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Abstract— We consider wireless sensor networks with multiple
gateways and multiple classes of traffic carrying data generated
by different sensory inputs. The objective is to devise joint
routing, power control and transmission scheduling policies
in order to gather data in the most efficient manner while
respecting the needs of different sensing tasks (fairness). We
formulate the problem as maximizing the utility of transmissions
subject to explicit fairness constraints and propose an efficient
decomposition algorithm drawing upon large-scale decomposition
ideas in mathematical programming. We show that our algorithm
terminates in a finite number of iterations and produces a policy
that is asymptotically optimal at low transmission power levels.
Furthermore, we establish that the utility maximization problem
we consider can, in principle, be solved in polynomial time.
Numerical results show that our policy is near-optimal, even at
high power levels, and far superior to the best known heuristics
at low power levels. We also demonstrate how to adapt our
algorithm to accommodate energy constraints and node failures.
The approach we introduce can efficiently determine near-
optimal transmission policies for dramatically larger problem
instances than an alternative enumeration approach.

Index Terms— Wireless sensor networks, transmission schedul-
ing, routing, mathematical programming/optimization.

I. INTRODUCTION

W IRELESS sensor networks consist of a potentially large
number of typically small devices – the sensor nodes or

sensors – used to monitor some physical process or system [1].
The sensors have limited on-board capabilities, communicate
wirelessly and are usually powered by limited and non-
replenishable energy resources. Hence, energy preservation
is critical. In this setting, efficient resource allocation and
aggressive optimization of network operations is not merely a
desirable luxury but rather an indispensable necessity.

In this paper, we view the sensor network as a network
that collects data to relay them to some other processing or
communication infrastructure. To that end, it utilizes a host
of gateways whose role is information collection (and fusion)
from the sensor nodes [2, 3]. A plethora of applications fit this
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paradigm, including process control, machine condition moni-
toring, indoor location detection, and homeland defense [4–6].

Sensor network architectures create several new and inter-
esting challenges. For instance, traditional carrier sensing and
random access strategies, as used in the IEEE 802.11 protocol,
are often seen as inefficient and energy wasteful in sensor
network applications [4]. Furthermore, it is unclear what is the
transmission power at which sensors should communicate and
to which node they should forward their data. For instance, is
it preferable to communicate directly to the gateways, possibly
using high transmission power, or via other sensors at a lower
power? Another problem is how to differentiate between data
generated by different sensing tasks so that more sensitive data
is given higher priority. Finally, the question of optimizing
network operations while guaranteeing a minimum lifetime
for the network is another significant problem [7].

Several works have addressed subsets of these problems,
showing, for instance, the crucial role played by multi-hop
routing and power control [8–14]. However, as mentioned
in [7], to optimize the use of scarce resources, future sensor
network architectures must address all these challenges (multi-
access control – MAC –, routing, QoS, and power control)
using an integrated approach.

In this paper, we address the joint routing, power control and
scheduling optimization problem and propose a new efficient
computational approach to solve it in a centralized fashion.
Specifically, we consider the regime of low transmission pow-
ers (e.g., on the order of mWatts) with a moderate node density
(e.g., on the order of 1 node per 10 square meters), in which
many sensor networks operate. In this regime, the transmission
rate of sensors scales linearly with the transmission power.
Based on this assumption, we present a new methodology
to derive the optimal transmission policy for the sensors.
Our approach employs a dual cutting-plane approach that
consists of a master problem and a subproblem. Apart from
establishing the convergence of the proposed algorithm, a key
contribution is the efficient solution of the subproblem; we
devise an algorithm whose running time grows polynomially
with the size of the input. The polynomial complexity of the
subproblem implies, under certain technical conditions, the
polynomial solvability of the master problem. Namely, the
optimal transmission policy can, in principle, be computed in
polynomial time, which is of independent interest.

