cannot access the underly-
ing equation of motion of the system but just a time series of certain physical
variables of the system such as interdye distance. We present our recent progress
in deepening our understanding of the free energy landscape at single-molecule
level.

II. ORIGIN OF STATISTICAL REACTION THEORY REVISITED

The most fundamental assumption of the statistical reaction theory is the separa-
tion of timescales; that is, the characteristic timescale for establishing equilibrium
in the potential well is assumed to be much shorter than that for the reaction to
take place. The chemical reaction proceeds while local equilibrium is maintained
in the potential well. This makes it possible to apply the methods of the equilib-
rium statistical physics to chemical reactions. However, the recent development of
theoretical and experimental studies on reaction processes reveals the necessity of
going beyond the conventional statistical reaction theory [21, 22].

We consider the foundation and limitations of the statistical physics, especially
its relevance for understanding reaction processes involving biomolecules. In the
context of reactions, the following two features become crucial. First, reaction
processes take place in open phase space regions in the sense that trajectories flow
into and out of them, while the phase space is closed in the conventional statistical
physics. Second, the system is inhomogeneous for reaction processes involving
biomolecules, while it consists of identical particles in the traditional statistical
physics. We will explain why these two features present serious issues concerning
the foundation of statistical reaction theory.

In this section, we start our discussion with a brief review of the traditional ideas
on the dynamical origin of the statistical physics. Then, we go on to argue why the
above two features of the reaction processes necessitate serious reconsideration on
the foundation of statistical physics. Finally, we discuss recent development of the
dynamical theory concerning the statistical physics such as Sinai–Ruelle–Bowen
(SRB) measure and infinite ergodic theory, and present possibility of these new
ideas in the study of reaction processes.
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A. Traditional Ideas of the Dynamical Origin of Statistical Physics

In the study on the mechanism of approaching equilibrium, Boltzmann in-
troduced the model, now called the Boltzmann equation [24], using the one-
particle distribution P(p, q) defined on the phase space (p, q), where p and q

are the momentum and the coordinate of the one particle, respectively. Under
the assumption of molecular chaos, that is, the motions of molecules are sup-
posed to be completely uncorrelated, he showed H-theorem, that is, the quantity
H ≡ ∫

P(p, q) log P(p, q)dp dq monotonically decreases in time, indicating irre-
versible approach to equilibrium.

His derivation of the H-theorem met the objection from Loschmidt, who as-
serted that the H-theorem contradicts the time-reversal symmetry of Newton’s
equation of motion. In order to defend his derivation of H-theorem, Boltzmann in-
troduced the ergodic hypothesis implying that H-theorem is relevant for a dominant
part of the phase space.

Their argument triggered the development of the theory of ergodicity, which
is now well established in the sense of mathematics. Here, we give a brief expla-
nation of the theory of ergodicity. The following discussion is not limited to the
Hamiltonian systems, that is, the subjects of the traditional studies of the statistical
physics. It is also applicable to dissipative systems since dissipative systems can
have invariant measures, which are not the phase space volume. Thus, the argument
can be applied to reactions involving biomolecules surrounded by an environment,
in addition to unimolecular reactions of isolated systems.

We follow the traditional argument for the foundation of statistical physics.
Several good references exist both for mathematicians [35, 36] and for nonmath-
ematicians [26, 27]. In statistical physics, the idea of ergodicity plays the role that
corresponds to that of the law of large numbers in the probability theory [31]. In
traditional statistical physics, observed values of the physical quantity are gener-
ally assumed to be equivalent to time averages over the infinite time interval. In
order to apply the equilibrium statistical methods, these time averages should be
independent of initial conditions.

In order to justify the above idea of ergodicity in statistical physics from the
standpoint of the dynamical system theory, the first thing to ask is whether time
averages over infinite time interval exist or not. To approach this, we state Birkhoff’s
individual ergodicity theorem. The theorem guarantees existence of time averages
over the infinite time interval for physical quantities of a certain class.

1. Birkhoff’s Individual Ergodicity Theorem

Suppose that the time evolution Ut with the time t is defined on the phase space
X such that Ut preserves the probability measure P defined on X, that is, for any
subset A of X, P(A) = P(U(−t)(A)) holds. Let us consider a physical quantity f (x)
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defined for x ∈ X, where f (x) belongs to the set L1(P) of functions that satisfy
the following condition:

∫
X

|f (x)| dP(x) < ∞ (8)

This condition requires that the integral of the quantity f (x) in the region
X+ ≡ {x ∈ X|f (x) > 0} and that in the region X− ≡ {x ∈ X|f (x) < 0} converge,
respectively.

Let x(t) ≡ Utx denote the trajectory with an initial condition x(0) = x ∈ X.
Then the following quantity exists:

f̂ (x) ≡ lim
t→∞

1

t

∫ t

0
f (x(t′))dt′ (9)

for initial conditions almost everywhere concerning the probability measure P .
Moreover, the function f̂ (x) is invariant under the time evolution Ut , that is, f̂ (x) =
f̂ (Utx), and

∫
X

f̂ (x)dP(x) =
∫

X

f (x)dP(x) (10)

holds.
According to the theorem, the time average f̂ (x) of the quantity f (x) exists

for the trajectory with the initial condition x. Moreover, the invariance of the
function f̂ (x) means that the time average f̂ (x) is constant for any initial conditions
over each individual trajectory, hence the theorem is called the individual ergodic
theorem.

However, the time average f̂ (x) can take different values for different trajecto-
ries. Therefore, an additional requirement is needed to guarantee that time averages
do not depend on initial conditions. This is the requirement of ergodicity. (Some
references call it metrical transitivity, see, for example, Ref. 27.)

2. Requirement of Ergodicity

Suppose that the time evolution Ut is defined on the phase space X such that
Ut preserves the probability P defined on X. The evolution Ut is called ergodic
if either P(A) = 0 or P(X\A) = 0 holds for any subset A of X with the prop-
erty A = U(−t)(A), that is, A is invariant under Ut . We denote X\A the comple-
ment of A, that is, the subset of X that contains all the elements not belonging
to A.

For a time evolution Ut that satisfies the requirement of ergodicity, Birkhoff’s in-
dividual ergodicity theorem indicates that the time average of the physical quantity
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f ∈ L1(P) equals its ensemble average for almost every initial condition x ∈ X,
that is,

f̂ (x) =
∫

X

f (x′)dP(x′) (11)

almost everywhere on X. This can be proved as follows. Denote A(a) ≡{
x ∈ X|f̂ (x) ≥ a

}
for an arbitrary value a. Both A(a) and X\A(a) are invari-

ant subsets because of Birkhoff’s individual ergodicity theorem. Then, either
P(A(a)) = 0 or P(X\A(a)) = 0 holds based on the requirement of ergodicity.
Thus, for an arbitrary value a, either P(A(a)) = 1 or P(A(a)) = 0 holds. This
means that P(A(a)) is discontinuous at some value â, indicating that f̂ (x) takes
the constant value â almost everywhere. Moreover, this constant equals the ensem-
ble average

∫
X

f (x)dP(x).
In the traditional argument of statistical physics, we consider the time evolution

Ut under the Hamiltonian H . The measure-preserving condition is guaranteed by
the Liouville theorem, that is, the probability measure P is given by the phase space
volume suitably normalized, as long as Ut is defined on a certain compact subset X
of the phase space. Assuming the requirement of ergodicity, Birkhoff’s individual
ergodicity theorem indicates that the time averages of the physical quantities exist
and do not depend on initial conditions, that is, the idea of ergodicity in the sense
of statistical physics is justified.

The following is a historical comment [27]. In the original idea, ergodicity
meant that every point in the phase space was visited by a trajectory. However, it
is impossible for a one-dimensional trajectory to cover the whole phase space of
multiple dimensionality. Something one-dimensional cannot occupy all the points
in a space of higher dimension. Therefore, the concept of ergodicity must be
relaxed. Now, ergodicity is understood to mean that a trajectory covers the phase
space densely, that is, it comes arbitrarily close to every point in the phase space.

In Birkhoff’s individual ergodicity theorem, the condition f ∈ L1(P) for the
physical quantity f (x) is crucial. When physical quantities do not belong to this
set, we can have a different situation. Also note that the situation differs completely
for the cases with unnormalizable measures. These issues will be discussed later
in Section II.C.

In the mathematical formulation of ergodicity, the time averages are defined
over the infinite time interval. For physical situations, however, the time averages
must be taken over finite time intervals. We are thus led to the question, “To what
extent is ergodicity attained in the physical sense?” This issue will be discussed in
the next section.

In physical problems, the correlation 〈f (0)f (t)〉 ≡ ∫
X

f (x)f (Utx)dP(x) is also
of interest for the physical quantity f (x) in the set L2(P) of functions that satisfy
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the following condition:

∫
X

|f (x)|2 dP(x) < ∞ (12)

Suppose that the correlation decays exponentially with the characteristic timescale
tc. Then, the two values f (x) and f (Utx) of the physical quantity f ∈ L2(P) can
be considered as independent as long as the time difference t is larger than tc. This
enables us to obtain the central limit theorem for the physical quantity f ∈ L2(P)
[31].

The above argument leads us to another important property of the dynamical
systems, that is, mixing. We call the time evolution Ut mixing, when the cross-
correlations 〈f (0)g(t)〉 ≡ ∫

X
f (x)g(Utx)dP(x) decay to zero for any physical

quantities f, g ∈ L2(P) with their ensemble averages equal to zero. We have pre-
sented the definition of mixing in terms of measure theory in Section I.B. To see
the equivalence of this definition with the measure-based definition of Eq. (4), put
f = χA and g = χB, the characteristic functions of the sets A and B:

χA(x) =
{

1 (x ∈ A)
0 (x /∈ A)

(13)

Then, the correlation 〈χA(0)χB(t)〉 ≡ ∫
X

χA(x)χB(Utx)dP(x) is equal to the prob-
ability P(A ∩ U(−t)B), since the integrand χA(x)χB(Utx) equals 1 when both
x ∈ A and Utx ∈ B hold, that is, x ∈ A ∩ U(−t)B, otherwise χA(x)χB(Utx) = 0.
Subtracting the averages 〈χi〉 ≡ ∫

X
χi(x)dP(x) = P(i) (i = A, B), respectively,

we obtain 〈(χA(0) − 〈χA〉) (χB(t) − 〈χB〉)〉 = 〈χA(0)χB(t)〉 − 〈χA〉 〈χB〉 that ap-
proaches zero as the time t goes to infinity, indicating that 〈χA(0)χB(t)〉 approaches
〈χA〉 〈χB〉. Thus, we obtain P(A ∩ U(−t)B) that goes to P(A)P(B) as t goes to
infinity.

