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ABSTRACT
New regulations grant network service providers with the
right to lease their spectrum to short-term leased secondary
users (SUs) for opportunistic usage. In this work, we tackle
the challenge of determining admission control and pricing
policies on SUs that guarantee profitability under general
secondary demand and general traffic models, and accu-
rately reflect the operation of modern cellular data networks
(e.g., LTE) in which resources are shared rather than rigidly
partitioned. We first analyze the joint problem of bandwidth
allocation and admission control of elastic secondary users.
We assume Poisson session arrivals, where each session is
composed of arbitrarily distributed, and possibly correlated,
on and off periods. Under balanced bandwidth allocation,
we show that the steady state distribution of the number of
active users in the network is insensitive to traffic charac-
teristics beyond their means. This result holds for arbitrary
occupancy-based admission control policies on SUs. Next,
we prove that the optimal occupancy-based admission con-
trol policy is of threshold type, which means that secondary
user arrivals are accepted when the total number of active
users in the network is below a certain threshold; otherwise,
they are rejected. Finally, we identify a price, referred to as
the break-even price, and an admission control policy which,
together, ensure profitability for any price greater than the
break-even price, irrespective of the shape of the secondary
demand function.
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1. INTRODUCTION
Measurement studies show that the spectrum allocated

to network providers is not fully utilized. According to the
Federal Communications Commission (FCC), temporal and
spatial spectrum utilization varies from 15% to 85% [1]. A
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recent study by Cisco shows that data traffic is expected
to increase yearly by 55% through 2017 [9]. The increasing
demand, limited network capacity and inefficiency of cur-
rent spectrum allocation methods create a need for new ap-
proaches to use the available spectrum more efficiently.

Along these lines, Dynamic Spectrum Access (DSA) net-
works have been proposed to solve the problem of inefficient
spectrum utilization [1]. DSA networks allow opportunis-
tic users to access licensed bands without interfering with
long-term contracted users. The FCC took a major step
to facilitate DSA networks by publishing the so-called Re-
port and Order and Further Notice of Proposed Rulemaking
[10]. This report defines new policies that support secondary
spectrum markets and facilitate opportunistic access to the
wireless spectrum through the use of spectrum leasing.

In this work, we consider a model under this realm con-
sisting of two type of customers: Primary Users (PU) and
Secondary Users (SU). PUs have a long-term lease, while
SUs have a short-term lease with the service provider. To
manage spectrum leasing, we consider applying occupancy-
based admission control on SUs to control their access to the
shared network. These policies admit or reject SUs based
on the total number of active users in the network at the
time of SU arrivals.

The majority of previous work on DSA networks consider
admission control and pricing of voice and streaming traffic
in loss networks [3, 14, 23, 25]. In such networks, bandwidth
is partitioned into channels with fixed capacity, thus limit-
ing the maximum allowable number of users in the network
to the total number of channels and fixing the bandwidth
allocated to each user. In contrast, in our work, we consider
elastic traffic models, that capture various TCP-based ap-
plications, such as web and file transfer, and rate-adaptive
voice and video applications.

In general, data users are limited by a peak bit rate, for
instance the access speed to the network. Elastic data traf-
fic users transmit at their peak bit rate if the network is
not saturated. However, their rate is adjusted when the
network is saturated, in order to prevent congestion. Moti-
vated by the dimensioning of Long Term Evolution (LTE)
access networks for elastic traffic [17], we model the network
as a processor sharing network for which the bandwidth is
not partitioned but rather shared between admitted users
according to a bandwidth allocation scheme. In processor
sharing networks there is no tight bound on the number of
users that can be served simultaneously. Compared to loss
networks, processor sharing networks can serve more users



and answer the need of time-varying bandwidth demands.
Previous measurement studies, such as [4, 5, 11, 26] show

that Poisson session arrivals is a realistic assumption to
model elastic data traffic. A session is defined as a combi-
nation of related flows originated by the same user or appli-
cation. Thus, sessions can be envisioned as a collection of
a fixed or random number of alternating “on” and “off” pe-
riods, which lengths follow general probability distributions
that may be correlated. An “on” period corresponds to an
ongoing flow. At any given time, a user session is considered
active if an ongoing flow is present.

The goal of this paper is two-fold: derive traffic-insensitive
admission control policies on SUs that grant service providers
with maximum average profit, and provide guidance to de-
termine when opening network to spectrum access is prof-
itable when secondary demand is unknown.

Our main contributions are as follows: First,we show that,
under a joint occupancy-based admission control policy and
balanced bandwidth allocation, the steady state distribution
of the number of ongoing flows in the network is insensi-
tive to the traffic characteristics except through their means.
Next, we show that the optimal occupancy-based admission
control policy of SUs that maximizes the average profit over
an infinite time horizon is of threshold type. This policy ad-
mits an SU session arrival if and only if the total number of
ongoing flows in the network is below a certain threshold.
Finally, we analyze the profitability of secondary spectrum
leasing under general secondary demand. We prove that
there exists a unique price, the so-called break-even price,
such that below the break-even price there exists no prof-
itable price to charge the secondary demand. Further, we
provide an admission control policy that guarantees prof-
itability for any price exceeding the break-even price.

The rest of the paper is organized as follows: Section 2
presents related work. We describe our network, traffic, and
economic models in Section 3. The analysis of the model
and characterization of optimal admission control policies
are provided in Section 4. We establish profitability condi-
tions of secondary access provisioning in Section 5. Section
6 concludes the paper.

2. RELATED WORK
Related work can be classified in three categories: (i) ad-

mission control in loss networks with inelastic voice and
streaming traffic, (ii) insensitive admission control policies
for data traffic in processor sharing networks, and (iii) prof-
itability analysis of DSA loss networks with voice traffic.

In loss networks, bandwidth is partitioned into channels
and the number of users that can be served is bounded by
the total number of channels. Admission control of delay
sensitive traffic in loss networks has been widely studied in
the literature. Earlier work includes [18] and [22], which
study a profit maximization problem for a multi-class loss
network. Recent studies, such as [23], study a call admis-
sion control problem to maximize average profit of a service
provider in a preemptive DSA loss network. They consider
a two-class user network where one class has a higher pri-
ority and can preempt the lower priority class traffic when
all resources (channels) are fully utilized. Ref. [25] and
[14] study profit maximization in multi-class loss networks
with streaming traffic. The majority of these works assume
Poisson call (flow) arrivals. Different from these works, we
analyze a profit maximization problem in a processor sharing

network with elastic traffic, and consider a realistic model
for data traffic based on Poisson session arrivals.