Our methodology dramatically improves the size of prob-
lems that can be solved. A similar optimization framework
to check whether a transmission rate is achievable has been
provided in [8], wherein the proposed approach to characterize
the capacity region amounts to an enumeration of all the
possible transmission strategies. Unfortunately, this enumer-
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ation requires a formidable amount of computations and is
applicable in practice only to networks of at most 5 or 6
nodes, which is admittedly very small. Instead, we are able
to solve instances with 50 or so nodes in less than a minute.
Furthermore, although our policy is provably optimal only in
the regime of low power levels, we show that it can easily be
adapted to the regime where the linear approximation is not
in effect. To demonstrate its wider applicability, we present
numerical results that show that our policy performs close to
optimal even at high transmission powers.

The optimization problem we formulate is a utility maxi-
mization problem that can accommodate lifetime constraints,
fairness constraints, and potential interdependencies among
sensor objectives. Therefore, throughput maximization [11]
and maximization of separable utility functions [13, 14] are
special cases of the more general problem we consider.

As part of the derivation of our solution, we show that the
optimal policy involves time-sharing among several transmis-
sion schemes. We also show that in the case of a node failure
(which is a likely event in sensor networks), we do not have
to re-compute the transmission schemes from scratch. Instead,
we introduce an optimization technique which reuses (after
appropriate modifications) the previously obtained transmis-
sion schemes an an input to the algorithm, thus, allowing the
algorithm to converge much faster. Numerical results show
that this approach can speed-up the convergence rate of the
algorithm by close to two orders of magnitude.

Finally, we compare the performance of our policy with
some of the best known joint scheduling-routing heuristics
proposed in the literature [13]. We consider throughput maxi-
mization in randomly generated instances of low-power sensor
networks having 40 nodes. Our comparisons show that our
policy increases total throughput by 50%, on average, where
the gain exceeds 100% in some cases.

The rest of the paper is organized as follows. In Sec. II we
present the system model and formulate the utility maximiza-
tion problem. Sec. III discusses the (undesirable) implications
of not enforcing fairness constraints. Sec. IV presents our de-
composition algorithm and establishes its convergence. Sec. V
demonstrates how to solve the subproblem in polynomial time.
In Sec. VI we show that the master problem can be solved
in polynomial time. In Sec. VII we discuss how to obtain a
policy when the linear approximation of rates is not in effect.
Optimization over power limits is considered in Sec. VIII. In
Sec. IX we show how to trade-off achieved utility vs. network
lifetime. We deal with node failures in Sec. X. Numerical
results are in Sec. XI and conclusions in Sec. XII.
Notational Conventions: All vectors are assumed to be
column vectors and are denoted by lower case boldface letters;
for economy of space we write x = (x1, . . . , xR) for the
column vector x. x′ denotes the transpose of x, 0 the vector
of all zeroes, and e the vector of all ones. ||x||∞ and ||x||1
denote the L∞ and L1 norms, respectively. We use upper
case boldface letters to denote matrices. We use script letters
to define sets and denote by Conv(A ) the convex hull of a
set A , and by |A | its cardinality. We denote by 1A (x) the
indicator function of x ∈ A . When A is described by a simple
condition, say x ≥ 0, we simply write 1(x ≥ 0).

II. NETWORK MODEL AND PROBLEM FORMULATION

We consider a Wireless Sensor NETwork (WSNET) with
N sensor nodes each of which can receive, transmit and
relay information with a single port/antenna that it carries.
We assume that sensor nodes do not multicast information, so
each transmission is from one node to another. Since they
carry a single antenna, nodes cannot receive and transmit
simultaneously. Furthermore, receiving nodes cannot receive
information from multiple nodes simultaneously. In addition
to the sensors, the network uses M gateways which receive
information from sensors and relay it to some other processing
infrastructure. Gateways can only receive information and,
without loss of generality, they are allowed to receive data
from multiple nodes simultaneously. Henceforth, we will refer
to all M + N sensor and gateway nodes alike as nodes of
the WSNET. Nodes 1, . . . , N correspond to sensors and nodes
N + 1, . . . , N +M to gateways.

Sensors in the WSNET collect different types of data
depending on the physical system or process they monitor
(e.g., temperature, pressure, levels of harmful agents, etc.) and
want to relay them to other (sensor or gateway) nodes. As a
result, the WSNET carries multiple types of traffic, differing in
information content and utility associated with their successful
transmission. We use the term traffic class to refer to types of
traffic with a particular origin and destination. Let K be the
total number of traffic classes. We denote by s(k) and d(k)
the source and destination of class k, for k = 1, . . . ,K.

