Reading the Scientific Literature

Accessing the Literature

CH801

Sept 21, 2004
• How do I look for what I need?
 – SciFinder Scholar
 – Databases

• What literature resources are available?
 Journals, Books, and Patents
 – Online
 – Libraries
 – BU and MIT and otherwise
Search Collections

- Library catalogs
- Indexes & databases (SEL list)
- Ejournals A-Z (SEL list)
- Ejournals by subject
- Eresources by subject

Guides & Tutorials

- Tutorial for BI 107
- Finding articles
- Patents searching
- Standards sources
- Subject Guides

How To...

- Connect from off-campus
- Find journal articles
- Locate journals
- Renew books online
- Request a BLC card
- Request interlibrary loan
- Request item from storage
- View a reserve list

Facts & Services

- Hours/directions
- Floorplans
- Staff contacts
- Borrowing
- Collections
- Copying/printing
- Instruction
- Interlibrary loan
- Reserves
- Storage

News

We are pleased to announce that Boston University's Medical Library and Mugar Memorial Library have jointly purchased access to the Blackwell Science, Technology and Medicine electronic journal collection. Access to these journals will be available through the Library's Ejournals A-Z webpage.

Online user-initiated book loans featured in Consortium Virtual Catalog.

More Library News...
Boston Library Consortium

Boston Library Consortium catalogs

<table>
<thead>
<tr>
<th>Virtual Catalog</th>
<th>(joint catalog of books held in participating Consortium libraries, identified by asterisks below; BU students, faculty, and staff can submit requests for book loans directly from these libraries when using the Virtual Catalog)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boston College Libraries</td>
<td>U of Connecticut Libraries</td>
</tr>
<tr>
<td>Boston Public Library</td>
<td>UMass Amherst Libraries *</td>
</tr>
<tr>
<td>Boston University Libraries *</td>
<td>UMass Boston Library *</td>
</tr>
<tr>
<td>Brandeis University Libraries</td>
<td>UMass Dartmouth Library *</td>
</tr>
<tr>
<td>Brown University Library *</td>
<td>UMass Lowell Libraries *</td>
</tr>
<tr>
<td>MBL/WHOI Library *</td>
<td>UMass Worcester Library (medical) *</td>
</tr>
<tr>
<td>MIT Libraries</td>
<td>U of New Hampshire Library</td>
</tr>
<tr>
<td>Northeastern University Libraries *</td>
<td>Wellesley College Library *</td>
</tr>
<tr>
<td>State Library of Massachusetts</td>
<td>Williams College Libraries *</td>
</tr>
<tr>
<td>Tufts University Libraries *</td>
<td></td>
</tr>
</tbody>
</table>

* Participants in the Virtual Catalog.

Please note that Harvard University, Emerson College, and Simmons College are NOT Consortium Libraries.