Next, we survey related work on admission control of elas-
tic traffic in processor sharing networks. We concentrate
on the set of work for which the admission control policies
are insensitive to traffic characteristics, except through their
means. Refs. [16], [21] and [12] study the problem of mini-
mizing metrics related to the blocking probability of users by
applying admission control. Ref. [16] considers both stream-
ing and elastic traffic. The authors propose a measurement-
based admission control scheduling policy, called Priority
Fair Queueuing (PFQ), that admits a new flow if the admit-
ted flow does not reduce the throughput of ongoing elastic
flows below a certain threshold. Ref. [21] considers a multi-
class network where classes are defined by their minimum
rate requirements, and proposes computationally feasible
sub-optimal admission control policies. Ref. [12] considers a
multi-class network, where each class has a different inten-
sity and derives bounds on the performance of the optimal
admission control policy. The above papers focus on multi-
class networks, where different classes have different traffic
characteristics. As such, finding the structure of the optimal
admission control policy is generally difficult. In contrast, in
our paper, we consider an economic model where PUs and
SUs utilize similar applications and have the same traffic
intensity, but differ in their economic values. Further, our
metrics of interest focus on the average profit and profitabil-
ity rather than on the blocking probability. Nevertheless,
our results also hold for general data traffic models.

Next, we present related work that establish conditions
guaranteeing profitability of secondary spectrum access. Ref. [3]
derives the profitability region of a two class DSA loss net-
work with inelastic voice traffic when the relationship be-
tween the secondary price (the price charged on SUs) and
secondary demand (the arrival rate of SUs subject to a sec-
ondary price) is unknown. Both our work and the work in
[3] show that the profitability region is insensitive to the
secondary demand function and sharing the spectrum with
secondary demand can always be made profitable if the sec-
ondary price exceeds the so-called break-even price. How-
ever, our work is based on considerably different traffic and
resource allocation models.

3. MODEL
We model the network as a single link processor sharing

network with capacity C bits/sec shared by all users in the
system and consider elastic data traffic. We model the data
traffic at flow and session levels. Previous studies show that
a flow, corresponding to a transfer of some digital document
like a web-page, is not usually generated in isolation but be-
longs to a session which consists of other flows belonging to
the same application or document created by a user [8]. In
general, a session can be described by a collection of “on”
and “off” periods, where an “on” period correspond to a flow
transmission and an “off” period refers to an interval of inac-
tivity period that separates flows which are generated within
a session. The duration of “on” and “off” periods have arbi-
trary distributions and may be correlated.

We assume that sessions of each PU and SU are i.i.d. and
arrive as a Poisson process with rates λ1 and λ2 bits/sec
respectively. We also assume that each session brings 1/µ
bits on average. The number of flows in each session and
the size (in bits) of each flow are arbitrarily distributed,



beside the constraint on the mean session size. We refer to
ρ1 = λ1/µ and ρ2 = λ2/µ as the intensity of PU and SU
sessions, respectively. We assume that ρ1 ≤ C, otherwise
PUs would saturate the network even without SUs. We refer
to this traffic model as the “Poisson session arrivals” model.

We assume that PUs and SUs share the same peak rate
constraint denoted by R bits/sec. We consider elastic traffic
where users get bandwidth equal to their peak rate R if the
network is not saturated and are required to reduce their bit
rate to avoid congestion when the network is saturated. We
define φ1 ≥ 0 and φ2 ≥ 0 to be the total bandwidth allocated
to PU flows and SU flows, respectively. It is assumed that
the total bandwidth allocated for a class is equally shared
between the flows of that class. For a bandwidth allocation
to be feasible, it must satisfy φ1 + φ2 ≤ C.

Sessions are composed of “on” and “off” periods, which
correspond to ongoing flows and idle periods. Therefore, the
number of ongoing flows (i.e., active users) in the network
is not necessarily equal to the number of sessions in the
network, due to “off” periods. We denote the number of
ongoing PU flows and ongoing SU flows by x1 ≥ 0 and
x2 ≥ 0 respectively and the total number of ongoing flows
in the network by x, i.e x = x1 + x2. Then, the network
is saturated and users are forced to reduce their bit rate if
x > C/R. We denote the critical number of ongoing flows
at which the network starts to be saturated by xc = bC

R
c.

In addition, we assume that the total number of ongoing
flows is bounded by an arbitrarily large, but finite, number
M . This network will be referred as a processor sharing
network.

Next, we define the bandwidth allocation scheme used in
this processor sharing network. We define the capacity al-
located to PU flows and SU flows when there are x ongoing
flows in the network as follows:

φi(x) =

xiR if 0 ≤ x < xc,

xiC
x

if xc ≤ x ≤M,
(1)

for i = 1, 2. We refer this processor sharing network as
complete processor sharing. The bandwidth allocations are
chosen such that they satisfy the balance property. A formal
definition of the balance property is presented in Section 4.1.

When a PU enters the network it brings a reward r1. How-
ever, the reward it brings decreases if its admittance causes
any user to decrease its bit rate. This happens when the
demand exceeds the capacity, i.e., x > xc. We assume that
there is an associated penalty for this event. We denote
0 ≤ f1(x) ≤ r1 the penalty associated with the arrival of
PU when the network is saturated or when its arrival causes
the network to saturate. Similarly, if an SU is accepted to
the network it brings a reward r2. If an SU is admitted
when the network is saturated or if it causes the network
to saturate, the reward it brings decreases by an amount of
0 ≤ f2(x) ≤ r2. We make the following assumptions on the
penalty functions:

Assumption 1. f1(x) is convex and non-decreasing func-
tion in x, i.e. for 0 ≤ x ≤M

f1(x)− f1(x+ 1) ≥ f1(x+ 1)− f1(x+ 2) , (2)

f1(x)− f1(x+ 1) ≤ 0 . (3)

Assumption 2. f2(x) is non-decreasing function in x,

i.e. for 0 ≤ x ≤M

f2(x)− f2(x+ 1) ≤ 0 . (4)

We note that as a network becomes saturated and the load
increases, then flows need to further reduce their bit rate.
This result justifies the assumption that the penalty func-
tions should be non-decreasing in the total number of ongo-
ing flows x. The convexity assumption on f1(x) is needed
for the derivation of the optimal admission control policies.