We model the background noise in the WSNET as a single
source of additive, white and Gaussian noise, with power
spectral density η and bandwidth W . Let pijk denote the
power used by node i to transmit class k traffic to node j,
for i, j = 1, . . . , N + M , k = 1, . . . ,K. We will refer to
such a transmission as the (i, j, k) transmission. Note that
multihop schemes are also covered in the description. Let
Gij be the channel gain between nodes i and j when i is
transmitting. When node i transmits class k traffic the received
power at node j is pijkGij . Sensor nodes have limited power
resources; we let p̄i denote the maximum power available at
node i for i = 1, . . . , N . Thus, for any i, j = 1, . . . ,M +N ,
k = 1, . . . ,K, pijk is upper bounded by

p̄ijk
4
=











0, if i = N + 1, . . . , N +M ,

or i = d(k), or i = j,

p̄i, otherwise,

(1)

where p̄ijk denotes the maximum power available for the
(i, j, k) transmission.

Consider an (i, j, k) transmission. The Signal to Interference
and Noise Ratio (SINR), γijk, is

γijk =
pijkGij

ηW +
∑K
v=1

∑N+M
l=1,l 6=i

∑N+M
u=1 pluvGlj

. (2)

We use the Shannon capacity to determine the maximum rate
for an (i, j, k) transmission and assume that the sending node
i transmits with the maximum possible rate. Let rijk denote
the net flow rate for an (i, j, k) or a (j, i, k) transmission, i.e.,

rijk = W log(1 + γijk) −W log(1 + γjik). (3)
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When an (i, j, k) transmission is in progress, and under the
transmission restrictions adopted, it follows that γijk ≥ 0,
γuiv = 0 for all u, v, and rijk ≥ 0. Otherwise, when a
(j, i, k) transmission is in progress, γjik ≥ 0, γujv = 0
for all u, v, and rijk ≤ 0. Therefore, rijk and rjik have
opposite signs, but the same absolute value. We write r for
the (N +M)2K-dimensional vector of rijk’s and denote by
rijk its component that corresponds to the net flow rate for an
(i, j, k) or a (j, i, k) transmission. Similarly, we write p for
the (N +M)2K-dimensional vector of powers and denote by
pijk its component corresponding to the (i, j, k) transmission.

In this work, we first concentrate on sensor networks in
which power levels are on the order of mWatts and the node
density is moderate. In this case the transmission rates in (3)
can be well approximated by a linear function of transmitting
powers. A linear approximation is also used in the literature,
as long as nodes do not transmit at high rates [10, 12]. In
particular, taking the Taylor series expansion of (3) around
p = 0 and maintaining up to first order terms we obtain

rijk = (pijkGij − pjikGji)/η, ∀i, j, k. (4)

In matrix notation we have r = Hp, where the matrix H

is appropriately defined. We use this linear approximation to
devise the structure of the optimal policy. Later on in the paper,
we abandon the linear approximation and derive policies using
the exact form of transmission rates (cf. (3)).

The transmission restrictions introduced thus far translate
into the following set of conditions

pijkpuiv = 0, ∀i, j, k, u, v,
pijkpiuv = 0, ∀(j, k) 6= (u, v),
pijkpujv = 0, ∀(i, k) 6= (u, v), j ≤ N,
0 ≤ pijk ≤ p̄ijk, ∀i, j, k.

These conditions respectively state that at any point in time
(i) nodes cannot transmit and receive simultaneously, (ii) can
only transmit traffic of a single class to a single node and, (iii)
except for gateways, nodes can receive only a single traffic
class from a single node. We denote by P the set of all p ∈
R

(N+M)2K that satisfy the conditions above. We call valid a
transmission scheme with p ∈ P . Clearly P is bounded. We
also denote R = {r | r = Hp, p ∈ P}.

The next lemma establishes some properties of P , R, and
their convex hulls; the proof is given in Appendix I, which due
to space limitations is not included and is available at [15].