Databases and Journals

- SciFinder Scholar
- Web of Science
- Digital Dissertation Abstracts
- PubMed/NCBI
- E-Journals
- **ACM Digital Library**: Search or browse all ACM journals and conference proceedings. Display full text of articles.
- **AGRICOLA** (Agricultural Online Access) 1966+
- **Alt-Health Watch**
- **Applied Science & Technology Full Text** 1983+
- **arXiv.org e-Print archive** 1992+
- **ASFA I: Biological Sciences and Living Resources** 1971+
- **BIOSIS** (Biological Abstracts) 1989+
- **Books In Print**
- **CINAHL** (Ovid: in-library use or password)
- **Compendex** EngineeringVillage2 1970+ *A combined search is now possible of COMPENDEX & INSPEC*
- **Computer Science Index** (new vendor: Ebsco 6/7/04)
- **Computer Science Preprint Server**
- **Current Index to Statistics**
- **Dissertation Abstracts** (Proquest Digital Dissertations) 1861+
- **Energy Citations Database** 1948+
- **Environmental Issues & Policy Index** 1973+
- **General Science Full Text** (WilsonWeb) 1984+
- **GeoRef** 1785+
- **IEEE Computer Society Digital Library** Searchable (22) IEEE Computer Society periodicals from 1988+ and most Computer Society conference proceedings 1995 +
- **IEEE Xplore** - Searchable full text access to over 100 IEEE journals from 1998+
- **Ingenta** (unrestricted access)
- **INSPEC** 1968+ EngineeringVillage2 *A combined search is now possible of COMPENDEX & INSPEC*
- **Jahrbuch Project** (Jahrbuch über die Fortschritte der Mathematik) 1868-1942
- **KNOVEL** ON TRIAL until 9/2004
- **MathSciNet** 1940+
- **Medline** 1966+ (via Ovid: in-library use or password)
- **Pollution Abstracts** 2000+
- **PrimateLit** 1940+
- **Proteome Bioknowledge Library** (Quick Access-- Databases)
- **PsycINFO** 1872+ EBSCO
- **PubMed** 1966+ (unrestricted access)
- **SciFinder Scholar** (Chemical Abstracts) 1967+
- **Sport Discus** 1975+
- **U.S. Patents** 1975+
- **Web of Science** (Science Citation Index) 1988+
- **WorldCat**
SciFinder Scholar provides electronic access to the Chemical Abstracts (CA) database for B.U. faculty, staff, and students. SciFinder Scholar is a proprietary software program based on client-server technology. SciFinder Scholar provides a graphic interface that permits easy, natural language searching by subject, author, and chemical substance. Both PC and Macintosh versions of the client are available.

The Chemical Abstracts database (1907 to present) is the largest and most comprehensive database of chemical literature in the world. It covers core areas of chemistry and also chemistry-related sciences such as biotechnology, agricultural chemistry, environmental sciences, medicine, toxicology, food sciences, textiles, petroleum products and packaging, among others.

Access is available 24 hours a day but is limited to 2 (two) simultaneous users.

The "2004" version of SciFinder Scholar is available for downloading from this web site as of Sept. 15, 2004.

Please read the:

SciFinder Scholar User Agreement.

Please note that by accessing the download you are implicitly accepting the SciFinder Scholar User Agreement.

Click HERE to download the PC or MAC version of SciFinder Scholar.

If you have questions regarding either access to or use of SciFinder Scholar, please contact a reference librarian at:

Science & Engineering Library
selइll@bu.edu
(517) 353-0174

SEL Home

UP
SciFinder Scholar Download Instructions

Boston University has negotiated a site license agreement for SciFinder. Under the terms of this agreement, the University is allowed to distribute this software to all faculty, staff, and registered students. The software may be used on institutionally owned computers and on computers owned by faculty, staff, and students of the University. To access the SciFinder database, the user must be at a pc/mac that meets one of the following requirements:

- PC/Mac is on the B.U. campus, or;
- PC/Mac is connected to the B.U. campus network via the PPP modem pool, or;
- PC/Mac has connected to the B.U. VPN network. [Users of cable modems such as COMCAST Broadband will want to use the VPN network in order to access SciFinder Scholar.]

These restrictions are due to the authentication (IP address checking) that is performed at the SciFinder site.

Please note that you must have a Boston University Kerberos login/password to download the client software. For most users this is their ACS login/password.

The software may not be re-distributed to individuals who are not affiliated with Boston University.

Please select your type of computer

PC Mac

Back to the SciFinder Scholar main page

September 15, 2004
Download SciFinder Scholar version 2004

IBM PC or Compatible Running Windows - System Requirements

- Computer: PC with at least a Pentium processor and 50 MB of available hard disk space.
- Microsoft Windows 95/98/Me/NT/2000/XP with minimum 64MB RAM
- Monitor: SVGA color monitor.
- Printer: a high-quality graphics printer, e.g., laser or inkjet, is recommended.
- Web Browser: Netscape Version 4 or higher, or Internet Explorer 4 or higher. A web browser is needed to access full text via ChemPort, the online help messages, and web resources within the Tools menu. Java, JavaScript and Cookies must be enabled for online help and some features within ChemPort. ActiveX must be enabled in Microsoft Internet Explorer for ChemPort Reference Linking.
- Adobe Acrobat version 4+ is needed to access the PDF version of SciFinder Scholar 2004 User Guide.