B. Issues on Openness and/or Inhomogeneity

Here, we consider the foundation of the statistical reaction theory especially for
those reactions involving biomolecules. The following two features become im-
portant: an openness and/or inhomogeneity.

The first issue is statistical properties within open phase space regions. In the
traditional idea, the phase space is supposed to be compact, that is, closed and of
finite volume. Moreover, trajectories do not flow into the phase space region and
never leave it, thereby staying there for infinite time from the past to the future. The
Liouville theorem guarantees that the measure-preserving property holds for the
phase space volume, that is, the Lebesgue measure, and the probability measure
is normalizable. In this sense, the phase space is closed in traditional statistical
physics. On the other hand, in reaction processes, trajectories flow into and out of
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the phase space region or regions that correspond to the potential well or wells. In
this sense, the phase space is open in the chemical reactions.

In the chemical reactions, trajectories stay within the phase space region of
a well only for a finite time interval. After entering the phase space region and
staying there for some time, trajectories leave the region by going over a saddle and
enter a new region, leading to chemical change. Thus, ergodicity in the statistical
reaction theory concerns the question of the extent statistical statements are valid
within finite time intervals. In the traditional theory of reactions, it is supposed
that the trajectory visits almost everywhere in the phase space region in the well.
If ergodicity in this local sense is satisfied, reaction processes become statistical
and independent of specific initial conditions.

A closely related question was presented recently as a criticism of the tradi-
tional understanding of ergodicity [26]. In the traditional understanding, it is sup-
posed that the trajectory visits the phase space region densely. However, Gallavotti
pointed out that for systems of many degrees of freedom, it takes too long in the
physical sense for the trajectory to cover the whole phase space densely. In other
words, for macroscopic systems, the traditional understanding of ergodicity is
irrelevant as the foundation of statistical physics.

Both the above arguments concern the necessity of introducing a criterion and
a characteristic timescale so that we can estimate if ergodicity holds effectively in
the physical sense. Such a criterion was proposed by Thirumalai and Straub [55,
56] called the ergodic measure. The quantity concerns fluctuation of time averages
over finite timescales. If the fluctuation behaves consistently with the asymptotic
behavior predicted by the law of large numbers, we can conclude that the statistical
limit is effectively attained in the physical sense within finite timescales.

Note that, in introducing such criteria, we do not need to require that each
trajectory covers densely the whole phase space. Rather, we need to estimate
whether the asymptotic limit in the sense of the law of large numbers is attained
or not. The reason why we focus our attention on this point is the following. In the
traditional discussion of ergodicity, we treat homogeneous systems consisting of
large numbers of identical particles. In these systems, a trajectory does not need to
cover the whole phase space densely to exhibit statistical properties predicted based
on ergodicity. It only suffices to cover a representative region of the phase space.
Because of the permutation symmetry in systems consisting identical particles,
time averages over such a representative region can be almost the same as the
time average over the whole phase space. Moreover, such a representative region
can be much smaller than the whole phase space. The characteristic timescale for
ergodicity to hold in the physical sense can be much shorter than the timescale to
cover densely the whole phase space.

The above argument leads us to the second issue that is, ergodicity for inho-
mogeneous systems. For biomolecules such as proteins, the above argument on
a representative region is not readily applicable since these molecules tend to be



ergodic problems for real complex systems 185

heterogeneous in their amino acid sequences. Moreover, in reaction processes in-
volving biomolecules, we consider statistical aspects not necessarily in the macro-
scopic scale but in mesoscopic scales. For example, Thirumalai and Straub have
shown, using the ergodic measure, that the degree of attaining ergodicity differs
depending on the parts of the protein [56]. Their results indicate the possibility that
some parts of the protein still remain out of thermal equilibrium while other parts
recover equilibrium. Thus, ergodicity in parts of the biomolecule is of interest as a
possible tool to see nonequilibrium within a single molecule. Such nonequilibrium
situations can play an important role in the functional behavior of biomolecules as
we point out later in Section II.D.

These arguments show that the ergodicity problem in the physical sense be-
comes even more important as we pay attention to biomolecules in mesoscopic
scales. Then, openness and/or inhomogeneity become two key issues.

C. New Developments in Dynamical System Theory

Recently, new developments in the dynamical system theory offers some clues to
investigate the issues related to ergodicity discussed in the previous sections. Here,
we address two recent results, that is, the Sinai–Ruelle–Bowen (SRB) measure and
an extension of the Birkhoff’s individual ergodicity theorem.

First, we discuss the SRB and related measures [29–32, 34, 50]. In the traditional
understanding of statistical physics, it is supposed that the phase space volume
(exactly speaking, the Lebesgue measure) is the only relevant measure for statistical
physics. However, in chaotic scattering processes, for example, fractal exists in
the scattering events, which is singular with respect to the Lebesgue measure. In
chaotic dissipative systems, a consideration of fractals becomes important due to
the presence of strange attractors. These phenomena lead us to ask what the relevant
physical measure is, in the sense that it corresponds to observation in experiments
and numerical simulation.

The SRB measure is the measure that is smooth along the unstable invariant
manifold, while it is singular along the stable invariant manifold. For compact
uniformly hyperbolic systems, it is proved that the SRB measure exists [49]. Its
existence can be intuitively understood as follows. Suppose a typical distribution
of initial conditions on the phase space in the sense that its Lebesgue measure is
positive. Through the time evolution, the distribution is stretched repeatedly along
the unstable manifold. Under these processes, nonuniformity of the distribution
becomes less and less pronounced leading eventually to a smooth distribution.
Along the stable manifold, to the contrary, folding processes make nonunifor-
mity of the distribution more and more steep, eventually giving rise to a singular
distribution.

Suppose that we have arbitrary initial distributions that is typical in the sense that
its Lebesgue measure is positive. The distribution approaches the SRB measures
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under the time evolution, that is, the SRB measure is the natural invariant measure,
the measure that a typical distribution of initial conditions approaches under the
time evolution. Moreover, it is conjectured that the SRB measure is structurally
stable, that is, it is not sensitive to random noise or a change of the parameters
of the system. In this sense, it is considered as the physical measure, that is, the
measure based on time averages obtained by physical observation [31, 50]. The
SRB measure is expected to give a clue to understand nonequilibrium phenomena
such as turbulence [53].

The theory of SRB measure has also revived the argument between Boltzmann
and Loschmidt, leading to the fluctuation theorem. The fluctuation theorem states
that universal behavior exists in the ratio between the probability of increasing
entropy and that of decreasing entropy [26, 33]. Thus, the theory of SRB measure
opens a new research area in nonequilibrium physics from the viewpoint of the
dynamical systems.

The above discussion leads us to extend further the SRB measure to even wider
situations. We should note that, in the requirement of ergodicity, whether ergod-
icity holds or not depends on which measure you use. Moreover, the phase space
volume is not necessarily an appropriate invariant measure in chaotic scattering
and systems with dissipation, as we have explained. Thus, we need to think of the
question which measure we should use. The clue to answer this question is given
by the existence of variational principles. The SRB measure can be characterized
by the variational principle [29, 30, 34, 50]. This corresponds to the fact that equi-
librium distributions are characterized through a variational principle as attaining
the maximum of entropy or the minimum of the free energy. In this sense, the SRB
measure enables us to extend the concepts of equilibrium distribution to nonequi-
librium situations. Based on this similarity, a measure that can be characterized
by the variational principle in general is called the Gibbs measure. The variational
principle is formulated using Lagrange multipliers. The canonical distribution in
equilibrium statistical physics is obtained by the variational principle under the
constraint that the energy is given. We think further of the variational principle
where the values of any physical quantities (not necessarily energy) are given by
observation. This generalization introduces a new concept of measures, that is, the
Gibbs measures.

For open hyperbolic systems, Gaspard and Dorfman [52] introduced a measure
that is characterized by the variational principle, that is, the Gibbs measure. This
measure is concentrated on the saddles of the chaotic scattering, that is, the repeller
in the phase space. Given an arbitrary typical distribution of initial conditions,
the closer those trajectories approach the repellers, the longer they remain in the
scattering region. In the asymptotic limit of an infinite timescale, the invariant
measure is thus defined on the repellers in the phase space. The measure has a
finite value only for scattered trajectories since only the scattered trajectories are
counted. Chaotic scattering introduces the singular measure that is concentrated
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on the repellers. In this sense, the variational principle here means that observation
of scattering trajectories uniquely singles out the relevant physical measure, which
is not the Lebesgue measure. They show that the measure plays an important role
in quantifying statistical properties of stationary events for open systems such as
scattering and reaction processes where fractal structure becomes manifest in the
invariant distributions.

An interesting question arises if we can extend further the concept of the Gibbs
measure to normally hyperbolic invariant manifolds (NHIMs). The NHIMs are
manifolds where hyperbolicity on the normal directions is stronger than that on
the tangential directions. Thus, the definition of NHIMs corresponds to extensions
of repellers to multidimensional dynamical systems. Therefore, normal directions
to the NHIM play the role of the reaction coordinate. On the other hand, the
tangential directions to the NHIMs consist of vibrational modes, which can be
coupled with each other and be chaotic, as long as their hyperbolicity is weaker
than hyperbolicity along the normal directions. Any typical distribution of initial
conditions in the initial state will approach the NHIM located near the saddle as
these trajectories leave the well leading to the reaction. The nearer they approach
the NHIM, the longer they take to leave the well. Thus, we can construct the
measure on the NHIM similarly to that on the repellers.