Lemma II.1 (i) Conv(P) and Conv(R) are polytopes (i.e.,
bounded polyhedra). (ii) Conv(R) = {r | r = Hp, p ∈
Conv(P)}. (iii) For any extreme point r ∈ Conv(R), there
exists an extreme point p ∈ Conv(P) such that r = Hp.

Suppose next we choose L valid transmission schemes. To
every valid transmission scheme n corresponds a rate vector in
R, say rn. Let us consider the information flow in the network
in a potentially large but finite time interval. Normalize the
length of this interval to 1. At different times, the network
may employ different transmission schemes, e.g., in order to
implement multi-hop routing. Suppose that during this time
interval, the network uses the L selected schemes only and

spends a fraction of time αn transmitting according to scheme
n = 1, . . . , L. Then the total amount of information delivered
during this interval is characterized by r =

∑L
n=1 αnr

n. This
is also the long-term average transmission rate vector.

Over the long run, the WSNET obeys flow conservation
laws, i.e., the traffic of each class should not accumulate in
any node other than its final destination. Hence,

∑N+M
j=1 rijk = 0, ∀i 6= s(k), d(k), ∀k,

that is class k traffic flow into i equals class k traffic outflow
from node i.

We seek to maximize the overall utility of transmissions in
the WSNET, expressed as a function F (r) of the long-term
average rate vector r. We assume that F (r) is continuous,
concave, and bounded in Conv(R). By considering system
utility, we cover a large variety of objectives studied in the
literature, including weighted throughput which is a linear
function of r. Moreover, F (r) need not be a sum of individual
utilities associated with each traffic class. Rather, it can repre-
sent quite general performance metrics of interest that model
interdependent behavior of the sensors, e.g., when clusters of
sensors collaborate towards a common goal.

We are interested in utility maximization subject to fairness
constraints. We model fairness considerations as a set of R
linear inequalities Ar ≤ b, where A ∈ R

R×(N+M)2K and
b ∈ R

(N+M)2K are given. For instance we can use linear
fairness constraints to require the transmission rate of each
node to exceed a certain minimum value in order to prevent
starvation, or maintain a certain relationship between the
throughputs of a number of nodes. Moreover, if the “needs” of
the network can be formulated as a set of linear constraints,
then they can also be treated as fairness constraints in our
model. We elaborate further on this point in Sec. III. Let
S be the set of rates satisfying fairness constraints and flow
conservation, i.e.,

S
4
=

{

r | Ar ≤ b,
N+M
∑

j=1

rijk = 0,∀i 6= s(k), d(k),∀k

}

and to exclude trivial cases assume Conv(R) ∩ S 6= ∅.

We can formulate the utility optimization problem as

max F (r)
s.t. r ∈ Conv(R) ∩ S .

An important observation is that we seek to maximize utility
over the convex hull of R rather than R itself (as for example
in earlier work, e.g., [9]). This is bound to yield higher system
utility and as we have seen the WSNET operates by time-
sharing among different transmission schemes.

Let r1, . . . , rL denote the extreme points of Conv(R). Any
r ∈ Conv(R) can be expressed as a convex combination of
those. Incorporating the definition of S and writing it as a
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minimization problem, the problem above is equivalent to

min −F (r)

s.t. r −
∑L
n=1 αnr

n = 0,
∑L
n=1 αn = 1,

∑N+M
j=1 rijk = 0, ∀i 6= s(k), d(k),∀k,

Ar ≤ b,
αn ≥ 0, n = 1, . . . , L,

(5)

where r and α = (α1, . . . , αL) are the decision variables.
Note that r1, . . . , rL are also points of R, thus, there exist
corresponding valid transmission schemes (i.e., points in P)
p1, . . . ,pL with rn = Hpn for all n = 1, . . . , L. The problem
above maximizes a concave function over a polyhedron. It can
be solved using, for example, the conditional gradient method.
If F (r) is linear, then it is a linear programming problem for
which very efficient algorithms exist.