4. ADMISSION CONTROL
In this section we investigate an optimal insensitive occupancy-

based admission control policy on SUs that maximizes the
average profit of a service provider under a general data
traffic model. Occupancy-based admission control policies
depend only on the number of ongoing flows in the network.
The restriction to occupancy-based polices is not unrealistic,
since it is difficult to track the amount of time each ongoing
flow and session has spent in the network and predict the
amount of time they will further stay. Furthermore, results
in [20] indicate that the optimal occupancy-based admission
control policy usually performs close to the optimal general
admission control policy.

We assume that a service provider applies admission con-
trol on SUs only and PUs are always admitted unless the
system is full. The possible controls on an arriving SU are
acceptance or rejection. An occupancy-based admission con-
trol policy on SUs makes a decision based on the number of
ongoing flows in the network, denoted x (i.e., x = x1 + x2).
Therefore, the state space which defines the allowable values
of state x can be formulated as:

S ={x |x = x1 + x2, φ1(x) ≤ x1R, φ2(x) ≤ x2R,
φ1(x) + φ2(x) ≤ C, 0 ≤ x ≤M}.

We define a subspace Sc ⊂ S that includes all the states
for which the total bandwidth demand (x1 + x2)R exceeds
the total capacity C, such that flows are forced to reduce
their rate: Sc = {x | x>xc, x ∈ S}. We refer to the states
belonging to Sc as “congestion states” since in these states
elastic flows reduce their rates to avoid congestion.

At any state x ∈ S \M , the control u(x) ∈ U takes the
value 0 or 1, which corresponds to rejecting or accepting an
SU, respectively. We define an occupancy-based admission
control policy p = [u(0), u(1), ..., u(M − 1)] which is a col-
lection of controls u(x) ∈ U for all states x ∈ S \M . We
denote the set of states in which an SU is admitted by Sa.

Next, we formulate the average profit function. The profit
function consists of the following components: the rewards
(including penalties) collected from the arrivals of PU ses-
sions and admission of SU sessions. Then, the average profit
rate, under a given policy p, is given as follows:

V p =

M−1∑
x=0

(r1 − f1(x))λ1πp(x) +
∑
x∈Sa

(r2 − f2(x))λ2πp(x),

(5)
where πp(x) is the steady state probability of finding x on-
going flows in the network. Due to the Poisson Arrivals See
Time Averages (PASTA) property, the probability that a
session arrival finds x ongoing flows in the network is also
πp(x). The first and second terms in (5) represent the aver-
age profit collected from PUs and accepted SUs respectively.



Given the profit function, the objective function can be
mathematically defined as follows. We are looking for the
optimal admission control policy p∗ = [u∗(0), u∗(1), ..., u∗(M−
1)] that maximizes the average profit rate V p, i.e.,

p∗ = argmax
p

(V p).

The optimal profit under policy p∗ is denoted by V , i.e.,

V = V p∗ .

4.1 Insensitivity Property
In this section we show that under a balanced bandwidth

allocation scheme and session arrivals following a Poisson
process, the steady state distribution of the number of on-
going flows in the network is insensitive to the traffic charac-
teristics except through the traffic intensities. For this pur-
pose, we show that the bandwidth allocation given by (1) is
a sufficient condition for insensitivity.

Theorem 2 of [7] shows that partial reversibility of a net-
work is a necessary and sufficient condition for the insen-
sitivity property to hold. Moreover, [7] states that the re-
versibility of the arrival and service processes of a network
is a sufficient condition for partial reversibility. It is also
argued that the arrival process is reversible if and only if
the arrival rates are balanced, and similarly the service pro-
cess is reversible if and only if the service rates are balanced.
Balanced arrival and service rates are defined as follows for
a queue with multiple classes of users:

Definition 1. Consider K class of users. Let define the
state vector ~x = (x1, x2, ..., xK), where xi corresponds to the
number of ongoing flows of class i, with i ∈ 1, 2, ...,K. The
state-dependent arrival rates λ(~x) and service rates ψ(~x)
at state ~x are balanced if and only if there exist positive
functions Λ(~x) (with Λ(0) = 1) and Ψ(~x), such that the
arrival and service rates satisfy the following conditions:

λ(~x) =
Λ(~x+ ~ei)

Λ(~x)
, (6)

ψ(~x) =
Ψ(~x− ~ei)

Ψ(~x)
, (7)

where ~ei is a vector whose ith entry is 1 and all other entries
are 0, and xi > 0 in Eq. (7).

We next show that for our network the bandwidth allo-
cation given by (1) is a sufficient condition for partial re-
versibility. Hence, steady state distribution of the number
of flows is insensitive to the traffic distributions.

Theorem 1. For any admission control policy, the steady
state probability distribution of the number of ongoing flows
in the network is insensitive to the flow arrival and flow
size distributions except through their means, provided that
PU and SU session arrivals follow independent Poisson pro-
cesses and the bandwidth allocation satisfies (1).

Proof. We consider a network model, where PU and
SU flows arrive according to independent Poisson processes,
with rate λ1 and λ2 respectively. We assume that both
PU and SU flows have a peak rate R and exponentially dis-
tributed size with mean µ−1. We refer to this network model
as the “Poisson flow arrival” model. We recall that a session
is defined by consecutive “on” and “off” periods, where an

“on” period corresponds to transmission of a flow. Then, the
Poisson flow arrival model can be viewed as a special case of
the Poisson session arrival model where each session consists
of a single “on” period that is exponentially distributed.

Due to the homogeneous traffic assumption, PUs and SUs
are indistinguishable once in the network. This assumption
allows us to view the PU and SU flows as belonging to the
same class with the following arrival rates

λp(x) =

λ1 + λ2 if u(x) = 1,

λ1 if u(x) = 0,
(8)

where λp(x) is the flow arrival rate under an admission con-
trol policy p = [u(0), u(1), ..., u(M − 1)] when there are
x ≤ M − 1 flows in the network. When the bandwidth al-
locations of flows are defined as in (1), the total bandwidth
allocated for PU and SU flows at state x becomes:

φ(x) =

xR if 0 ≤ x < xc,

C if xc ≤ x ≤M.