IBM PC or Compatible Running Windows - Downloading and Installing

Downloading

- Make sure you have a Temp directory/folder on your hard disk [e.g. C:\TEMP].
- Click here to begin downloading the client.
- You will be prompted for your B.U. login username and Kerberos password. [This is the same username/password you use on ACS.] After you press the continue button, the download will begin.
- A Save As box should appear. In the Save In area at the top of the box, make sure your Temp folder is listed. In the File Name area at the bottom, the name should appear as scholar.exe.
- Click on the Save Button, which will begin downloading the file from the Web to your Temp folder on your hard drive.
- Once downloading begins, you will see another box appear called Saving Location.
- This box will disappear once the file scholar.exe is completely downloaded. This means it is now in the Temp folder on your hard drive.

Installing
3) I will NOT use SciFinder Scholar for commercial research; for example, research that is done under a funding or consultant contract where the results are delivered to a for-profit organization, or for research that involves patentability searching. If I require SciFinder for commercial purposes, I will have the search done using a commercial account by contacting the librarian responsible for chemistry searches on campus, by contacting CAS and having them perform a search for me, or by acquiring and using the commercial SciFinder product.

4) I will use my search results in the ordinary course of academic research and acknowledge that I may store search results in electronic form for the duration of research projects, provided that at any one time, I store no more than 5,000 records. I may share search results in a limited, reasonable way with other University students or faculty working on the same project, but I will not aggregate my electronic search results with those of anyone else. I will delete stored records when I no longer need them for the relevant research project, or after the completion of my degree program, whichever occurs first. If I need to use search results beyond what is described here, I will contact my University Key Contact to discuss and to obtain CAS permission. I ACKNOWLEDGE THAT I AM NOT PERMITTED TO DISTRIBUTE ANY CAS DATA OR SCIFINDER SCHOLAR, FOR COMMERCIAL GAIN OR OTHERWISE, OUTSIDE THE UNIVERSITY OR TO THIRD PARTIES.

5) I acknowledge that the University has entered into a license agreement with CAS to provide me with access to SciFinder Scholar, and that violation of the license by any user could result in a termination of the license for all users.
SciFinder Scholar Update:

SciFinder Scholar News: Over 18,000 enzymatically catalyzed organic reactions from approximately 4,000 documents are now searchable in SciFinder Scholar.

SciFinder Scholar (2004 Edition) is now available!
The world's leading scientific information resource has just gotten better! This new edition of SciFinder Scholar offers several new options to explore CAS' vast collection of scientific information more precisely.

Here is the document you requested...

Decarboxylative Aldol Reactions of Allyl \(\beta \)-Keto Esters via Heterobimetallic Catalysis. Journal of the American Chemical Society (2004), 126(37), 11440-11441 CODEN: JACSAT; ISSN: 0002-7863; English

Here are the options for the document you requested...

Web-based document resources

- HTML from the publisher.
- PDF from the publisher.

Publisher

- American Chemical Society

Journal

- Journal of the American Chemical Society

Send a colleague this reference

Logoff

ChemPort Help

About
Decarboxylative Aldol Reactions of Allyl β-Keto Esters via Heterobimetallic Catalysis

Sha Lou, John A. Westbrook, and Scott E. Schaus*

Department of Chemistry, Metcalf Center for Science and Engineering, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215