Of course, Conv(R) can have a humongous number of
extreme points and this is the key challenge in solving (5).
A simpler version of (5) with no fairness constraints was used
in [8] to check whether a transmission rate is achievable and it
was proposed to be solved by simply enumerating all extreme
points. As indicated in [8], and clearly illustrated in Sec. XI,
this approach can only handle very small networks. As we
will see in Sec. IV, there are more efficient ways to solve
(5). The decomposition algorithm we propose does not need
to know r1, . . . , rL (or equivalently, the corresponding trans-
mission schemes) in advance. It generates them as needed and
identifies the ones that should be used to achieve optimality.

III. THE IMPORTANCE OF BEING FAIR

Before we proceed with our agenda, we demonstrate why
it is important to explicitly include fairness constraints in the
proposed framework. To this end, we consider a special case.

Consider a WSNET with a single gateway where all infor-
mation transmitted by the sensor nodes is intended for this
gateway. According to our model in Sec. II the gateway can
receive data from multiple nodes simultaneously. The objective
is to maximize total throughput. This problem can be casted
in the general framework of Sec. II. More specifically, M = 1
and there are N sensor nodes each of which transmits traffic
intended for the gateway. In this example, we assume that
each sensor only generates one class of traffic. Therefore,
traffic classes differ from each other only in their respective
sources. Thus, there are N traffic classes and we let class i be
associated with sensor node i for i = 1, . . . , N . Let us adopt
the notation of Sec. II and suppose no fairness constraints
are enforced. The net flow out of node i equals

∑N+1
j=1 riji,

thus, the total throughput is given by
∑N
i=1

∑N+1
j=1 riji. The

throughput maximization problem becomes (cf. (5)):

max
∑N
i=1

∑N+1
j=1 riji

s.t. r ∈ Conv(R),
∑N+1
j=1 rijk = 0, ∀i 6= k,N + 1,∀k.

(6)

Theorem III.1 Optimality for problem (6) can be achieved
without time division. Furthermore, it is optimal for every node
to transmit directly to the gateway.

Proof: Let us first relax the flow conservation constraints
and consider the following problem

max
∑N
i=1

∑N+1
j=1 riji

s.t. r ∈ Conv(R).
(7)

The objective function is linear and the feasible set is a
polytope, hence, there always exists an optimal solution r∗

which is an extreme point of Conv(R). The optimal solution
r∗ is also in R, thus, no time division is needed to achieve
optimality. Since there is no time-sharing and r∗ has to be
valid, the optimal strategy for problem (7) is for every node
to send directly to the gateway. For such an r∗ conservation
constraints are satisfied and r∗ solves (6).

Theorem III.1 states that the throughput is maximized when
all nodes transmit directly to the gateway at the maximum rate
allowed by the Shannon capacity. This implies that nodes close
to the gateway (i.e., with high channel gains) have a significant
advantage over nodes that happen to be further away. This is
a rather unfair operation of the WSNET and is due to the
wireless medium rather than nodes’ actual needs. In WSNETs
collecting data, for example, it can introduce a “geographic”
bias into the data collection process. One way to mitigate it
is to explicitly introduce fairness constraints into the problem
formulation. The resulting strategy could use multi-hop routing
(i.e., where nodes far away use other nodes as relays to reach
the gateway) to achieve a more balanced operation.

IV. A DECOMPOSITION METHOD

In this section we propose a decomposition method for solv-
ing (5). For linear utilities the method is a column generation
method for solving large-scale linear programming problems.
To handle the nonlinear objective we present it as a cutting
plane method for the dual problem.

We will be referring to (5) as the master problem. Let
(λ, µ,σ,ν) be the dual vector, then the dual function is

G(λ, µ,ν,σ) = inf
α≥0,r

{

− F (r) + λ′(r −
∑

n αnr
n)

+ µ(
∑

n αn − 1) + σ′(Ar − b)

+
∑

k

∑

i6=s(k),d(k) νik
∑

j rijk

}

= G1(λ,ν,σ) +G2(λ, µ) − µ− σ′b,

where

G1(λ,ν,σ) = inf
r

{

− F (r) + (λ′ + σ′A)r

+
∑

k

∑

i6=s(k),d(k) νik
∑

j rijk

}

,

G2(λ, µ) = inf
α≥0

∑

n(µ− λ′rn)αn.