Second, we discuss an extension of the Birkhoff’s individual ergodicity theo-
rem [28, 38–44, 47]. and its relation to nonstationary processes in reactions [45].
Recently, the Birkhoff’s individual ergodic theorem has been extended in the fol-
lowing two directions: (i) those cases in which the physical quantity f (x) does not
belong to L1(P) with normalizable probability measures P and (ii) those cases
in which the invariant measure is not normalizable, that is, the cases that can be
treated by what is known as the infinite ergodic theory [28].

For these cases, the concept of time averages is extended, and a new formulation
of the law of large numbers is introduced. Then, an interesting new feature is that
the asymptotic limit of time averages itself exhibits random fluctuation. Moreover,
its distribution reveals a certain universal behavior. For example, Aizawa and his
group have shown these universal characteristics for a class of one-dimensional
maps and certain billiard systems [39–44]. The existence of universal fluctuation
suggests that the statistical reaction theory can be extended to those reactions in
which the traditional concept of ergodicity does not hold. Such cases can include the
reaction processes in the mixed phase space where the reaction rate constant does
not exist because of the fractional behavior such as power law in the distribution
of the residence times, anomalous diffusion, and 1/f spectra. See the chapter 3
and Ref. [62–64].

The infinite ergodic theory can be important in those phenomena where extreme
events play a crucial role in reaction processes. These days, extreme events in
natural and social science receive an intense attention [25, 37] since these extreme
events play a decisive role in phenomena such as earthquakes and great depressions,
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although they are rare. In particular, when the probability of extreme events is
larger than that predicted by the Gaussian distribution, the predictions based on
the Gaussian can lead to catastrophic disasters in the society.

In considering extreme events in reactions involving biomolecules, existence
of the gap is important between the characteristic timescale for reactions (as rapid
as picoseconds for ligand binding or local conformational change) and that for bi-
ological functions (as slow as milliseconds to seconds or hours for protein folding,
signaling, or transport). This wide gap in the characteristic timescales implies that
even extremely rare events in terms of microscopic reactions can be considered
frequent in the timescales of biological functions. This phenomenon is similar to
the geological events, in which earthquakes are rare events in the characteristic
timescale of individual human being while they are frequent on the timescale of
geological events. Inspired by such a similarity, the term “protein quake” was
coined for describing behavior of the protein [51]. These authors also noticed a
hierarchical structure of substates and an associated distribution of bottlenecks that
give rise to “broken ergodicity” and nonergodic behavior of the protein on a given
finite dynamical timescale. Existence of common features in the protein and geo-
logical events suggests that the study of extreme events from the viewpoint of the
infinite ergodic theory can lead to finding new universal aspects in nonequilibrium
phenomena.

In order to analyze reaction processes from the viewpoint of extreme events
and their universality, we need to extend the study of Aizawa’s group to multi-
dimensional dynamical systems. For example, Shojiguchi et al. have shown that
nonstationary and power law behavior exists in systems where resonance overlap
in the Arnold web is nonuniform and sparse in the well [62–64]. There is a possi-
bility that the asymptotic distributions of physical quantities in such nonstationary
systems exhibit the universal distribution.

D. Biomolecules as Maxwell’s Demon

In order for biomolecules to play a role in information processing, they must be
under nonequilibrium conditions as the celebrated argument of Maxwell’s demon
indicates [23, 57, 58]. Maxwell’s demon is a tiny existence of a molecular size,
which can differentiate molecules, one from another, on the basis of a property
such as energy. Maxwell showed that its existence would lead to violation of the
second law of thermodynamics [23]. Now the commonly accepted view is that the
fluctuation of equilibrium conditions invalidates the original argument of Maxwell
[57, 58]. However, there is still a possibility that nonequilibrium conditions enable
the demon to work its task of differentiating molecules, that is, a kind of information
processing [57, 59]. In particular, the demon is studied based on the fractional
behavior of dynamical systems although their studies are limited to systems of
two degrees of freedom [60, 61].
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The question then arises how nonequilibrium conditions are maintained at the
molecular level, and whether a dynamical mechanism exists that contributes to
maintain nonequilibrium conditions. In order to investigate these questions, the
theory of reactions should go beyond the traditional concept of ergodicity. This
study will reveal an intrinsic dynamical mechanism of biomolecules so that the
molecule is capable of exhibiting the ability to process information.

III. ERGODICITY IN ISOMERIZATION OF SMALL CLUSTERS

Small clusters of atoms have emerged as very useful tools to help us understand
how ergodic and chaotic behavior enter in the kinetics and dynamics, not only of
their own motions but also of much more complex systems. This is partly because
analyzing the behavior of a system of 3, 4, ...,10, ..., even to 50 or 100 particles
is now a reasonable task with modern computing tools and partly because the
complexity of the multidimensional configurational and phase spaces in which
the particles move grows extremely rapidly with the dimensionality of the space,
that is, with the number of degrees of freedom of the multiparticle system.

Some of the aspects of ergodicity that have emerged from the study of clusters
are as follows: the importance of the differences in behavior in different local
regions of the multidimensional potential surface, the utility of local probes such
as local Lyapunov exponents, and the time evolution of ergodicity, from local
to global character. We can learn how to identify and characterize the specific
directions in phase space that are responsible for the magnitude and direction of the
local Lyapunov exponents, the components that are the primary local propagators
of ergodicity. The Lyapunov exponents, particularly their local analogues (which
we simply call “local Lyapunov exponents,” based on finite trajectories of some
desired length), reveal the directions and extent to which a trajectory tends to
carry a system away from its locality and hence the extent to which a trajectory
moves to explore some different region of configuration and phase space. We
remind the reader that Lyapunov exponents are the measures of how neighboring
trajectories diverge or converge locally from one another, and that for Hamiltonian
(conservative) systems, these appear in positive and negative pairs. The traditional
concept of Lyapunov exponent is based on the average behavior over the full,
accessible phase space.

We begin this discussion with a short review of how we learn the different kinds
of behavior in different regions of the potential surface. The first indication of this
came from the observation that the positive Lyapunov exponents of the three-
particle triangular Lennard–Jones cluster, LJ3, and the sum of those exponents,
the Kolmogorov entropy, increase with the energy of the system, up to the range in
which the system can just pass over the energy saddle of the linear configuration.
In that energy range, the system behaves in a more ordered fashion than at slightly
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lower energies [4]. Another measure studied in that investigation was the effec-
tive Hausdorff dimension, the dimension of the space in which the three atoms
move on a timescale consistent with observations, for example, nanoseconds, but
brief compared to the time for mode coupling in nearly harmonic molecules, for
example, milliseconds [5–7]. Simulations at low energies, corresponding to about
2–10 K, show Hausdorff dimensions of 3.1–3.5, as one would expect from the
three normal modes of vibration of a triangular molecule such as LJ3 when its mo-
tions are essentially harmonic. The deviation from precisely 3 is a measure of the
degree of mode coupling at those energies. However, at an energy corresponding
to 18.2 K, the Hausdorff dimension is 5.9; the maximum possible is the number
of degrees of freedom in phase space that are not individually conserved, which,
for n is 6n − 10 or 8. Hence, the Hausdorff dimension tells us that this three-body
system is already quite nonrigid at this energy, although it doesn’t quite have full
freedom in its phase space. Likewise, the Kolmogorov entropy (K-entropy) or sum
of Lyapunov exponents increases steadily at an accelerating rate from energies cor-
responding to about 1 K up to a maximum at an energy equivalent to 28 K, drops
to a local minimum around 30 K, and then increases again. The drop occurs just
at the energy that allows passage over the saddle at the linear configuration of the
molecule [8].

In the fully chaotic liquid range, the n positive Lyapunov exponents λn increase
according to a power law λn = αnβ. The slope α increases rapidly with increas-
ing temperature or energy; the exponent β is essentially unity at all energies or
temperatures [8]. This analysis also examined the way the K-entropy depends on
the range of interaction between atoms; this range can be varied systematically if,
as used in this work, one represents the interaction between pairs of atoms with a
Morse potential, V (r) = ε exp[−2ρ(r − r0)] − 2 exp[−ρ(r − r0)]. A value of ρ of
3 corresponds to the longest range of pairwise potential known between two atoms
in a diatomic molecule; a value of about 7 corresponds, likewise, to the shortest
range exhibited by pairs of atoms in diatomic molecules. Short-range interactions
give rise to very rough energy landscapes with extensive parts of the topography
at high energies; long-range interactions give rise to smoother landscapes with
deep, well-defined minima [9]. The study by Hinde et al. [8] showed that the K-
entropy of three-particle clusters with Morse interactions between particles has
an energy dependence that clearly distinguishes the systems with very long-range
interactions from others with shorter ranges of interaction. Those with ρ of 3 have
K-entropies that rise monotonically with energy and flatten at high energies; those
with ρ of 5 or more have maxima in their K-entropies, as they move to regions of
high potential energy and hence lower kinetic energy on their potential surfaces,
as Fig. 1 shows.

Other, closely related systems have revealed similar behavior. Linear triatomic
clusters have larger maximum Lyapunov exponents than triangular clusters at the
lowest energies at which the linear form can exist; but at higher energies, the
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Figure 1. K-entropy for three-body systems with Morse potentials of various ranges. The shortest
range here is that with ρ of 7. The span from 3 to 7 is approximately that of the known diatomic
molecules, when they are represented by Morse potential interactions. (Reproduced with permission
from Ref. 8. Copyright 1992, by the American Institute of Physics.)

two are very similar [10]. If some of the energy of the system is in rotational
motion, then the system tends to be less chaotic, as indicated by a lower maximum
Lyapunov exponent than for the case of pure vibration. However, varying the
energy in rotation can reveal periodic transitions between regular and chaotic
motion [11]. This point was explored in more detail to reveal that the volume of
phase space occupied by regular trajectories is a nonmonotonic function of the
angular momentum and depends on the coupling between kinetic and potential
energy [12].