Then the service rates are ψ(x) = µφ(x) for all x ∈ S. For
a single-class network, the balance functions exist for any
admission control policy p and are given as follows: Λ(x) =∏x
i=1 λp(i− 1) and Ψ(x) = (

∏x
i=0 ψ(i))−1.

By Definition 1, the existence of positive functions Λ(x)
and Ψ(x), is a sufficient condition for balanced arrival and
service rates. Thus, both arrival and service processes are
reversible [7]. Therefore, when bandwidth allocations satisfy
(1), the network is partially reversible [7]. Then, by Theo-
rem 2 of [7] the steady state distribution of the number of
flows in the network is insensitive to traffic characteristics,
except through traffic means, provided that PU and SU ses-
sions arrive according to independent Poisson processes.

Note that, from the outset, it is not obvious that the condi-
tions of Definition 1 hold for our problem since PUs and SUs
represent two different classes of users. However, we exploit
the facts that PUs and SUs have identical service statis-
tics and that the results of [7] on partial reversibility hold
for state-dependent exogenous Poisson arrival processes. In
this manner, we reduce the problem at hand into a single
dimensional one (i.e., as if there were a single class of users).
This result holds for any given admission control policy p on
SUs (including the optimal policy).

4.2 Characterizing the Optimal Admission Con-
trol Policy

We next characterize the optimal occupancy-based admis-
sion control policy of SUs that maximizes the average profit
rate. The insensitivity property guarantees that the steady
state probabilities of the number of ongoing flows do not de-
pend on the number of flows generated in the network and
the distribution of the flow sizes. Therefore, we analyze the
network under the Poisson flow arrival model. Under this
model the evolution of the number of ongoing flows in the
network can be modeled as a Markov process. Remarkably,
the general optimal admission control policy for the Poisson
flow arrival model is the same as the optimal occupancy-
based policy for the Poisson session arrival model.

4.2.1 Dynamic Programming Formulation



We formulate the profit maximization problem as a dis-
counted discrete-time, finite-horizon stochastic dynamic pro-
gramming problem. We apply standard techniques to gen-
eralize the results obtained for total discounted profit to an-
alyze the infinite-horizon average profit case and character-
ize its properties. We note that the structural properties
of the discrete-time, finite-horizon problem are the same as
the continuous-time, infinite-horizon problem since the state
space and control space are finite [6].

We consider a discount factor β > 0 such that the profit
earned at time t is scaled by exp(−βt) [6] (page 254). This
problem is a β-discounted, continuous-time, infinite-horizon
Markov decision process (note that applying a discount fac-
tor to a process with an exponential rate β is equivalent
to terminating the process at an exponential rate β [24]).
Next, we use uniformization as described in [6] (page 254)
to obtain the discrete-time equivalent of the continuous-time
process. We normalize the transition rates and profit rate
functions with a rate v, which is a transition rate that is
no less than the maximum possible rate out of any state
x ∈ S under any control u(x). Without loss of generality,
we set the maximum possible rate out of any state to 1,
i.e., v = λ1 + λ2 + Cµ + β = 1. Then, by following the
techniques given in [6], the β-discounted continuous-time,
infinite-horizon Markov decision process is converted into an
α-discounted discrete-time, infinite-horizon Markov decision
process, where α = v/(β + v) and 0 < α < 1.

Next, we convert the infinite-horizon problem into a finite-
horizon for ease of analysis of the properties of the profit
function. Let V αn (x) be the optimal total expected α-discounted
profit function for the finite horizon, discrete-time, n stage
problem starting from state x. Then, Bellman’s equations
yielding the optimal policy for the finite-horizon, discounted
problem can be written as:
• For n = 0, x ∈ S: V α0 (x) = 0
• For n ≥ 1, 0 ≤ x ≤ xc:

V αn (x) = αλ1(V αn−1(x+ 1) + r1 − f1(x))

+ αλ2 max{V αn−1(x), V αn−1(x+ 1) + r2 − f2(x)}
+ αxRµV αn−1(x− 1) + α(C − xR)µV αn−1(x). (9)

• For n ≥ 1, xc < x < M :

V αn (x) = αλ1(V αn−1(x+ 1) + r1 − f1(x))

+ αλ2 max{V αn−1(x), V αn−1(x+ 1) + r2 − f2(x)}
+ αCµV αn−1(x− 1). (10)

and V αn (M) = α(λ1 +λ2)V αn−1(M) +αCµV αn−1(M −1). The
boundary conditions are set as Vn(−1) = Vn(0) .

4.2.2 Properties of the Optimal Admission Control
Policy

In this section we analyze the properties of the optimal
admission control policy. First, one can show by induction
on n that V αn (x) satisfies the following concavity property.

Lemma 1. Under Assumptions 1 and 2 on the penalty
functions, V αn (x) is concave in x for all x ∈ S.

The proof appears in our technical report [15]. We return
to the discrete-time, infinite-horizon average-profit problem.
Given bounded profits and a compact control space, the infi-
nite horizon discounted value function V α(x) = limn→∞ V

α
n

exists [6], and it is concave.

For finite state and control spaces, it can be shown that,
as α goes to 1 (i.e., as β goes to 0), the optimal profit
for the discounted problem converges (under proper scal-
ing) to the optimal profit for the average problem, that is,
V = limα→1(1−α)V α(x) (the limit is independent of the ini-
tial state x), see [6] (page 194). These facts allow us to con-
tinue our analysis on the optimal admission control policy
by focusing on the infinite-horizon average-profit problem.

For any x ∈ S, let h(x) = limα→1(V α(x)−V α(0)). Then,
Bellman’s equations which yield the optimal admission con-
trol policy for the average profit problem can be written as:
• For 0 ≤ x ≤ xc:

V + h(x) =
λ1

v
(h(x+ 1) + r1 − f1(x))

+
λ2

v
max{h(x), h(x+ 1) + r2 − f2(x)}

+
xRµ

v
h(x− 1) +

(C − xR)µ

v
h(x) (11)

• For xc < x < M :

V + h(x) =
λ1

v
(h(x+ 1) + r1 − f1(x))

+
λ2

v
max{h(x), h(x+ 1) + r2 − f2(x)}

+
Cµ

v
h(x− 1) (12)

and V + h(M) = λ1+λ2
v

h(x) + Cµ
v
h(M − 1). As before, we

set v to the maximum possible rate out of any state, i.e.
v = λ1 + λ2 + Cµ.