Let
D1 = {(λ,ν,σ) | G1(λ,ν,σ) > −∞}
D2 = {(λ, µ) | G2(λ, µ) > −∞}

and note that

D2 = {(λ, µ) | µ− λ′rn ≥ 0, n = 1, . . . , L},
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G2(λ, µ) =

{

0, if (λ, µ) ∈ D2,

−∞, otherwise,

and D1 is independent of r1, . . . , rL. Then the dual of (5) is

max G1(λ,ν,σ) − µ− σ′b

s.t. (λ,ν,σ) ∈ D1,
µ− λ′rn ≥ 0, n = 1, . . . , L,
σ ≥ 0.

(8)

Since (5) is a convex problem there is no duality gap.
Suppose now we have an extreme point of Conv(R), say

r1, which belongs to S . Let m ∈ {1, . . . , L}, and consider

min −F (r)
s.t. r −

∑m
n=1 αnr

n = 0,
∑m
n=1 αn = 1,

∑N+M
j=1 rijk = 0, ∀i 6= s(k), d(k),∀k,

Ar ≤ b,
αn ≥ 0, n = 1, . . . ,m,

(9)

which we call the restricted master problem at the mth itera-
tion. Suppose we solve this problem to optimality. The dual of
(9) is identical to (8) with the exception that only constraints
µ−λ′rn ≥ 0, for n = 1, . . . ,m, appear. We refer to this latter
problem as the restricted dual problem at the mth iteration. Let
(r(m),α(m);λ(m), µ(m),ν(m),σ(m)) be an optimal primal-
dual pair for the restricted master problem. The dual vari-
ables are dual feasible and satisfy (λ(m),ν(m),σ(m)) ∈ D1,
σ(m) ≥ 0, and µ(m) − λ(m)′rn ≥ 0, for all n = 1, . . . ,m.
If µ(m) − λ(m)′rn ≥ 0 for all n = 1, . . . , L then we have
a primal-dual pair for (5) and we are done. Otherwise, we
need to generate an extreme point, say rm+1, of Conv(R)
that violates dual feasibility, solve the m + 1st restricted
master problem, and continue iterating in this fashion. We
next examine how to produce “cuts” in the dual, i.e., how
to generate an extreme point that violates dual feasibility.

A. The subproblem

At the mth iteration we seek an extreme point rm+1 of
Conv(R) satisfying µ(m) − λ(m)′rm+1 < 0. As we argued
earlier, the extreme points of Conv(R) are also in R. So we
might as well generate a point r that minimizes µ(m)−λ(m)′r

over R. This suggests the subproblem

max λ′r

s.t. r = Hp,
p ∈ P,

(10)

with cost vector λ = λ(m).
We now establish some properties of (10). λ ∈ R

(M+N)2K

is the dual vector corresponding to the first constraint of (5).
Denote by λijk the element of λ corresponding to rijk and
let πijk = λijk − λjik. Then

λ′Hp =
∑K
k=1

∑N+M
i=1

∑N+M
j=1 λijk

pijkGij−pjikGji

η

=
∑K
k=1

∑N+M
i=1

∑N+M
j=1

πijkGij

η
pijk,

hence the subproblem is equivalent to

max
∑K
k=1

∑N+M
i=1

∑N+M
j=1

πijkGij

η
pijk

s.t. p ∈ P.
(11)

We reduce it to an integer linear programming problem (ILP).

Proposition IV.1 Problem (11) is equivalent to the ILP:

max
∑

(i,j,k)|ψijk>0 ψijksijk

s.t.
N+M
∑

j=1

K
∑

k=1

sijk +
N+M
∑

j=1

K
∑

k=1

sjik ≤ 1, ∀i ≤ N,

0 ≤ sijk ≤ Iijk,
sijk ∈ {0, 1},

(12)

where ψijk =
πijkp̄ijkGij

η
and Iijk = 1(ψijk > 0).

Proof: Note that there always exists an optimal solution
p∗ to the problem (11) satisfying the conditions

p∗ijk ∈ {0, p̄ijk}, if ψijk > 0,

p∗ijk = 0, otherwise.