Received July 6, 2004; E-mail: seschaus@bu.edu

The direct aldol reaction is a versatile approach toward the construction of building blocks for use in synthesis.¹ Selective formation of the enolate in the presence of the aldehyde poses a significant challenge in the development of a direct aldol reaction. Recent advances toward this goal include metal-catalyzed deprotonation of the nucleophile,² transition metal-mediated reductive aldol condensations of unsaturated carbonyl compounds,³ decarboxylative aldol reactions of malonic acid half thiesters,⁴ and proline-catalyzed aldol condensations of aldehydes and ketones.⁵ Although considerable progress has been made, transition metal-mediated direct aldol reactions are an underdeveloped approach.⁶ The propensity of transition metals to form a carbon-bound enolate that is less reactive toward nucleophilic addition has limited the ability to develop a catalytic reaction (eq 1).⁷ However, under the appropriate conditions, an in situ generated transition metal complex may serve as an intermediate in an aldol reaction process.⁸ This report describes a heterobimetallic catalyst system that promotes the direct aldol reaction of allyl β-keto esters and aldehydes.⁹

![Chemical Structure]

Table 1. Decarboxylative Aldol Reactions of β-Keto Ester 3a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>Metal Salt</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>dppe</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>dppp</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>BINAP</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>DIOP</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>DIOP</td>
<td>FeCl₃</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>DIOP</td>
<td>ZnCl₂</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>DIOP</td>
<td>CuCl₂</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>DIOP</td>
<td>LaCl₃</td>
<td>60</td>
</tr>
<tr>
<td>10</td>
<td>DIOP</td>
<td>YbCl₃</td>
<td>93</td>
</tr>
</tbody>
</table>

* Reactions were carried out using 2.5 mmol allyl 4,4-dimethyl-3-oxopentanoate, 1 mmol 3-phenylpropan-2-one, and 2.5 mol % Pd₂dba₃ in CH₂Cl₂ (0.5 M) at room temperature for 24 h under Ar, followed by flash chromatography on silica gel. In the absence of metal salt, 5 mol % ligand was added to the reaction; with the addition of metal salt, 10 mol % ligand was added; dppe: 1,2-bis(diphenylphosphino)ethane, dppp: 1,1′-bis(diphenylphosphino)ferrocene, BINAP: (+)-2,2′-bis(diphenylphosphino)-1,1′-binaphthyl, DIOP: (±)-O-isopropylidene-trans-2,3-dihydroxy-1,4-bis-(diphenylphosphino)butane. 5 mol % metal salt was added to the reaction.
Cited Reference Search

Selected database(s) and timespan:
Databases=SCI-EXPANDED, SSCI, A&HCI; Timespan=1986-2004

Find the citations to a person's work by entering the person's name, the work's source, and/or publication year.

CITED AUTHOR: Enter the name of the cited author (see cited author index).
Example: O'BRIAN C* OR O'BRIAN C
McDougall N T

CITED WORK: Enter the abbreviated journal/book title in which the work appeared, a patent number, or another work (see cited work index or view the Thomson ISI list of journal abbreviations).
Example: J Comput Appl Math

CITED YEAR(S): Enter year, or range of years, the cited work was published.
Examples: 1943 or 1943-1945

SEARCH CLEAR

>> view your search history/combine sets
View our Cited Reference Searching tutorial
Cited Reference Search

Your search has found the following references.
Select only those cited references you want to include,
then click FINISH SEARCH.
(Hint: Look for variants. Papers are sometimes cited incorrectly.)

View the articles that cite the selected references.
The completed search will be added to the search history.

<table>
<thead>
<tr>
<th>CITED REFERENCE INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>References 1 -- 1</td>
</tr>
<tr>
<td>Select</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

* "Select All" adds the first 500 matches to your cited reference search, not all matches.
** Times Cited counts are for all databases and all years, not just for your current database and year limits.

Restrict search by languages and document types:

- All languages
- English
- Afrikaans
- All document types
- Article
- Abstract of Published Item

View the articles that cite the selected references.
The completed search will be added to the search history.