By definition h(x) inherits the properties of V αn (x). So, it
is monotonically non-increasing and concave in x for x ∈ S.

Theorem 2. The optimal admission control policy p∗ of
SUs is a threshold type policy, which depends only on the
total number of ongoing flows in the network.

Proof. We first note that h(x)− h(x+ 1)) ≤ h(x+ 1)−
h(x + 2) by concavity of h(x). Thus, h(x) − h(x + 1) is
monotonically non-decreasing in x for all x ∈ S. From
(11) and (12), we observe that an arriving SU is accepted if
h(x) ≤ h(x+ 1) + r2 − f2(x) and rejected otherwise. Define
x∗ = min{x|h(x) ≥ h(x+ 1) + r2 − f2(x)}. For any x > x∗

such that x ∈ S, h(x) > h(x + 1) + r2 − f2(x) holds by
concavity of h(x). Then for any x > x∗ the optimal decision
is to reject an arriving SU and for any x ≤ x∗ the optimal
decision is to accept it. Thus, there exists a thresholds x∗

such that the optimal admission control policy of SU p∗(x)
in state x can be written as:

p∗(x) =

{
1(accept) if x ≤ x∗, x ∈ S,
0(reject) if x > x∗, x ∈ S.

(13)

4.3 Numerical Results
In this section we provide numerical results. Throughout

this section, we assume that an arriving PU brings a reward
r1 = 10 units and an accepted SU brings a reward r2 = 2
units. We consider state dependent penalty functions such
that it is guaranteed that 0 ≤ f1(x) ≤ r1 and 0 ≤ f2(x) ≤ r2
for all states x ∈ S. We also assume that the penalty on
an arriving PU to a “congestion state” is not higher than
the penalty on an accepted SU to a “congestion state”, i.e.



f1(x) ≤ f2(x) for all x ∈ S. Thus, the expected profit from
an arriving PU at a given state is always higher than the
expected profit an accepted SU would bring at the same
state. These assumptions guarantee that PUs have higher
priority than SUs.

First, as a sanity check, we confirm numerically the opti-
mality of the threshold policy for different data traffic pa-
rameters by using policy iteration on the α-discounted profit
problem. For all examples, we consider a discount factor
α = 1 − 10−9 and we use the following penalty functions

f1(x) and f2(x) (referred to as set 1): f1(x) = r2( x−xc
M−xc )

2

and f2(x) = r2( x−xc
M−xc ) if xc < x ≤ M ; there is no penalty

otherwise. The results obtained under different sample sets
verify that the optimal policy is of threshold type. We also
verify that the the maximum average profit obtained for the
α-discounted profit problem as α tends to 1 is the same as
the results obtained for the average-profit problem.

Next, we present an alternative method which improves
the running time performance of finding the optimal pol-
icy and the corresponding optimal average profit, given that
the optimal occupancy-based policy is of threshold type. We
find the optimal threshold and corresponding average profit
by solving (5) for every possible threshold value and doing
a linear search among the corresponding average profits to
obtain the optimal threshold that gives the maximum av-
erage profit. Linear search on (5) yields the same optimal
average profit as the policy iteration. To provide an insight
on the advantage of using linear search over policy iteration,
we consider the following example: For a network with the
following parameters: λ1 = 150, λ2 = 50, µ = 1, C = 200,
R = 1, M = 3000, and the penalty functions as given by set
1. We compare the running times of linear search and pol-
icy iteration on a Dell x64-based PC with Intel Core i7-2600
CPU at 3.40 GHz and 8 GB RAM. We find that the aver-
age running time of policy iteration is 3.8 sec whereas linear
search is 0.75 sec. Therefore, for practical purposes linear
search method can be used to obtain the optimal threshold
and expected profit. Our results also validate that linear
search and policy iteration yield the same optimal threshold
and corresponding average profit.

We next analyze the effect of the SU arrival rate λ2 on
the optimal threshold and the corresponding average profit
for two different sets of penalty functions. We consider a
network model where λ1 = 10, µ = 1, C = 20 units, R = 1
unit, M = 100 and analyze the change in optimal thresh-
old and the corresponding average profit as λ2 varies in the
range [5, 10].

For the first set of penalty functions, we assume that the
penalty functions f1(x) and f2(x) are defined as in set 1.
For the second set, we assume that both penalty functions
f1(x) and f2(x) are a constant defined as: f1(x) = f2(x) = 1
if xc < x ≤ M and there is no penalty otherwise. We refer
to these penalty functions as set 2.

Figure 1 and Figure 2 show the dependence of the optimal
threshold and the corresponding average profit upon λ2. We
observe that for both set 1 and set 2, the optimal threshold
decreases with increasing λ2 as the network saturates faster
and the reward gained from PUs and SUs starts decreasing
due to the non-zero penalty functions. We note that the op-
timal threshold and the corresponding average profit values
obtained under set 1 are higher than those obtained under
set 2. This is due to the lower penalty values of set 1 for
most of the states. In addition, the gap between the optimal

average profits obtained under set 1 and set 2 increases with
λ2 since under set 1 the optimal threshold decreases signif-
icantly as λ2 increases. We note that, for both models, the
optimal average profit increases sub-linearly with λ2 since
the optimal threshold decreases with λ2.
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Figure 1: Optimal threshold versus SU arrival rate
where the data traffic parameters are as follows:
λ1 = 10, µ = 1, C = 20, R = 1, M = 100, r1 = 10
and r2 = 2. The threshold decreases with increasing
secondary demand.

5. PROFITABILITY ANALYSIS
So far, we have assumed that the arrival rate of SUs λ2

is known and given. In practice, however, λ2 is a function
of the secondary price r2. This function, referred to as the
demand function, is not always easy to characterize. In this
section, we analyze the conditions under which secondary
spectrum provisioning generates additional profit, irrespec-
tive of the shape of the secondary demand function.

We investigate profitable prices under the Poisson flow
arrival model. By the insensitivity property, the profitability
conditions obtained for the Poisson flow arrival model hold
for the original Poisson session arrival model.