The second way that atomic clusters have opened an approach to the study of
ergodicity and chaos has been in the area of finding timescales for the establishment
of ergodic behavior in ever larger regions of the energy landscape [13, 14]. The
probe to find the range of exploration in this approach is the distribution of effective
Lyapunov exponents for brief, moderate, and long time intervals, but always just
of finite-time-based Lyapunov exponents, not extrapolated to infinite time as one
would determine traditional Lyapunov exponents. Clusters are particularly useful
for this because, given their small sizes, they can exhibit dynamic coexistence of
different phase-like forms in equilibrium over ranges of temperature and pressure,
whether solid and liquid or different solid forms. Typically, under such conditions
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Figure 2. Distributions of sample values of Lyapunov exponents for three-atom clusters (“Ar3”
with Lennard-Jones potentials), taken from finite-path samples, at two temperatures. (a) 28.44 K;
(b) 30.65 K; at 28.44 K, the system is below the linear saddle; at 30.65 K, it can pass over the saddle.
The lowest distributions are based on 8192 time steps, and the successively higher sets are based on
half the number of steps of the distribution below, so the second lowest are based on 4086 steps, and
the highest on the shortest number, only 256 time steps. (Reproduced with permission from Ref. 14.
Copyright 1993 by the American Physical Society.)

of coexistence, the residence time in one phase-like form is long relative to the
time of vibrational periods or of thermal equilibration of the vibrational degrees
of freedom [15, 16].

Figure 2 shows two sets of distributions of the sample values of the largest
Lyapunov exponent for Ar3 from molecular dynamics simulations at two temper-
atures, 28.44 and 30.65 K. The lowest “curves” are based on 8192 time steps of
10−14 s; the next higher, on 4086 steps, and so on, to the highest, which is based on
only 256 time steps. The crucial point is that for short times, and a suitable temper-
ature, even the argon trimer shows a bimodal distribution of Lyapunov exponents.
This is more vivid with Ar7, for which Fig. 3 shows the distributions of sample
values of the largest Lyapunov exponents for short trajectories, of only 256 steps,
as functions of both the value of the exponent and the kinetic energy at which that
value occurred. The essential point of these figures is the passage from a narrow,
unimodal distribution at low energies, through a region of bimodal distribution, to
a high-energy region where the distribution is again unimodal but broad. Figures 2
and 3 show how, for brief times, systems explore only local regions; but for longer
times, they visit their entire accessible phase space. Moreover, with probes such
as the one used here, we can determine the timescale for passage from localized
behavior to global. Global studies reveal some of the characteristics of larger clus-
ters, notably their phase behavior, but the information in the distributions of local
Lyapunov exponents gives additional insight into coexistence of phases even for
clusters of over a thousand atoms [17].

One recognizes intuitively, and Hessian matrices demonstrate, that different
directions of motion play different roles in the multidimensional configuration
space of a several- or many-particle system. One very recent development has
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Figure 3. Distributions of sample values of finite sample Lyapunov exponents for a seven-particle
cluster with Lennard–Jones interactions (“Ar7”). The distributions are based on 256 time steps; they
are expressed as functions of kinetic energy Ek and λ, the local value of the Lyapunov exponent. The
distributions correspond to total energies of −0.355, −0.341, −0.328 and −0.300 × 10−13 erg. The
units of λ are bits per 10−14 s and of Ek are 10−15 erg. (Reproduced with permission from Ref. 14.
Copyright 1993 by the American Physical Society.)

explored this issue, with the goal of identifying the coordinates that play the most
important roles in carrying a system from one local region to another [18]. This
study uses a simple, Lennard–Jones cluster of three atoms as its model, in order
to explore the distributions and participation ratio spectra of both traditional and
local Lyapunov exponents. With even this very simple system, one can see that
ergodicity develops on different timescales for different regions of phase space.
Naturally, the regions most susceptible to unstable trajectories are those nearest to
saddles. This particular study uses Gram–Schmidt vectors rather than the actual
Lyapunov vectors, but the former are very close approximations to the latter, espe-
cially for very local investigations. This three-body system is a convenient device
to begin to explore the kinds of information that one can extract from traditional
and local Lyapunov exponents and the distributions of the latter. This is, in some
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ways, a consequence of the fact that this system, with nine degrees of freedom
and seven constants of motion (three components of momentum and angular mo-
mentum, and energy), has only two pairs of nonzero Lyapunov exponents, which,
of course, come in matching positive and negative pairs. We refer to the larger
as λ1 and its most negative counterpart as λ18, and the other two as λ2 and λ17.
The investigation evaluated not only the Lyapunov exponents themselves but also
the inverse participation ratios [19, 20], which measure the number of degrees of
freedom that participate in the direction associated with each Lyapunov exponent.
The distributions of the local Lyapunov exponents narrow steadily, as the length
or duration of the trajectory extends. The distributions are quite narrow for trajec-
tories of 2000 or more time steps, but very broad for only 100 or 200 time steps.
Some bimodality of the sort observed by Amitrano and Berry was also seen in
this work. This behavior is clear in the distributions in Figs. 4 and 5, for the larger
and smaller positive, finite-interval Lyapunov exponents and the corresponding in-
verse participation ratios. Low values of the latter indicate many of the modes are
participating in the direction corresponding to that Lyapunov exponent. One can

Figure 4. Distributions of the larger Lyapunov exponent λ1 for ranges of sample time intervals l,
in (a) and (b), and of the corresponding participation ratios Y1. The participation ratio is a measure of the
number of degrees of freedom that contribute to the direction of motion of each Lyapunov eigenvector.
For (a) and (c), an amount of energy E = −1.58ε was put initially into the symmetric stretching mode,
and for (b) and (d), the same energy was put initially into the asymmetric bending mode. The shortest
interval sampled was 100 time steps, indicated by the thin curve without any dot, the lowest in (a)
and (b), and the longest, 4000 time steps, is the most peaked in all four panels. (Reproduced with
permission from Ref. 18.)
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Figure 5. Distributions of the smaller Lyapunov exponent λ2 for the same ranges of sample time
intervals as in Fig. 4. All the notations are the same as in that figure. The most significant difference
here is the bimodality of the two lowest curves in (a), corresponding to the system being in either of
the two regions for such short intervals. (Reproduced with permission from Ref. 18.)

also see that the asymmetric bending mode of this triangular system plays an earlier
role in inducing chaotic behavior than does the symmetric bending mode, in the
sense that the asymmetric mode couples with the symmetric stretch at lower ener-
gies than does the symmetric bend. A result that emerges from these calculations
is a coupling, perhaps surprising, of the excited symmetric stretching mode and
symmetric bending mode with the asymmetric bending mode. Symmetry strictly
forbids this, but tiny round-off errors in computation are sufficient to create small
perturbations that break the symmetry and enable the coupling of asymmetric and
symmetric modes.

Hence we can recognize the utility of local Lyapunov exponents as devices to
help elucidate local dynamics, beyond the global features revealed by the traditional
Lyapunov exponents.

IV. EXPLORING HOW PROTEINS WANDER IN STATE SPACE
USING THE ERGODIC MEASURE AND ITS APPLICATION

The “complexity” of the energy landscape of proteins is responsible for the rich
behavior observed in the dynamics of proteins [65–67]. The rugged energy surface
arises from the presence of many energy scales in proteins due to the intrinsically
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heterogeneous nature of the systems [68]. The equilibrium and dynamical prop-
erties of proteins are thought to be determined by a temperature-independent
multidimensional potential hypersurface consisting of many minima (conforma-
tional substates), maxima, and saddle points. That general view of solids and liq-
uids has a long history, dating back to Eyring. However, the ambitious project
to provide a more quantitative assessment of the character of the underlying
hypersurface using computational simulations has established in the “inherent
structure” theory of Stillinger and Weber [69] and the “conformational substates”
view of Frauenfelder [70]. In this picture, the distribution of energies for the min-
ima, the volume of the basins, and the distribution of barrier heights separating
these substates determine the thermodynamics and dynamics of the system. This
point has been confirmed by the disorder seen in X-ray crystallographic studies
and in the wide distribution of timescales for protein motion seen in the ligand
photodissociation/rebinding experiments of Frauenfelder and coworkers on heme
proteins [71].

Beginning with the pioneering study of Czerminski and Elber [68], computa-
tional studies have provided an increasingly quantitative description of the distri-
bution of minimum energy conformations, the rate of exploration of these confor-
mations, and relation to observable properties such as free energies and relaxation
for small peptides [72, 73], model proteins [74, 75], and atomistic models of larger
peptides [76] and proteins [77].

Recently, there has also been a focus on the application of sophisticated
measures of phase space structures, typically restricted in applications to small
molecules of relatively few degrees of freedom, to larger molecules and peptides.
A focus of particular interest is the identification of local modes in proteins that
may couple selectively to a few specific protein modes but relatively weakly to the
larger density of states of the surrounding protein and solvent. Leitner and cowork-
ers have pioneered the application of a number of methods, originally developed
for the study of energy transfer in solids, to vibrational energy and heat flow in
proteins [78] (see Chapter 3). Those methods have been applied and extended by
Straub and coworkers to identify mode-specific energy transfer pathways of amide
I vibrations in small peptide-like molecules [79, 80], globular proteins [81], and
porphyrin and heme groups [82, 83] (see Chapter 1).

While applications to the study of energy flow in proteins have focused on
dynamics in a constant temperature ensemble, there have also been significant
experimental [84] and theoretical studies [85] focused on Hamiltonian (constant
energy) flow in peptide-like molecules and small peptides. Significant develop-
ments enabling the experimental and theoretical study of biomolecules in the gas
phase coupled with dramatic enhancements in computational power have led to
the application of sophisticated methods for the study of phase space structures,
previously restricted to the study of a few degrees of freedom systems and small
molecules, to biomolecules [86]. A beautiful example can be found in the work of
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Farantos who applied methods for computation of periodic orbits to examine the
phase space structure of the alanine dipeptide [87]. An extension of that approach
has recently been applied to interpret vibrational spectra in proteins [88]. These
applications demonstrate the significant potential for the future study of the phase
space structure of biomolecular systems.