Back to top
Asymmetric Morita-Baylis-Hillman reactions catalyzed by chiral Bronsted acids

Title: Asymmetric Morita-Baylis-Hillman reactions catalyzed by chiral Bronsted acids

Author(s): McDougal NT, Schaus SE

Document Type: Article

Language: English

Cited References: 35 Times Cited: 11

KeyWords Plus: DIELS-ALDER REACTION; ORGANIC CATALYSIS; STRATEGIES; ALDEHYDES; CYCLOADDITION; ADDUCTS; AMINES; ROUTE

Addresses: Schaus SE (reprint author), Boston Univ, Metcalf Ctr Sci & Engr, Dept Chem, 50 Commonwealth Ave, Boston, MA 02215 USA

E-mail Addresses: seschaus@chem.bu.edu

Publisher: AMER CHEMICAL SOC, 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category: CHEMISTRY, MULTIDISCIPLINARY

IDS Number: 729QG

ISBN: 0002-7863

Record 1 of 1
Citing Articles--Summary

Asymmetric Morita-Baylis-Hillman reactions catalyzed by chiral Bronsted acids
MCDUGAL NT, SCHAUSS SE
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
125 (40): 12004-12005 OCT 8 2003

These documents in the database cite the above record:

11 results found Go to Page: [] of 2
Records 1 -- 10

 Development of bis-thiourea-type organocatalyst for asymmetric Baylis-Hillman reaction
 TETRAHEDRON LETTERS 45 (29): 5589-5592 JUL 12 2004

2. Lee KY, Gowrisankar S, Kim JN
 N,N,N'N'-tetramethyl-1,3-propanediamine as the catalyst of choice for the Baylis-Hillman reaction of cycloalkenone: rate acceleration by stabilizing the zwitterionic intermediate via the ion-dipole interaction
 TETRAHEDRON LETTERS 45 (29): 5485-5488 JUL 5 2004

 The azoles: effective catalysts for Baylis-Hillman reaction in basic water solution
 TETRAHEDRON LETTERS 45 (26): 5171-5174 JUN 21 2004

4. Krishna PR, Kannan V, Raddy PVN
 N-methylprolinol catalysed asymmetric Baylis-Hillman reaction
 ADVANCED SYNTHESIS & CATALYSIS 346 (6): 603-605 MAY 2004

5. Rastogi N, Namboothiri INN, Cojocaru M
 alpha-Hydroxymethylation of conjugated nitroalkenes via the Morita-Baylis-Hillman reaction
 TETRAHEDRON LETTERS 45 (24): 4745-4748 JUN 7 2004

 Convenient and efficient reduction of 1,1'-binaphthyls to H-8-1,1'-binaphthyl derivatives with Pd and Ru catalysts on solid support
 JOURNAL OF ORGANIC CHEMISTRY 69 (9): 3222-3221 APR 30 2004

7. Uruguchi D, Terada M
 Chiral Bronsted acid-catalyzed direct Mannich reactions via electrophilic activation
 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 126 (17): 5356-5357 MAY 5 2004

8. Thadani AN, Stankovic AR, Rawal VH
 Enantioselective Diels-Alder reactions catalyzed by hydrogen bonding

9. Pihko FM
 Activation of carbonyl compounds by double hydrogen bonding: An emerging tool in asymmetric catalysis
Web of Science Results Analysis

11 records. Citing Articles: MCDUGAL NT. Asymmetric Morita-Baylis-Hillman reactions catalyzed by chiral Bronsted acids

<table>
<thead>
<tr>
<th>Select field to rank by:</th>
<th>Analyze:</th>
<th>Set display options:</th>
<th>Sort by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institution Name</td>
<td></td>
<td></td>
<td>Record count</td>
</tr>
<tr>
<td>Language</td>
<td></td>
<td>Show the top 25 results.</td>
<td>Selected field</td>
</tr>
<tr>
<td>Publication Year</td>
<td></td>
<td>Minimum record count (threshold):</td>
<td></td>
</tr>
<tr>
<td>Source Title</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use the checkboxes below to view the records.