We first consider a system where all SUs are rejected, thus,
the system only serves PUs. We define this regime as the
lockout policy. Under the lockout policy the total number
of ongoing flows in the network, denoted by x, evolves as
a Markov process and the steady state probabilities can be
obtained by solving the detailed balance equations.

The steady state probabilities πx to find the network in
state x under the lockout policy is as follows:

πLOx =

{
ρ1

x

Rxx!
GLO if 0 ≤ x ≤ xc,
ρ1

x

Cx−xcRxcxc!
GLO if xc < x ≤M,

(14)

where the normalization constant GLO is

GLO =

(
xc∑
j=0

ρ1
j

Rjj!
+

M∑
j=xc+1

ρ1
j

Cj−xcRxcxc!

)−1

. (15)
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Figure 2: Optimal average profit versus SU arrival
rate where the data traffic parameters are as follows:
λ1 = 10, µ = 1, C = 20, R = 1, M = 100, r1 = 10 and
r2 = 2. The average profit increases sublinearly with
increasing secondary demand.

Then the average profit collected from the lockout policy
is:

V
LO

= λ1

M−1∑
x=0

(r1 − f1(x))πLOx . (16)

An admission control policy of SU is profitable for a given
price r2 and secondary demand λ2 if the average profit col-
lected by admitting SUs under this policy is larger than the
average profit obtained by the lockout policy. Then the prof-
itability region can be defined as the set of (r2, λ2) pairs that
are profitable under this policy.

Next, for each secondary demand λ2 we search for a sec-
ondary price r∗2 such that there exists no profitable admis-
sion control policy with a secondary price lower than r∗2 .
To accomplish this, we search for the conditions when it is
profitable to admit an SU request.

We formulate the problem as an infinite horizon aver-
age profit optimization problem to analyze the optimal con-
ditions for admitting SU requests. As before, let V de-
note the discrete-time, infinite-horizon average-profit. Then,
Bellman’s equations for the discrete-time, infinite-horizon
average-profit problem that yields the optimal admission
control policy of SUs is given by (11) and (12).

We use policy improvement arguments to find the sec-
ondary prices that are profitable for a given secondary de-
mand λ2. We start with the lockout policy and search for the
secondary price r2 that improves the average profit. Under
the lockout policy, Bellman’s equations are:

V
LO

+ hLO(x) =
λ1

v
(hLO(x+ 1) + r1 − f1(x)) +

λ2

v
hLO(x)

+ max (
xRµ

v
,
Cµ

v
)hLO(x− 1)

+ max (
(C − xR)µ

v
, 0)hLO(x).

and

V
LO

+ hLO(M) =
λ1 + λ2

v
hLO(x) +

Cµ

v
hLO(M − 1).

By policy improvement, an SU is admitted at state x only
if max{hLO(x), hLO(x + 1) + r2 − f2(x)} = hLO(x + 1) +
r2 − f2(x). Thus, to admit an SU request at state x the
secondary price r2 needs to satisfy the following condition:

r2 > hLO(x)− hLO(x+ 1) + f2(x).

The above condition on r2 can also be deduced intuitively
by realizing that hLO(x) − hLO(x + 1) gives the difference
in the profit rate of the lockout policy for starting at state
x instead of state x + 1. Therefore, r2 needs to exceeds
hLO(x) − hLO(x + 1) + f2(x) which represents the cost of
adding an SU when the network is in state x.

A profitable price should satisfy this condition indepen-
dent of the system state. We define this price as the break-
even price denoted by r∗2 ≥ 0, where.

r∗2 = min
x=0,1,2,...,M

hLO(x)− hLO(x+ 1) + f2(x). (17)

By definition, for a given secondary demand λ2, there exists
no profitable price that is lower than r∗2 . In addition, we
note that r∗2 is independent of the secondary demand λ2.
Therefore, for any secondary price r2 ≥ r∗2 there exists a
profitable admission control policy, irrespective of the shape
of the secondary demand function.

The next theorem explicitly computes the break-even price
and associated demand-insensitive profitable admission con-
trol policy.

Theorem 3. The break-even price for admitting SUs to
the network is

r∗2 = r1π
LO
M +

M−1∑
x=xc+1

f1(x)πLOx .

The admission control policy, which is profitable for any sec-
ondary price r2 that exceeds the break-even price r∗2 , admits
secondary traffic when x = 0. Furthermore, this admission
control policy is robust to variations in the secondary de-
mand function λ2.

Proof. We apply policy improvement on the lockout pol-
icy to find the break-even price, using a similar approach to
[2, 3]. To characterize the break-even price, we consider an
admission control policy that provides secondary spectrum
access to improve the lockout policy. We refer to this policy
as the“sharing policy”since the profit is improved by sharing
the network resources with SUs. We adopt a threshold type
occupancy-based admission control policy since it has been
shown in Section 4 to be optimal among all occupancy-based
admission control policies. This policy suggests that an SU
request is accepted if the total number of ongoing flows in
the system is less than or equal to T . Thus, this policy guar-
antees that there can be at most T + 1 ongoing SU flows in



the network. Equation (17) shows that the break-even price
r∗2 is independent of the secondary demand λ2. Therefore,
we can set λ2 =∞. Then, the total number of the ongoing
flows in the network evolves as a Markov process.

By setting λ2 =∞, it is guaranteed that there are always
T +1 SUs in the network. Thus the number of ongoing flows
in the network can only take values in the range [T + 1,M ].
The steady state probabilities πx to find the system in state
x under this policy is:
• For T < xc

πSPx =

{
0 if 0 ≤ x ≤ T ,

ρ1
x

1x≤xc
(Rxx!)+1x>xc (Cx−xcRxcxc!)

GSP , if T < x < M,

(18)
where 1{.} is the indicator function and the normalization

constant GSP is

GSP =

(
xc∑

j=T+1

ρ1
j

Rjj!
+

M∑
j=xc+1

ρ1
j

Cj−xcRxcxc!

)−1

. (19)

• For T ≥ xc

πSPx =

{
0 if 0 ≤ x ≤ T ,

ρ1
x

Cx−xcRxcxc!
GSP if T < x < M,

(20)

where the normalization constant GSP is

GSP =

(
M∑

j=T+1

ρ1
j

Cj−xcRxcxc!