A. The Kinetic Energy Metric as a Probe of Equipartitioning and
Quasiequilibrium

One approach to exploring the nature of the rugged energy landscape and the rate
at which observable properties are sampled is through measuring the convergence
of averages over dynamics trajectories using replica molecular dynamics – the
generalized ergodic measure originally introduced by Thirumalai and Mountain
[89–91] and applied to a wide range of systems including proteins [92, 93]. This
technique to examine the rate of sampling kinetic energy and atomic force has
been shown to be a useful analytical tool for investigating timescales for energy
equipartitioning and conformational space sampling [92, 94]. Interestingly, similar
measures have been developed in other fields with issues of broken ergodicity
where a state of quasiequilibrium is established other than the canonical thermal
distributions, including self-gravitating systems [95].

In this section, we review the theory of the ergodic measure applied to estimate
the rate of self-averaging of physical observables and characterize the dynamics in
phase space using replica molecular dynamics. To provide insight into the behavior
of the ergodic measure, the kinetic energy metric is evaluated analytically for
the Langevin model and the force metric is evaluated analytically for a system
of normal modes. In each case, the rate of convergence is shown to provide a
measure of fundamental properties of the system dynamics on an underlying energy
landscape.

Suppose we have an observable F that can be written as a function of time
Fi(t) for the ith atom of a system of N atoms, such as the kinetic energy Fi(t) =
miv

2
i (t)/2. Writing the time average of Fi(t) as fi(t) and the average of fi(t) over

all N atoms of the system as f̄ (t), we define the mean square difference of the
individual fi(t) ’s from the average f̄ (t) as

	(t) = 1

N

N∑
i=1

[fi(t) − f̄ (t)]2 (14)

This is known as the fluctuation metric [94]. It can be shown that for an ergodic
system after a short time the function 	(t) decays to zero as 1/t as 	(0)/	(t) � Dt

(see Fig. 6) [90]. The power law decay of 	(t) to zero at long times implies that the
system is “self-averaging” and the slope is proportional to a diffusion constant for
the exploration of the range of values (space) accessible to the variable F (t). This
is a necessary, but not sufficient, condition for the system dynamics to be ergodic.
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Figure 6. Two trajectories depicted on the background of a rugged energy landscape (top) and the
corresponding reciprocal ergodic measure 	(0)/	(t) for an ergodic system and a system demonstrating
“broken ergodicity” (bottom).

The slope of 	(t) is proportional to the generalized diffusion constant D for
the observable F that can be written D	(0) = l2/τ where 	(0) is the mean square
fluctuation of the property F and τ is the timescale for taking a “step” of generalized
mean square length l2 = 	(0) in sampling the fluctuations of the property F in
phase space. In this way, the ergodic measure may be used to explore the rate
of exploration of phase space in complex systems characterized by a rugged free
energy landscape.

Imagine that phase space is divided in two regions A and B by an impassable
barrier. Given enough time any trajectory will explore all of the allowed phase
space. For a set of trajectories started in region A, 	(t) will decay to zero, and the
property F (t) will appear to be self-averaging. However, unless we have started
one of our trajectories in region B we cannot know that the partition exists and the
system in not ergodic. Therefore, the decay of 	(t) to zero is a necessary but not
sufficient condition for ergodicity.

The ergodic measure is readily calculable while alternative measures of ergod-
icity (or stochasticity) such as Lyapunov exponents [96] are considerably more
involved and not as obviously relevant to the convergence of thermodynamic
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properties as the ergodic measure. While there are strong connections between
the convergence of the ergodic measure and the rate of spectral entropy production
[89], the ergodic measure has been shown to provide significantly greater insight
into the underlying protein dynamics. Moreover, the ergodic measure is readily
computed for systems of arbitrarily large dimension, a great advantage in studies
of protein dynamics.

It is possible to derive the diffusion constant for the kinetic energy metric by
assuming that the velocity is a Gaussian random variable. The kinetic energy (or
local temperature) metric 	KE(t) can be expressed in terms of the fluctuations of
the kinetic energy δfi(t) = (mv2

i (t) − 3kBT )/2 as

	KE(t) = 1

t2

∫ t

0
ds1

∫ t

0
ds2 Ci(s1 − s2) (15)

where in the limit of large N we identify Ci(t) as the equilibrium time correlation
function of the fluctuations in the kinetic energy about its equilibrium average
value.

Berne and Harp noted that the velocity may be modeled as a Gaussian random
variable if the information entropy corresponding to the probability of having the
velocity at time t and the velocity at time 0 is maximized [97]. Through that approx-
imation the autocorrelation function for any higher moments of the velocity may
be calculated in terms of the normalized velocity autocorrelation function ψi(t) for
the ith atom. The autocorrelation function for the fluctuation of the kinetic energy
about its equilibrium average value may then be written Ci(t) = (3/2)(kBT )2ψ2

i (t)
and the diffusion constant for the kinetic energy metric is

DKE = 1

2

[
1

N

∑
i

∫ ∞

0
dtψ2

i (t)

]−1

(16)

providing a means to determine the slope of 	KE(0)/	KE(t) � DKEt for a
particular model of the system dynamics characterizing ψi(t).

B. The Kinetic Energy Metric as a Probe of Internal Friction

The Langevin description of the motion of atoms in proteins is often used to
interpret kinetic experiments. The dynamics captured by the Langevin model is
the foundation of modern reaction rate theory. In particular, the Langevin model
in combination with a normal mode description of the protein has been used to
interpret inelastic neutron scattering data for proteins [98]. Starting from the nor-
mal mode description and assuming the friction tensor to be diagonal, the ve-
locity autocorrelation function for each of the 3N normal coordinates is of the
form ψi(t) = exp(−βit/2)[cos(ait) + (βi/2ai) sin(ait)] with a2

i = ω2
i − β2

i /4 and
ω2

i = κi/mi, where ωi, κi, mi, and βi are the normal mode frequency, the effective
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harmonic force constant and effective mass, and friction of the ith normal mode
of the system, respectively.

Attempts to determine the friction acting on atoms in a protein, whose motion
is bounded, have relied on fits to approximate forms of the correlation functions
for the position and velocity [99, 100]. For the kinetic energy metric, using Eq.
(16) we find that the generalized diffusion constant assumes the form

DKE = 1

2

[
1

N

∑
i

1

2βi

]−1

=
〈

1

β

〉−1

(17)

when κi ≥ 0 ∀ i. This is a useful result. It shows that through a straightforward
determination of the diffusion constant for the kinetic energy metric, the friction
acting on the motion of a particle may be characterized. Note that the value of DKE
is dominated by the smallest value of the friction. The asymptotic convergence
of the ergodic measure provides information on those degrees of freedom that
most slowly approach equilibrium. This reflects the heterogeneous nature of phase
space that has been associated with interesting properties in chemical kinetics,
particularly in the low friction energy diffusion regime [101].

As has been shown by Baba and Komatsuzaki in their recent work focus-
ing on the interpretation of single-molecule spectroscopy [122], a detailed un-
derstanding of the timescale for the establishment of local equilibrium between
states is essential to the interpretation of single-molecule dynamics in terms of
dynamics on a free energy landscape. Presumably, the rate of attaining local
equilibrium, observed in that work, is intimately connected to the distribution
of rates for establishing local self-averaging, discussed here in the context of the
ergodic measure. Their definition of local equilibrium states (LES) and its use
in the decomposition and construction of a free energy landscape is explored in
Section V.

Average values of the relaxation rate cannot be used to characterize the rates
of relaxation for specific protein modes. The method presented here provides a
straightforward means of estimating the friction for all atoms of the protein in a
way that allows for a global analysis of the dominant pathways for kinetic energy
relaxation. More detailed normal mode-based approaches have been developed
to provide insight into the mode-specific nature of the energy transfer pathways
defining the system’s exploration of phase space [78].

C. The Force Metric as a Probe of the Curvature in the Energy Landscape

The fluctuation metric 	KE(t) provides a measure of the timescale for self-
averaging a given observable, such as the kinetic energy, over a single trajectory. An
alternative is to calculate averages over independent trajectories and measure the
rate at which these independent averages converge to the same value as they must
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for an ergodic system. This idea has been applied to assess the rate of convergence
for the various contributions to the atomic force (bonds and angles, dihedrals, and
nonbonded van der Waals and Coulombic) in peptides and proteins [94].

To explore this idea, we define the force metric and evaluate it for the special
case of a harmonic system. The time average of the force on the ith atom, �fa

i (t), is
defined as for the fluctuation metric where a indicates that the average is calculated
over the ath trajectory. Given two trajectories a and b, with independent starting
configurations, we define the difference between the averages calculated over each
trajectory as the metric

dF (t) = 1

N

N∑
j=1

|�fa
j (t) − �fb

j (t)|2 (18)

In an ergodic system, at long times self-averaging is achieved and the metric decays
to zero as dF (t)/dF (0) � 1/DF t, where DF means the corresponding diffusion
constant. Conversely, if dF (t) does not decay as a power law we infer that there
trajectories a and b must sample distinct free energy basins.

When the system dynamics consists of small excursions about a well-defined
average structure, it may be a good approximation to model the system dynamics
using a quenched normal mode approximation. The potential is expanded in a
Taylor series of the 3N coupled coordinates about a mechanically stable equi-
librium position where

↔
κ is the 3N × 3N dimensional force constant matrix or

matrix of second derivatives about the equilibrium position. The normal mode
transformation diagonalizes

↔
κ by a unitary transformation defined by the matrix

↔
a resulting in 3N normal mode coordinates and corresponding frequencies ωi.
The force metric may then be written as

dF (t) = 4kBT

NF2

3N∑
i

〈m〉i[1 − cos(ωit)] (19)

where we have defined the “average mass of the ith normal mode” as 〈m〉i =∑N
j mj|aji|2 using the normalization condition that

∑N
j |aji|2 = 1. In this context,

F is a vector observable of interest, such as the force on a given atom or internal
coordinate, and F2 is its mean-square value.