Note: The number of records displayed may be greater than the listed Record Count if the original set contained more records than the number of records analyzed.

<table>
<thead>
<tr>
<th>VIEW RECORDS</th>
<th>Field: Institution Name</th>
<th>Record Count</th>
<th>% of 11</th>
<th>Bar Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bar Ilan Univ</td>
<td>1</td>
<td>9.1 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chinese Acad Sci</td>
<td>1</td>
<td>9.1 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chonnam Natl Univ</td>
<td>1</td>
<td>9.1 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Degussa AG</td>
<td>1</td>
<td>9.1 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gakushuin Univ</td>
<td>1</td>
<td>9.1 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indian Inst Chem Technol</td>
<td>1</td>
<td>9.1 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indian Inst Technol</td>
<td>1</td>
<td>9.1 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indiana Univ</td>
<td>1</td>
<td>9.1 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nankai Univ</td>
<td>1</td>
<td>9.1 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tohoku Univ</td>
<td>1</td>
<td>9.1 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tokyo Univ Agr & Technol</td>
<td>1</td>
<td>9.1 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Univ Chicago</td>
<td>1</td>
<td>9.1 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Univ Rostock</td>
<td>1</td>
<td>9.1 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Univ Tokyo</td>
<td>1</td>
<td>9.1 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wayne State Univ</td>
<td>1</td>
<td>9.1 %</td>
<td></td>
</tr>
</tbody>
</table>

(1 records (9.1%) do not contain data in the field being analyzed.)
Results Analysis

11 records. Citing Articles: MCDOUGAL NT. Asymmetric Morita-Baylis-Hillman reactions catalyzed by chiral Bronsted acids

<table>
<thead>
<tr>
<th>Select field to rank by</th>
<th>Analyze</th>
<th>Set display options</th>
<th>Sort by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>C First 500 records</td>
<td>Show the top 25 results. Minimum record count (threshold):</td>
<td>C Record count</td>
</tr>
<tr>
<td>Publication Year</td>
<td>C All (up to 2000 records)</td>
<td></td>
<td>C Selected field</td>
</tr>
<tr>
<td>Source Title</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject Category</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rank results by the selected field.

Use the checkboxes below to view the records.

Note: The number of records displayed may be greater than the listed Record Count if the original set contained more records than the number of records analyzed.

<table>
<thead>
<tr>
<th>View Records</th>
<th>Field: Source Title</th>
<th>Record Count</th>
<th>% of 11</th>
<th>Bar Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TETRAHEDRON LETTERS</td>
<td>4</td>
<td>36.4 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANGEWANDTE CHEMIE-INTERNATIONAL EDITION</td>
<td>2</td>
<td>18.2 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JOURNAL OF THE AMERICAN CHEMICAL SOCIETY</td>
<td>2</td>
<td>18.2 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADVANCED SYNTHESIS & CATALYSIS</td>
<td>1</td>
<td>9.1 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JOURNAL OF ORGANIC CHEMISTRY</td>
<td>1</td>
<td>9.1 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA</td>
<td>1</td>
<td>9.1 %</td>
<td></td>
</tr>
</tbody>
</table>

View Records
INVESTIGATION AND DEVELOPMENT OF INVERSE ELECTRON DEMAND DIERS-ALDER REACTIONS OF HETERO CYCLIC AZADIENES: I. THERMAL CYCLOADDITION OF 1,2,4-TRIAZINES, A GENERAL PYRIDINE ANNULATION; II. FORMAL TOTAL SYNTHESIS OF STREPTONIGRIN; III. SYNTHETIC STUDIES ON LAVENDAMYCIN (PYRIDINES)