Letting

sijk =

{

1, if pijk = p̄ijk > 0,

0, otherwise,

we obtain that the problem (11) is equivalent to:

max
∑

(i,j,k)|ψijk>0 ψijksijk
s.t. sijk + suiv ≤ 1, ∀i, j, k, u, v,

sijk + siuv ≤ 1, ∀(j, k) 6= (u, v),
sijk + sujv ≤ 1, ∀(i, k) 6= (u, v), j ≤ n,
0 ≤ sijk ≤ Iijk,
sijk ∈ {0, 1}.

(13)

In particular, s∗ is an optimal solution of the above if and only
if p∗ satisfying

p∗ijk =

{

p̄ijk, if sijk = 1,

0, otherwise,
(14)

is an optimal solution of (11). Writing (13) in a more compact
way we obtain (12).

We summarize the discussion on the subproblem as follows:
to compute an optimal solution r∗ of (10) we first solve (12)
to obtain an optimal solution s∗, then compute p∗ as in (14),
and finally compute r∗ = Hp∗. It is evident from the proof of
Proposition IV.1 that s∗ prescribes how to operate the network
under the transmission scheme p∗: (i, j, k) transmissions occur
only if sijk = 1 and if so at maximum power.

B. The decomposition algorithm

We now have all the ingredients to present the decomposi-
tion algorithm and show its convergence. The algorithm is in
Fig. 1 and the next theorem establishes its convergence. In the
sequel, we assume that (5) is feasible; we will discuss at the
end of this Section how this assumption can be relaxed.

Theorem IV.2 Assume that (5) is feasible. Then the decompo-
sition algorithm of Fig. 1 terminates with an optimal solution
of (5) in a finite number of iterations.

Proof: Recall that at the m-th iteration the subproblem
minimizes µ(m) − λ(m)′r over r ∈ R. Thus, if µ(m) −
λ(m)′rm+1 ≥ 0 it follows that µ(m) − λ(m)′r ≥ 0 for
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1) Initialization: Let r1 ∈ Conv(R) ∩ S and set m = 1.
2) m-th iteration:

a) Solve the restricted master problem (9) with
r1, . . . , rm to obtain an optimal primal-dual pair
(r(m),α(m);λ(m), µ(m),ν(m),σ(m)).

b) Solve the subproblem (10) with cost vector λ(m)

as outlined in Sec. IV-A. Let rm+1 be the optimal
solution obtained.

c) If µ(m) −λ(m)′rm+1 ≥ 0 stop; (r(m),α(m)) is an
optimal solution of (5). Otherwise, set m := m+1
and go to step 2a.

Fig. 1. The decomposition algorithm.

all r ∈ R. Since all extreme points of Conv(R) are in
R, the latter condition implies that µ(m) − λ(m)′rn ≥ 0
for all extreme points r1, . . . , rL of Conv(R). Therefore,
(r(m),α(m);λ(m), µ(m),ν(m),σ(m)) is an optimal primal-
dual pair for (5) and the algorithm terminates.

Next note that due to Proposition IV.1 and the resulting
structure of the subproblem solutions, at each iteration we
generate a transmission scheme in {p ∈ P | pijk ∈
{0, p̄ijk}} which contains all extreme points of Conv(P). Let
p1, . . . ,pm be the transmission schemes generated up to the
m-th iteration and suppose the algorithm does not terminate
at the m-th iteration. The next transmission scheme to be
generated, pm+1, is different from the ones generated earlier
since they are separated by a hyperplane. In particular, since
µ(m), λ(m) are feasible for the restricted dual problem at the
m-th iteration we have

µ(m) − λ(m)′Hpn ≥ 0, n = 1, . . . ,m,

µ(m) − λ(m)′Hpm+1 < 0.

Thus, at each iteration we generate a new point of the finite set
{p ∈ P | pijk ∈ {0, p̄ijk}}. Hence, the algorithm terminates
in a finite number of iterations.