)−1

. (21)

Then the average profit collected from this policy is:

V
SP

= λ2

T∑
x=0

(r2 − f2(x))πSPx + λ1

M−1∑
x=T+1

(r1 − f1(x))πSPx .

The first and second terms correspond to the profit col-
lected from SUs and PUs respectively. With the λ2 = ∞
assumption, the profit collected from SUs becomes λ2(r2 −
f2(T ))πSPT = ∞ ∗ 0. We use the balance equations at state
T to obtain the average profit collected from SUs, which is:

λ2π
SP
T =

{
(T + 1)RµπSPT+1 if T < xc,

CµπSPT+1 if T ≥ xc.

The policy improvement argument adopts the sharing policy
if it is more profitable than the lockout policy. In other
words service provider provides secondary spectrum access
if the profit rate of the sharing policy exceeds the profit rate
of the lockout policy, i.e.

V
SP

> V
LO
. (22)

We analyze the range of the profitable secondary prices as a
function of T and prove that the lowest is reached for T =

0. Since the profit rate under sharing policy V
SP

changes
depending on the relationship between T and xc, we analyze
the profitable prices for T < xc and T ≥ xc separately.

First, we investigate the profitable secondary prices when
T < xc. Under this assumption Eq. (22) becomes

(T + 1)Rµ(r2 − f2(T ))πSPT+1 + λ1

M−1∑
x=T+1

(r1 − f1(x))πSPx

> λ1

M−1∑
x=0

(r1 − f1(x))πLOx . (23)

We are interested in finding the largest profitable region.
We search for the optimum T that minimizes r2 satisfying
Eq. (23). As defined in Section 3, the penalty functions
f1(x) and f2(x) are introduced when the system is in a con-
gestion state, therefore, f2(T ) = 0 for T < xc. Then, the
minimum secondary price can be defined by combining the
steady state probabilities given by (14) and (18) and re-
grouping the terms, as follows:

r∗2 = min
T=0,1,2,...,xc−1

{(
RT+1(T + 1)!

ρT1 (T + 1)R

)(
1

GLO
− 1

GSP

)
a′
}
,

(24)

where a′ = r1π
LO
M +

∑M−1
x=xc+1 f1(x)πLOx is a constant inde-

pendent of T .
By using induction we observe that (24) is increasing in

T for all T ∈ [0, xc − 1].
Next, we analyze the second case where T ≥ xc. Under

this condition (22) becomes

Cµ(r2 − f2(T ))πSPT+1 + λ1

M−1∑
x=T+1

(r1 − f1(x))πSPx

> λ1

M−1∑
x=0

(r1 − f1(x))πLOx . (25)

Similar to the previous case we search for the optimal T that
results in the minimum r2. After rearranging the terms, (25)
can be written as follows:

r∗2 = min
T=xc,xc+1,2,...,M

(
f2(T )− ρ1

CπSPT+1

M−1∑
x=T+1

(r1 − f1(x))πSPx

+
ρ1

CπSPT+1

M−1∑
x=0

(r1 − f1(x))πLOx

)
.

(26)

We verify that each term of (26) is increasing in T and
conclude that the minimum is reached at T = xc in the
range [xc,M − 1].

Next, we investigate the optimal value of T in the range
[0,M − 1]. We analyze the maximum secondary price ob-
tained for T < xc and the minimum secondary price ob-
tained for T ≥ xc and show that r∗2 is increasing in T for all
T in the range [0,M − 1]. We remind that both (24) and
(26) increase in T . Thus, the maximum secondary price for
T < xc is obtained at T = xc − 1 and it is given by

R∗2,1 =
Rxcxc!

ρxc−1
1 C

(
xc−1∑
x=0

ρx1
Rxx!

)(
r1π

LO
M +

M−1∑
x=xc+1

f1(x)πLOx

)
,

whereas, the minimum secondary price for T ≥ xc is ob-
tained at T = xc and is given by

R∗2,2 =
Rxcxc!

ρxc1

(
xc∑
x=0

ρx1
Rxx!

)(
r1π

LO
M +

M−1∑
x=xc+1

f1(x)πLOx

)
.

(27)

We rearrange the terms in Eq. (27), then

R∗2,2 =
C

ρ1
R∗2,1 +

(
r1π

LO
M +

M−1∑
x=xc+1

f1(x)πLOx

)
.

In Section 3 it is assumed that ρ1 < C. This assumption
guarantees that R∗2,2 > R∗2,1. Therefore, r∗2 is increasing in
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Figure 3: Break-even price r∗2 vs optimal threshold
T on a network model with following parameters:
M = 100, λ1 = 15, µ = 1, C = 20, R = 1 and r1 = 10.
Lowest profitable price is reached at T = 0.

T for all T in the range [0,M − 1]. We conclude that the
minimum r∗2 is reached at T = 0, which is equal to

R∗2 = r1π
LO
M +

M−1∑
x=xc+1

f1(x)πLOx .

As long as the secondary price r2 is higher than the break
even price, i.e. r2 > r∗2 , then the optimal occupancy-based
admission control policy with threshold T = 0 is always
profitable, independent of the secondary demand λ2. This
policy achieves the largest profitability region.

We illustrate the optimal threshold that results in the
largest profitable region under two penalty sets set 1 and set
2 as defined before. Figure 3 demonstrates that the break-
even price is reached at T = 0 for both sets under a network
model where M = 100, λ1 = 15, µ = 1, C = 20 units, R = 1
unit and r1 = 10.

6. CONCLUSIONS
We studied the problem of admission control and pricing

of secondary users in DSA networks. Our main contribu-
tion is in the derivation of results that are insensitive to
traffic characteristics, except for the traffic intensity (aver-
age load), and to the relationship between price and de-
mand. Thus, these results provide important guidelines for
providers wishing to enter secondary spectrum markets.

Specifically, we first analyzed a two-class revenue maxi-
mization problem in a DSA processor sharing network with
homogeneous, elastic data traffic. We showed that the value
of an additional PU or SU flow is non-increasing and con-
cave in the number of initial ongoing flows in the network.
Using this property, we proved that the optimal occupancy-
based admission control policy on SUs is of threshold type

and depends only on the total number of ongoing flows in
the network. We demonstrated that once the optimality of
threshold type policy is known, a simple linear search pro-
cedure outperforms policy iteration. We note that these
results hold for general forms of penalty functions satisfying
mild conditions (cf. Assumption 1). This leaves room for
providers to optimize their system performance and profit,
though the issue of how to properly set these functions re-
mains open.