by Panek, James Steven, PhD

University of Kansas, 1984, 190 pages

AAT 8513832
The investigation and development of a general pyridine annulation based on the inverse electron demand Diels-Alder reaction of 1,2,4-triazines (electron-deficient heterocyclic azadienes) with enamines (electron-rich olefins) is described. A formal, total synthesis of streptorignin (1) is detailed and is based on the sequential implementation of two inverse electron demand Diels-Alder reactions: cycloaddition of dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate (7) with 5-methyl-6-methoxy-5-nitro-2-quinolinyl thioumidate (11d) (construction of the streptorignin ABC ring system) followed by 4+2 cycloaddition of the resulting dimethyl 5-(6-methoxy-5-nitro-2-quinolinyl)-1,2,4-triazine-3,5-dicarboxylate (15) with the morpholine enamine of 2-benzoyloxy-3,4-dimethoxypropophenone (20). Preparation of the streptorignin CD biaryl ring system and completion of the assemblage of the streptorignin carbon skeleton. A synthetic approach to lavandamycin (2a) is detailed and is based on the implementation of the inverse electron demand Diels-Alder reaction of triethyl 1,2,4-triazine-3,5,6-tricarboxylate (4c) with the pyridine enamine of o-bromopropophenone (30); lavandamycin DE ring construction), followed by palladium(II)-mediated (beta)-carboline formation (lavandamycin CDE ring construction). Implementation of a base-catalyzed Friedlander condensation of 2-amino-3-benzoyloxy-4-bromoanilide (48) with 1-acetyl-3-carbomethoxy-4-methyl-(beta)-carboline (41) completed the assemblage of the lavandamycin pentacyclic carbon framework. A preliminary investigation on the structure-activity relationships of a series of compounds possessing partial structures related to the antitumor-antibiotics streptorignin and lavandamycin is described.

Li C, Porco JA Jr.

Department of Chemistry and Center for Chemical Methodology and Library Development, Boston University, Boston, Massachusetts 02215, USA.

PMID: 14759167 [PubMed - PubMed Central Link]
Related Articles

 PMID: 14799167 [PubMed - indexed for MEDLINE]

 Angiogenesis inhibitor epoxyquinol: a total synthesis and inhibition of transcription factor NF-kappaB.
 PMID: 12237763 [PubMed - indexed for MEDLINE]

3. Shoji M, Yanaguchi J, Kakeya H, Osada H, Hayashi Y.
 Total synthesis of (±)-epoxyquinolins A and B.
 PMID: 12275686 [PubMed - indexed for MEDLINE]

 Total synthesis of the quinone epoxide dimer (+)-torreyanic acid: application of a biomimetic oxidation/electrocyclization/Diels-Alder dimerization cascade.
 PMID: 12708360 [PubMed - indexed for MEDLINE]

5. Block O, Klein G, Altenbach H, Brauer DJ.
 New stereoselective routes to the epoxyquinol core of manzamine-type natural products: Synthesis of enantiopure (±)-bromocline, (−)-LL-C10037 alpha, and (+)-KT 8110.
 PMID: 10844002 [PubMed - indexed for MEDLINE]

 Epoxyquinol A, a highly functionalized pentaketide dimer with antiangiogenic activity isolated from fungal metabolites.
 PMID: 11922253 [PubMed - indexed for MEDLINE]

7. Pettus LH, Van De Water BW, Pettus TR.
 Synthesis of (+/-)-epoxyosorbicillinol using a novel cyclohexa-2,5-dieneone with synthetic applications to other sorbicillin derivatives.
 PMID: 11363912 [PubMed - indexed for MEDLINE]

8. Chadhuri SR, Camlin GS, Lowery TL.
 Total synthesis of (2S,3S,3S,10S)-6,9-epoxynonadec-18-ene-7,10-diol and formal total synthesis of (±)-trans-kumausyne from D-arabinose.

Li C, Porco JA Jr.

Department of Chemistry and Center for Chemical Methodology and Library Development, Boston University, Boston, Massachusetts 02215, USA.