For proteins the average mass is fairly independent of the mode number and we
can approximate 〈m〉i = M̄, where M̄ is the average atomic mass for the peptide or
protein atoms [93]. The initial value of the force metric can be expressed in terms of
the second moment of the vibrational density of statesdF (0) = 6M̄kBT 〈ω2〉, where
〈ω2〉 = (1/3N)

∑3N
i ω2

i , leading to a remarkably simple form for the asymptotic
limit of the force metric:

dF (0)/dF (t) � 1

2
t2〈ω2〉 (20)
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Application to the Debye model leads to the result 〈ω2〉 = 3ω2
D/5 providing a

means of calculating the approximate Debye frequency for the system from the
curvature of the total force metric.

For the underdamped normal modes, inertial motion dominates and the metric
shows superconvergence as 1/t2. However, in the case that the modes are coupled
through nonlinear forces, phase space may be divided by vague tori [102] (see also
the generalization to multidimensional systems in Section III in Chapter 4) or as
an Arnold web [103] (see also Section II in Chapter 3), slowing convergence (see
Fig. 6). In such cases, the ergodic measure may be used to assess the extent of
broken ergodicity, as a convenient alternative to the more demanding computation
of Lyapunov exponents [89].

The use of the force metric to assess the average curvature of the underlying free
energy landscape has a variety of potential applications. For example, Stillinger
and LaViolette applied the inherent structure theory to examine the validity of the
Lindemann melting criterion that solids become unstable when the mean-square
fluctuations of the atoms approach 10% of the lattice spacing, for simple solids
[104]. That idea was extended to examine the nature of the folding transition in
proteins [105] leading to the interesting conclusion that in the native state the
interior of proteins may be considered “solid-like” while the surface behavior is
more “liquid-like.” Deeper insight into the nature of those phases could presumably
be gained through computation of the distribution of Lyapunov exponents, as
demonstrated by Berry and coworkers in their studies of the dynamics of atomic
clusters and discussed earlier in this chapter. More recently, a connection has been
established between the curvature of the underlying free energy landscape and the
stability of proteins [106]. In that work, the mean square gradient of the potential,
related to the underlying curvature of the free energy landscape, was shown to
be intimately connected to the statistical temperature, T (E) = (∂S(E)/∂E)−1, and
the depth of the free energy basin containing the native state of the protein.

D. Extensions of the Ergodic Measure to Internal Energy Self-Averaging

Using the fluctuation metric, we have shown that the kinetic energy is equiparti-
tioned on a timescale of picoseconds. Evidence suggests that longer time relaxation
associated with conformational transitions in the peptide is best explored using
the metric of the nonbonded (Coulombic and van der Waals) potential energy. The
equations for the energy metric are found by substituting the scalar energy eα

i (t)
for the ith atom in the αth trajectory into expressions where the corresponding
force vector leads to

dE(t) = 1

N

N∑
i=1

[ea
i (t) − eb

i (t)]2 (21)

In a rugged energy landscape, the nonbonded energy metric shows rapid ini-
tial convergence followed by a slow, long-time decay. The initial convergence
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is significantly greater at higher temperatures (see Fig. 6). In many proteins, the
plateau in the reciprocal metric is reached within 3 ps for T < 240 K [93]. This
indicates that at lower temperatures the peptide motion is confined to fluctuations
about a single local free energy basin without significant conformational transitions
on a 75 ps timescale. At 300 K, there is a significant region of linear convergence
followed by a plateau beyond 15 ps. This behavior clearly indicates the presence of
a wide distribution of timescales for the protein motion. Moreover, within the short
timescale several free energy basins are sampled as indicated by the change in the
slope of dE(t). The longer time relaxation is related to infrequent barrier crossing,
largely in the form of dihedral angle transitions (discussed below) and the diffusive
motion of subdomains of the protein that may shift in relative orientation [107].

E. Probing the Heterogeneity of Energy Flow Pathways in Proteins

In the study of heme protein dynamics, the concept of rapid intramolecular vi-
brational relaxation within the heme has been a significant focus of experimental
and theoretical study for decades [108, 109]. In the protein carboxymyoglobin,
the heme group and its host protein share only one covalent bond—that between
the proximal histidine and the iron atom. The heme is otherwise kept in place by
roughly 90 van der Waals contacts with surrounding protein atoms, much like a
molecule in solution. The extent of this isolation can be brought to light using a
modified form of the ergodic measure defined by an average over all atoms of the
reference system that may, for example, be the heme alone, the protein alone, or
the protein and solvent bath. The results are shown in Fig. 7 and summarized in
Table I [110].
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Figure 7. Convergence of the reciprocal ergodic kinetic energy metric 	KE(0)/	KE(t) com-
puted from the molecular dynamics trajectory of the protein carboxymyoglobin in aqueous solution at
300 K for subsets of atoms in the protein, solvent, and heme.
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TABLE 1
Summary of the Inhomogeneous Character of the

Average Static Friction Computed for Specific
Elements of the Solvated Heme Protein System in

Carboxymyoglobin at 300 K

Region γ0 (ps−1)

System
Total 2.12
Protein 1.87
Heme 6.76
Solvent 7.49

Backbone
Oxygens 9.56
Nitrogens 9.45
�-Carbons 6.92
Carbonyl carbons 3.78
Hydrogens 0.91

Residues
Charged 2.39
Aliphatic 1.69
Aromatic 1.09

Energy redistribution within the heme itself occurs on a faster timescale than
the thermalization of the heme with its environment. This indicates that the rate-
limiting step in heme relaxation following photolysis is the “doorway” to energy
transfer between the heme and its surroundings. The location and effectiveness
of a given IVR pathway can depend sensitively on the nonlinear dynamics of the
multimode system and the details of coupling between local modes that determine
the character of dynamics in phase space.

Overall, application of the ergodic measure to explore protein dynamics has
deepened our appreciation for the inhomogeneous character of the distribution of
rates of phase space sampling that correlates with the details of the protein structure.

V. EXTRACTING THE LOCAL EQUILIBRIUM STATE (LES)
AND FREE ENERGY LANDSCAPE FROM

SINGLE-MOLECULE TIME SERIES

In this section, we review our recent studies on the extraction of LES, in which the
system exhibits ergodicity in the metastable state, from single-molecule time series
such as interdye distance in single-molecule measurements. We also revisit the
concept of the free energy landscape of proteins and discuss what kinds of energy
landscape proteins actually experience during the course of their time evolution.
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Recent experimental developments in single-molecule spectroscopy have pro-
vided us with several new insights into not only the distribution of the observable
but also the dynamical information at single-molecule level [111–115]. Fluores-
cence resonance energy transfer (FRET) experiments monitor the fluorescence
intensity from donor (D)/acceptor (A) molecules attached in a single protein. The
observed quantities are expected to trace the time evolution and the distribution
of the D–A distance at the single-molecule level. For example, some experimen-
tal studies have indicated the existence of abnormal diffusion depending on the
timescale at which one observes the dynamical events [114], heterogeneous path-
ways for protein folding in adenylate kinase [113], and different timescales of
relaxation in an intermediate state and in the unfolded state of iso-1-cytochrome
c [116]. Yang et al. [114] showed in single-molecule time series of flavin reduc-
tase with a bound flavin that abnormal diffusion emerges for a timescale less than
10−1 s in the fluorescence lifetime fluctuation while it turns to normal Brown-
ian diffusion for longer timescales than 10−1 s. Rhoades et al. [113] observed
a broad distribution in the timescale of the folding transitions and an impor-
tance of non-Markovian conformational dynamics especially for slow transitions
(>1 s) by trapping adenylate kinase within surface-tethered lipid vesicles.
Kinoshita et al. [116] found using a new single-molecule detection technique
employing a capillary flow system that iso-1-cytochrome c (known as having a
collapsed intermediate state) exhibits relatively slower conformational dynamics
in the unfolded state, compared to that in the intermediate state. As argued by
Talaga et al. [117], for large conformation changes of proteins, there exist some
spurious interactions caused by immobilization from the surface linkage when
using direct surface-linking techniques. It should be noted that the above experi-
mental systems [113, 116] were specially designed so as to be free from the artifacts
with the surface linkage technique and to detect large conformational change for
longer time duration compared to the confocal microscopy experiment.

However, the most fundamental question of what type of energy landscape sin-
gle molecules actually see during the course of such dynamical evolution remains
unresolved. To address this question, an essential goal must be the development
of a device or means to extract the relevant information concerning the local equi-
librium states and their network from scalar single-molecule time series.

A. Extracting LES from Single-Molecule Time Series

There exist several problems in the single-molecule measurements [118–121] in
addition to the problem discussed by Talaga et al. [117]. One of the most cumber-
some obstacles is the so-called “degeneracy problem” due to the dimensionality
of the observable: even when the system resides in different physical states, the
value of the observable (scalar time series) is not necessarily different and may
be degenerate due to the finite resolution of the observation and the nature of
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the projection of the underlying multidimensional information onto the chosen
observable.

Baba and Komatsuzaki have recently developed a new method for extracting
LES from a given scalar time series as free as possible from the degeneracy problem
and constructing an effective free energy landscape [122]. In short, the crux is to
evaluate states not by the value of the time series at each time but by the short-time
distributions in the neighborhood of each time with a time window τ. The short-
time distributions reflect not only the value at each time but also the higher order
moments, that is, variance, skewness, kurtosis, and so on in the vicinity of the time.
Thus, the short-time distribution can differentiate the states that are degenerate in
the value itself as much as possible under the limitation of the available information
(i.e., solely the scalar time series). The secondary crux is to present the criteria of
assigning if an obtained state can be regarded as LES or not within the timescale
τ by checking the timescale separation between the τ and the escape time from
the state candidate. This procedure naturally revisits the concept of the free energy
landscape and provides us with a fundamental question of what type of energy
landscape the system actually follows in a chosen timescale. In the following, we
present their procedure briefly.