We next leveraged our results on the structure of opti-
mal admission control policies to analyze profitability of
secondary spectrum leasing under uncertain demand. We
provided an analytical formula for the break-even price. We
observed that the break-even price is smaller than the pri-
mary reward and corresponds to the opportunity cost of the
lockout policy to start with one user in the network versus
none. We proved that for any price above the break-even
price it is always profitable to accept secondary users when
no user is present in the network. Therefore, for any price
above the break-even price profitability is guaranteed, re-
gardless of the secondary demand function.

Remarkably, the optimal admission control policy and
the profitability conditions obtained for general data traffic
models and processor sharing networks resemble those ob-
tained for inelastic streaming traffic in loss networks. Thus,
we expect that results obtained in [2, 3, 13, 19, 20] can be
generalized to a much larger class of traffic and resource
allocation models than considered therein.

Acknowledgments
This research was supported in part by NSF under grant
CCF-0964652.

7. REFERENCES
[1] I. Akyildiz, W. Lee, M. Vuran, and S. Mohanty. NeXt

generation/dynamic spectrum access/cognitive radio
wireless networks: A survey. Computer Networks,
50(13):2127–2159, 2006.

[2] A. Al Daoud, M. Alanyali, and D. Starobinski.
Profit-robust policies for dynamic sharing of radio
spectrum. In Global Communications Conference
(GLOBECOM), 2012 IEEE, pages 1186–1191, 2012.

[3] M. Alanyali, A. Al Daoud, and D. Starobinski.
Profitability of dynamic spectrum provision for
secondary use. In IEEE Symposium on New Frontiers
in Dynamic Spectrum Access Networks (DySPAN),
pages 136–145. IEEE, 2011.

[4] M. Arlitt and C. Williamson. Internet web servers:
Workload characterization and performance
implications. IEEE/ACM Transactions on Networking
(ToN), 5(5):631–645, 1997.

[5] M. Becchi. From Poisson processes to self-similarity: a
survey of network traffic models. http://www1.cse.
wustl.edu/~jain/cse567-06/ftp/traffic_models1/,
2008.

[6] D. Bertsekas. Dynamic Programming and Optimal
Control Vol 2. Athena Scientific, second edition, 2001.

[7] T. Bonald. Insensitive queueing models for
communication networks. In Proceedings of the 1st
International Conference on Performance Evaluation
Methodologies and Tools, page 57. ACM, 2006.



[8] T. Bonald and A. Proutiere. A queueing analysis of
data networks. In Queueing Networks, pages 729–765.
Springer, 2011.

[9] Cisco. Cisco visual networking index: Global mobile
data traffic forecast update, 2012–2017.
http://www.cisco.com/en/US/solutions/

collateral/ns341/ns525/ns537/ns705/ns827/

white_paper_c11-520862.pdf, 2012.

[10] FCC. Docket no 03-222 notice of proposed rule
making and order, 2003.

[11] S. Floyd and V. Paxson. Difficulties in simulating the
internet. IEEE/ACM Transactions on Networking
(TON), 9(4):392–403, 2001.

[12] M. Jonckheere and J. Mairesse. Towards an Erlang
formula for multiclass networks. Queueing Systems,
66(1):53–78, 2010.

[13] E. Kavurmacioglu, M. Alanyali, and D. Starobinski.
Competition in secondary spectrum markets: Price
war or market sharing? In IEEE Dynamic Spectrum
Access Networks (DYSPAN) International Symposium
on, pages 440–451. IEEE, 2012.

[14] H. Kim and K. G. Shin. Optimal admission and
eviction control of secondary users at cognitive radio
hotspots. In 6th Annual IEEE Communications
Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks (SECON), pages 1–9.
IEEE, 2009.

[15] S. Kockan and D. Starobinski. Admission control and
profitability analysis in dynamic spectrum access data
networks. Technical Report 2013-IR-0005, CISE,
Boston University, August 2013. Also available as
http://www.bu.edu/phpbin/cise/download.php?

publication_id=1257.

[16] A. Kortebi, S. Oueslati, and J. Roberts. Cross-protect:
implicit service differentiation and admission control.
In High Performance Switching and Routing, 2004.
HPSR. 2004 Workshop on, pages 56–60, 2004.

[17] X. Li, U. Toseef, T. Weerawardane, W. Bigos,
D. Dulas, C. Goerg, A. Timm-Giel, and A. Klug.
Dimensioning of the LTE access transport network for
elastic Internet traffic. In IEEE 6th International
Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), pages
346–354. IEEE, 2010.

[18] B. Miller. A queueing reward system with several
customer classes. Management Science, 16:234–245,
1971.

[19] H. Mutlu, M. Alanyali, and D. Starobinski. Spot
pricing of secondary spectrum access in wireless
cellular networks. IEEE/ACM Transactions on
Networking (TON), 17(6):1794–1804, 2009.

[20] H. Mutlu, M. Alanyali, and D. Starobinski. On-line
pricing of secondary spectrum access with unknown
demand function and call length distribution. In IEEE
International Conference on Computer
Communications (INFOCOM), pages 947–955, 2010.

[21] V. Pla, J. Virtamo, and J. Mart́ınez-Bauset. Optimal
robust policies for bandwidth allocation and admission
control in wireless networks. Computer Networks,
52(17):3258–3272, 2008.

[22] R. Ramjee, D. Towsley, and R. Nagarajan. On optimal
call admission control in cellular networks. Wireless

Networks, 3:29–41, 1996.

[23] A. Turhan, M. Alanyali, and D. Starobinski. Optimal
admission control of secondary users in preemptive
cognitive radio networks. In 10th International
Symposium on Modeling and Optimization in Mobile,
Ad Hoc and Wireless Networks (WiOpt), pages
138–144. IEEE, 2012.

[24] J. Walrand. An Introduction to Queueing Networks.
Prentice Hall, 1988.

[25] F. Wang, J. Huang, and Y. Zhao. Delay sensitive
communications over cognitive radio networks. IEEE
Transactions on Wireless Communications,
11(4):1402–1411, 2012.

[26] C. Williamson. Internet traffic measurement. IEEE
Internet Computing, 5(6):70–74, 2001.