MeSH Terms

- Dimersization
- Epoxy Compounds/chemical synthesis
- Hydroquinones/chemical synthesis
- Silanes/chemistry
- Stereocisomerism
- Support, Non-U.S. Gov't

Substances

- Epoxy Compounds
- Hydroquinones
- RKB-3564 D
- Silanes
- silanol

PMID: 14759167 [PubMed - indexed for MEDLINE]
E-Journals Available Online

- American Chemical Society
- ScienceDirect
- InterScience
- Thieme
- Chemical Society of Japan
- Royal Society of Chemistry
- ...
English Language Journals

= This journal in thieme-connect = List of back issues

American Journal of Perinatology
Clinics in Colon and Rectal Surgery
Endoscopy
European Journal of Pediatric Surgery
Experimental and Clinical Endocrinology & Diabetes
Facial Plastic Surgery
Hepato-Gastroenterology
Hormone and Metabolic Research
International Journal of Sports Medicine
Journal of Reconstructive Microsurgery
Minimally Invasive Neurosurgery
Neuropediatrics
Orthopedic Trauma Directions
Osteosynthesis and Trauma Care
Pharmacopsychiatry
Plant Biology
Planta Medica
SYNLETT
SYNTHESIS
RSC Journals

Online Journals from the RSC

Search RSC Online Journals
Journals archiving statement
Change of article server URL
Electronic access routes
How to arrange access
2004 Online Journals pricing

Electronic information Licence Agreement
Frequently Asked Questions
Advance Articles
Article Pay Per View
IP registration form
Email Alerts Registration Form

Online Journals available

The Analyst
Analytical Abstracts
Annual Reports A (inorganic)
Annual Reports B (Organic)
Annual Reports C (Physical)
Catalysts & Catalysed Reactions
Chemical Biology Virtual Journal
Chemical Communications
Chemical Hazards in Industry
Chemical Science
Chemical Society Reviews
Chemistry World

Journal of Analytical Atomic Spectrometry
Journal of Chemical Research
Journal of Environmental Monitoring
Journal of Materials Chemistry
Lab on a Chip
Laboratory Hazards Bulletin
Mendeley Communications
Methods in Organic Synthesis
Natural Product Reports
Natural Product Updates
New Journal of Chemistry
Organic & Biomolecular Chemistry
Patents

• United States Patent
 – http://www.uspto.gov/

• European Patents

• Japanese Patents
 – http://www.jpo.go.jp/
Libraries

• Boston Library Consortium
• Boston University
 – 38 Cummington Street
 Boston MA 02215
• Massachusetts Institute of Technology
 – 77 Massachusetts Ave
 Cambridge MA 02139
• Northeastern University
 – 360 Huntington Ave.
 Boston MA 02115
MIT Science Library

• Hours
 – Monday-Thursday 8am - midnight
 Friday 8am - 10pm
 Saturday 10am - 10pm
 Sunday 10am - midnight

• Barton- http://library.mit.edu/F/?func=file&file_name=find-b
 – 2.6 million printed volumes, 20,000 serial subscriptions, CDs, videos, microforms, online resources, and more

• Do Not Need a P-Card
Search Collections

- Library catalogs
- Indexes & databases (SEL list)
- Ejournals A-Z (SEL list)
- Ejournals by subject
- Eresources by subject

Guides & Tutorials

- Tutorial for BI 107
- Finding articles
- Patents searching
- Standards sources
- Subject Guides

How To...

- Connect from off-campus
- Find journal articles
- Locate journals
- Renew books online
- Request a BLC card
- Request interlibrary loan
- Request item from storage
- View a reserve list

Facts & Services

- Hours/directions
- Floorplans
- Staff contacts
- Borrowing
- Collections
- Copying/printing
- Instruction
- Interlibrary loan
- Reserves
- Storage

News

We are pleased to announce that Boston University's Medical Library and Mugar Memorial Library have jointly purchased access to the Blackwell Science, Technology and Medicine electronic journal collection. Access to these journals will be available through the Library's Ejournals A-Z webpage.

Online user-initiated book loans featured in Consortium Virtual Catalog.

More Library News...