Figure 8 shows their scheme to construct a set of state candidates from time
series s(t). Suppose that s(t) is recorded with an equal interval from t1 to tn.
First, they extract “short segments” in a time window (tm − τ/2, tm + τ/2] in the
vicinity of tm and construct the short-time probability density function g(τ)

m (s)
(m = k + 1, k + 2, . . . , n − k, where k is larger than the size corresponding to
τ/2) (see Fig. 8a). Second, they quantify the degree of proximity of two probability
density functions by using Kantorovich metric [123] defined by

dK(pi‖pj) =
∫ ∞

−∞
ds

∣∣∣∣
∫ s

−∞
ds′

(
pi(s

′) − pj(s′)
)∣∣∣∣ (22)

where pi(s) and pj(s) are two arbitrary probability density functions with respect
to s. It was found [122] that the dK is much more appropriate than the most
commonly used measures, for example, Kullback–Leibler divergence (relative
entropy) [124] and Hellinger distance [125], in differentiating the distance between
two probability density functions. This is due to the fact that Kullback–Leibler
divergence and Hellinger distance give rise to a single value (the former is ∞ and
the latter is

√
2) when pi(s) and pj(s) have no overlap in the variable s. Figure 8b

illustrates the metric relationship (regarding dK) among g(τ)
m (s) by projecting onto

a two-dimensional plane so as to maintain the metric relationship among them
[126] (note that in the actual procedure they do not need any projection of the full
dimension into such a lower dimension). Each node corresponds to each g(τ)

m (s) at
a different time tm. Third, Baba and Komatsuzaki partition the set of g(τ)

m (s) into a
union of “clusters” on the full-dimensional metric space as illustrated by clusters
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Figure 8. (a) A time series s(t). For every mth time step tm, the short-time probability density
function g

(τ)
m (s) (

∫
g

(τ)
m (s)ds = 1) is evaluated for a time window (tm − τ/2, tm + τ/2]. (b) A two-

dimensional projection of a set of g
(τ)
m (s) so as to maintain the “metric” relationship among the g

(τ)
m (s)

[determined by Eq. (22)]. Each node or circle corresponds to each g
(τ)
m (s) at different tm (for the

visual clarity, not all but every other 10,000 sampled points of g
(τ)
m (s) are plotted from the time series

in (a)). The set covered by the dotted line indicates the full set of g
(τ)
m (s) corresponding to the full

s(t). Different subsets (covered by solid lines) of different nodes correspond to the different state
“candidate” where the composite g

(τ)
m (s) are classified as the same group on this metric space in the

full dimension. (c) The corresponding frequency distributions of the four major state “candidates” with
respect to s. (Reproduced with permission from Ref. 122. Copyright 2007 by the National Academy of
Sciences.)

surrounded by solid lines in Figure 8b. Each cluster composed of g(τ)
m (s), all of

whose shapes are almost the same, naturally provides a candidate of state. Figure 8c
shows the corresponding frequency distributions of the four major state candidates.
Note here that this procedure does not need to assume any shape of the distribution
function associated with the underlying states (although one has often assumed it
as Gaussian in the conventional analysis with fixing the total number of states).

The most important step is to incorporate the concept of local equilibrium
states into the “candidates of states.” They considered the following criteria in the
timescale for assigning the candidate of state as an LES:

τeq(i) < τ < τesc(i) (23)

where τeq(i) denotes the characteristic timescale of the system to be locally equi-
librated within the state i and τesc(i) that of the system to escape from the state i
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to the other. That is, they considered a “candidate of state” (= a grouped subset
of g(τ)

m (s)) should satisfy the condition, if it can be regarded as an LES, that a
timescale for which the system is locally equilibrated inside the “state candidate i”
is shorter than the timescale of observation τ and the τ is longer than a timescale
at which the system escapes from it.

One can easily check the latter condition τ < τesc(i) by identifying which “can-
didate of state” the system resides in, enters to, and leaves from along the time
series by checking to which cluster the short-time distribution at each time belongs.
However, the equilibration timescale of the state i, τeq(i), in the former condition
is inaccessible by using g(τ)

m (s). Theoretically, the state classified as an LES should
possess a unique local distribution of the observable whenever the system revisits
the same state along the course of time evolution. It is because, by definition, the
system cannot escape any LES before locally equilibrated, resulting in a certain
unique distribution function of any physical quantity. Therefore, their method can
implicitly take into account the former condition in the procedure of grouping
g(τ)

m (s) into a set of approximately unique distribution functions. Their method,
hence, assigns a state candidate as an LES if τ < τesc(i) is satisfied, otherwise as
a non-LES at the given time window τ.

B. Revisiting the Concept of Free Energy Landscape

In order to validate the existence of barriers or “transition states” on the free energy
landscape, the other condition is required, that is, (local) detailed balance. One can
assess the local detailed balance as follows: The above procedure enables us to
evaluate residential probability Pi of the ith LES, that is, how frequently the system
(re)visits the ith LES along the time series. In addition, one can evaluate the rate
constants ki→j (and kj→i) from the i(j)th LES to the j(i)th LES, that is, the
averaged, inverse of life time for which the system resides in the i(j)th LES before
leaving to the j(i)th LES. The local detailed balance condition is represented by

ki→jPi � kj→iPj (24)

Suppose that we can utilize canonical transition state theory (TST) of the reaction
rate, that is,

ki→j = kBT/h exp(−�F
‡
i→j/kBT ) (25)

where �F
‡
i→j , kB, h, and T denote the free energy barrier from the ith LES

to the jth LES, Boltzmann constant, Planck constant, and absolute temperature,
respectively. Then one can evaluate the free energy barrier F ‡ on the free energy
landscape that links the free energy minima Fi and Fj of ith LES and jth LES
(see Fig. 9):

Fi = −kBT ln Pi (26)
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Figure 9. Free energy surface.

and

F ‡ = Fi − kBT ln

(
h

kBT
ki→j

)
= Fj − kBT ln

(
h

kBT
kj→i

)
(27)

where Fi and F ‡, respectively, denote the relative free energy of the ith LES and
the relative free energy barrier linking the ith and jth LES. Note here that unless the
local detailed balance is satisfied, the second equality in Eq. (27) does not hold.
This implies that one can neither identify the relative free energy of the barrier
F ‡ nor construct the landscape of free energy unless the detailed balance holds.
(Kramers theory [127] and Grote–Hynes theory [128] tell us that the canonical
TST provides an upper bound of the rate constant. The free energy barrier derived
from Eq. (27) can be affected by the existence of viscosity from the environment
[129, 130]. An appropriate correction may be required for better estimation of the
free energy barrier [112].)

Let us revisit the concept of free energy landscape. The free energy landscape
F (Q) is usually defined as a function of m-dimensional progress variables Q:

Z(Q) =
∫ ∫

. . .

∫
dq dpδm(Q(q) − Q) exp

(
−E(p, q)

kBT

)
(28)

F (Q) = −kBT log Z(Q) (29)

where E(p, q) denote the total energy of the system (e.g., protein) as a function
of its momenta p and coordinates q coupled with a heat bath of temperature T .
δm, Q(q), and Z(Q) denote multidimensional Dirac’s delta function defined by
δm(z) = δ(z1)δ(z2) · · · δ(zm), progress variables by which free energy landscape is
depicted (usually a certain function of q), and the partition function with respect
to Q, respectively. As for the definition, one can always compute this landscape as
a function of the chosen Q by assuming that all the degrees of freedom distribute
according to the Boltzmann distribution except a set of the “frozen” Q. Quite often
one has argued the dynamics in Q on the landscape of F (Q). The question to be
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addressed here is this: on what type of energy landscape a single protein actually
feels along the evolution in the Q space? In the other words, what should be the
hidden assumption to validate the picture of dynamics on free energy landscape
F (Q)?

The key condition is that the system must attain ergodicity to yield the Boltz-
mann distribution within the space complement to the Q space in the sense of sta-
tistical mechanics (see Section II.). That is, in general, the characteristic timescale
with respect to the Q motions is much longer than those of the other degrees of
freedom so that the system can move about the complementary space at each “con-
stant” Q. Furthermore, such timescale separation between Q and the other degrees
of freedom should maintain through the whole regime where F (Q) is constructed.
Some of the other degrees of freedom complement to Q may become slow com-
pared to the timescale in Q depending on the regime of the whole space. However,
such a possibility of changing the relationship in timescale between each variable
Q and the rest should not be invoked in the context of the free energy landscape.

One may notice the essential difference between the free energy profile in Fig. 9
composed of the LES and the free energy barrier and free energy landscape defined
by Eqs. (28) and (29). The former is defined by LESs and free energy barrier based
on the local ergodicity and local detailed balance that should be considered in
the space or coordinates to describe the landscape (e.g., some Q). That is, the
former definition refers to some requisite conditions in the Q dynamics. On the
other hand, the latter definition of free energy landscape [Eqs. (28) and (29)] never
requires any a priori condition in the Q dynamics themselves except the timescale
separation. The “free energy landscape” defined by Eqs. (28) and (29) is more
appropriately referred to as “the potential of mean force landscape” because it
invokes no constraint on the Q dynamics.

C. Extracted LES of a Minimalistic Protein Model
at Different Temperatures

Suppose that we have a set of single-molecule time series of interdye distance d(t)
that could be converted from the FRET intensity as a function of temperature such
as that in Fig. 10. How can one retrieve the underlying local equilibrium states and
their free energy landscape from such limited information?

Baba and Komatsuzaki illustrated the potential of their method by using
the scalar time series of the end-to-end distance of an off-lattice 3-color,
46-bead model protein [131, 132] at several temperatures [122]. This model
(called the BLN model) is composed of hydrophobic (B), hydrophilic (L), and
neutral (N) beads. The global potential energy minimum for the sequence,
B9N3(LB)4N3B9N3(LB)5L, folds into a �-barrel structure with four strands (see
Fig. 11). Two peaks are seen in the heat capacity: one corresponds to the col-
lapse temperature (∼ 0.65ε [134]) at which the BLN model transitions from the
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Figure 10. An “interdye distance” d(t) of a protein at different temperatures. The d(t) plotted
here is the end-to-end distance of an off-lattice 3-color, 46-bead model protein [131, 132]. Temperature
T , from the top to the bottom column, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 2.0ε/kB (ε is the unit of energy of
the model protein and kB the Boltzmann constant). The isothermal MD simulation was performed by
Berendsen’s thermostat [133]. After a long simulation for equilibration, the value of d was recorded
every 100 steps along the 13 million-step trajectory. Here the MD step, �t, corresponds to ∼1/180 of
the timescale of one vibration of the bond. The coupling constant γ with the thermostat was chosen
as ∼1/(200�t) so that the canonical distribution can be quickly attained during the course of MD
simulation [122].

extended to the compact, collapsed states, and the other to the folding temperature
(0.27 [135]−0.35ε [134]) where it folds into the global potential energy minimum
[136, 137].

Figure 12 shows the result of the analysis of time series d(t), that is, the normal-
ized frequency distributions f (d) of the assigned LES and non-LES with a chosen
time window. The f (d) is defined by, in the absence of any broadening effects of
signal in the measurement,

f (d) =
∑

m∈cluster i

δ(d − d(tm))/
∑

m∈all clusters

∫ ∞

−∞
dsδ(s − d(tm)) (30)

The larger the f (d), the more the system resides in the LES/non-LES. Here the
time window τ was set to be 10,000�t, which corresponds to ∼55 oscillations of
the bond vibration and 50 times longer than the timescale of the coupling ∼ 1/γ .
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Figure 11. The global minimum structure of BLN protein model. The black, white, and gray
color beads correspond to hydrophobic (B), hydrophilic (L), and neutral (N) beads, respectively.
The potential energy function is described by V = (Kr/2)

∑
i
(ri − ri

0)2 + (Kθ/2)
∑

i
(θi − θi

0)2 +∑
i
[A(1 + cos �i) + B(1 + cos 3�i)] + 4ε

∑
i<j−3 S1[(σ/Rij)12 − S2(σ/Rij)6], where S1 = S2 = 1

for BB (attractive) interactions, S1 = 2/3 and S2 = −1 for LL and LB (repulsive) interactions, and
S1 = 1 and S2 = 0 for all the other pairs involving N, expressing only excluded volume interactions.
Kr = 231.2εσ−2 and Kθ = 20ε/rad2, with the equilibrium bond length ri

0 = σ and the equilibrium
bond angle θi

0 = 1.8326 rad.

At 0.3 and 0.4 ε/kB, four and three large LESs are identified. As T increases
to 0.5ε/kB, one can see three large LESs into which some of the LES/non-LES
at 0.4ε/kB are unified. The three large LES observed at 0.5ε/kB are interpreted
as unified into one large LES at 0.6ε/kB. This implies that the system quite of-
ten traverses back and forth the three unified LES at 0.6ε/kB, crossing over the
barriers that link the three LES observed at 0.5ε/kB within the chosen τ. Note
also that some “delocalized” distributions start to emerge (with low probabilities)
besides this large unified state at 0.6ε/kB. At 0.7ε/kB, although the “compact”
large LES ceases to exist, delocalized distributions become more significant with
higher probabilities. Note that from 0.6 to 0.7ε/kB, the “center” of the LES mi-
grates from the short to the long end-to-end distance regions, which corresponds
to the transition from the collapsed state to the unfolded state. This manifests the
existence of Tc between 0.6 and 0.7ε/kB, which is consistent with the previous
assignment in terms of heat capacity ∼0.65ε/kB [134]. At 0.8ε/kB above Tc, two
distributions are classified as LES while the other distributions violate Eq. (22)
in the τ.

The most striking messages of this illustrative example are twofold: First, at
single-molecule level with a finite timescale, LES and non-LES can generally
coexist as a function of temperature and timescale of the observation. Second, one
can see that none of the distributions is classified as LES at 0.7ε/kB within the
chosen τ. This indicates that, on the timescale τ, in neither the compact states nor
more delocalized, denatured states, the system can be well equilibrated (i.e., the
residential times in them are shorter than the τ) although either at higher or lower
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Figure 12. f (d) of LES/non-LES constructed from the d(t) at different temperatures, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, and 2.0ε/kB. In the insets of 0.3–0.5ε, the magnified graphs in the horizontal axis
are also given. The unit of vertical axis is 10−2. The f (d) indicated by the dotted lines are assigned as
non-LESs. (Reproduced with permission from Ref. 122. Copyright 2007 by the National Academy of
Sciences.)

temperatures the system can more likely equilibrate at least in some of the states
at the same chosen timescale τ. We believe that this property of the attainability
of local ergodicity depending on the “temperature” is generic irrespective of the
system when the system has several potential basins [138].
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Figure 13. The dependence of LES/non-LES on the time window τ at T = 0.4ε. The number of
the sample points to evaluate the local distributions (nS ) corresponds to (a) 400, (b) 500, and (c) 2000,
respectively. The unit of vertical axis is the same as in Fig. 12. The solid and dashed lines indicate
the LES and non-LES distributions, respectively. The gray arrows indicate the merger of a non-LES
into an LES as nS = 400 → 500. The black arrows indicate the change from LES to non-LES as
nS = 400 → 500 and the merger of a non-LES into an LES as nS = 500 → 2000. (Reproduced with
permission from Ref. 122. Copyright 2007 by the National Academy of Sciences.)

It was indicated in Fig. 13 that the topography of the landscape depends on the
timescale of observation; two metastable states are unified as one if the timescale
of observation is longer than the escape timescale for which the system can visit
mutually these two states [122, 138]. The different time windows naturally lead to
different coarse-grained LESs and different coarse-grained free energy landscapes,
if they exist, the system should find at the different timescales.

This corresponds to a manifestation of transition from a set of two “ergodic”
states (i.e., locally ergodic) to a single “ergodic” state, as observed in small atomic
clusters in Section III, that is, a bimodal to unimodal peak in the local Lyapunov
exponent distribution for a “phase transition” in a small finite system.

D. Outlook

In this section, we have reviewed a new method to extract effective free energy
landscapes from single-molecule time series. If and only if the local equilibrium
and the local detailed balance are satisfied in a chosen timescale of observation
τ, one can construct the effective free energy landscape for the regions where
the system wanders frequently. In the procedure, the equilibration time for which
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the system can be locally equilibrated inside the chosen state(s) was not assessed
directly but rather implicitly taken into account by checking invariance of the
probability density function of the observable. One should note the emphasis of
“local” in the phrase “local detailed balance.” At the single-molecule level, in
principle, detailed balance does not hold globally unless the length of time goes
almost to infinity and the ergodicity in the sense of statistical physics is known to
be satisfied in advance. However, one can still expect the existence of the detailed
balance in a certain local regime with a certain timescale τ where free energy
basins and barriers are well defined.

VI. FUTURE PERSPECTIVES

In this chapter, we have addressed the fundamental background and practical ap-
proaches for addressing ergodic problems in complex systems in chemical physics.
Real complex systems have provided us with challenging subjects in ergodicity:
multiplicity of ergodicity, heterogeneity of timescales to attain ergodicity for each
moiety of the system, the openness of the phase space, and so on. Multiplicity
of ergodicity is closely related to the issue of the time-dependent nature of the
free energy landscape whose morphological features depend on the timescale of
observation. The openness of the phase space demands that the observer incorpo-
rate the finiteness of the timescale of the observation when considering the ergodic
properties of a system. In exploring the ergodic character of real systems, one must
carefully choose criteria or measures of ergodicity and self-averaging. In practice,
it is impossible to assure that the system satisfies the mathematical condition of
ergodicity. Local Lyapunov exponent distributions provide insight into the distinc-
tion between chaotic and less chaotic regions, dimensionality of the exploration of
the system through the full phase space, and a timescale of merging two or more
ergodic regions. When one can compute the local Lyapunov exponent distribu-
tion, this measure provides substantial insight into the detailed system dynamics.
However, when the size of the system becomes large, say, more than a hundred de-
grees of freedom or so, it is impossible to compute such an elaborate distribution.
For those cases, the ergodic measure provides a practical measure of the rate of
self-averaging that may be readily applied to systems of any dimension if one can
know the equation of motion. Furthermore, the more apparent distinction between
small-body systems and larger many-body systems such as proteins is the exis-
tence of multiple time- and space scales. As presented in Section III of Chapter 3,
the divergence of nearby trajectories at infinitesimally small deviation in the phase
space is expected to become almost irrelevant to protein dynamics in the large.
For many-body systems such as proteins, many outstanding problems to be ad-
dressed now are rooted in the existence of a strongly inhomogeneous distribution
of timescales that must be sampled in order to attain ergodic sampling. Moreover,
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the exact timescale will depend on the moiety of the system, as shown in Section IV,
and its relationship with protein function in the space of nonequilibrium degrees
of freedom. When one cannot know the equation of motion or cannot compute dy-
namical information because of the limitation of computational power, a possible
measure to address the concept of ergodicity should be based on the limited dy-
namical information obtained by experiments such as single-molecule time series.
The method of LES analysis developed by Baba and Komatsuzaki can be a strong
tool to retrieve the ergodic property from single-molecule measurements. Recently,
their approach was applied to investigate which interdye distances (which pair of
amino acid residues) are suitable to retrieve the underlying free energy landscape
of protein G [139].

The much more challenging question is this: How is the concept of ergodicity/
nonergodicity relevant to biological functions in more complex systems such as
signal transduction in a cell or protein–protein interaction and other recogni-
tion/signaling problems? To look into this challenging problem, it is crucial to
establish a device or means to quantify the robustness of the concept in terms of
time series by linking with single-molecule biophysics. The argument of Maxwell’s
demon in Section II and the existence of heterogeneous distribution of timescales
to achieve ergodicity at each moiety and hierarchy in Sections III and IV may
suggest us that the system has not to “feel” full ergodicity or full equilibrium at
timescales to characterize or be relevant to biological functions even though most
degrees of freedom are more likely expected to be thermalized. That study provides
a glimpse of the insights that may be achieved through the application of methods
for probing ergodicity to complex biological systems.
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