C. Initialization

We conclude this section by outlining how to initialize
the algorithm of Fig. 1. We require an initial vector r1 ∈
Conv(R) ∩ S . In many cases of practical interest r1 = 0

would be feasible, which is the case when b ≥ 0. This
includes b = 0 which can be interpreted to mean that fairness
is relative. Arguably, this covers the majority of practical cases.
If b 6= 0, then it might still be possible to reformulate the
fairness constraints so that b ≥ 0. Otherwise, some extra work
needs to be done to discover an initial feasible solution. To
this end, consider the following auxiliary master problem

min −
∑R
i=1 yi

s.t. r −
∑L
n=1 αnr

n = 0,
∑L
n=1 αn = 1,

∑N+M
j=1 rijk = 0, ∀i 6= s(k), d(k),∀k,

Ar + y = b,
αn ≥ 0, n = 1, . . . , L,

(15)

where we introduce the auxiliary variables y. This problem can
be solved using a similar decomposition algorithm as in Fig. 1.
We start with m = 1, r1 = 0, and note that r = 0, α1 = 1,
y = b form a feasible solution. The dual of (15) is almost
identical to (8) with a modified definition of G1(λ,ν,σ). The
subproblem remains the same as before and the decomposition
approach applies. If the optimal solution of (15) satisfies y ≥ 0

then we are done as we have a feasible solution of (5) to
initialize our algorithm. Otherwise, (5) is infeasible.

V. SOLVING THE SUBPROBLEM

The efficiency of the algorithm of Fig. 1 critically depends
on how efficiently we can solve the subproblem. As outlined
in Sec. IV-A, solving the subproblem amounts to solving an
ILP. General ILPs are hard to solve; they are NP-complete. In
this section, we establish that (12) is equivalent to a maximum
weighted matching problem, which is polynomially solvable.

Let us define the following sets: A = {1, . . . , N} and Bl =
{Nl + 1, . . . , Nl + N} for l = 1, . . . ,M . Each element of
A corresponds to a sensor node of the WSNET and set Bl

corresponds to the gateway l of the WSNET. Let V = A ∪
(∪Ml=1Bl) and consider the undirected graph G = (V ,E ),
where E is the complete set of edges between nodes in V .
With each edge (i, j) ∈ E we associate a weight wij such that

wij =































max
k=1,...,K

max{ψijk, ψjik}, ∀i, j ∈ A ,

max
k=1,...,K

max{ψi,N+l,k, 0}, ∀i ∈ A , j ∈ Bl,

max
k=1,...,K

max{ψj,N+l,k, 0}, ∀i ∈ Bl, j ∈ A ,

0, otherwise.

(16)

Note that wij = wji ≥ 0, ∀i, j. Also for any i, u, v, if u, v ∈
Bl for some l, then wiu = wiv , that is, the weight of the link
between i and any node in Bl is the same. Let us also construct
a set K as follows: for each 1 ≤ i ≤ N, 1 ≤ j ≤ N + M ,
we select only one, if any, k satisfying the conditions

k =

{

argmaxt=1,...,K max{ψijt, ψjit}, if j ≤ N,

argmaxt=1,...,K max{ψijt, 0}, otherwise,

and ψijk > 0, and let (i, j, k) be an element of K .
The next theorem establishes that solving the subproblem

amounts to solving a maximum weighted matching for graph
G where edge weights are given in (16).

Theorem V.1 Suppose x∗ is an optimal solution to the max-
imum weighted matching problem

max
∑

(i,j)∈E
wijxij

s.t.
∑

j|(i,j)∈E
xij ≤ 1, ∀i

xij = xji, ∀i, j,
xii = 0, ∀i,
xij ∈ {0, 1}, ∀i, j.

(17)

Then, an optimal solution s∗ to the subproblem (12) satisfies

s∗ijk =















1K (i, j, k)x∗ij , if 1 ≤ i, j ≤ N,

1K (i, j, k)
∑

v∈Bj−N

x∗iv, if 1 ≤ i ≤ N, j ≥ N + 1,

0, otherwise.
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Proof: We first show s∗ is a feasible solution to the
subproblem (12). Note that if ψijk ≤ 0 then Iijk = 0 and
1K (i, j, k) = 0, thus s∗ijk = 0. Also, by construction, s∗ijk
can only take values in {0, 1} for any i, j, k. Finally, for any
sensor node i (1 ≤ i ≤ N ), we have

∑N+M
j=1

∑K
k=1 s

∗
ijk +

∑N+M
j=1

∑K
k=1 s

∗
jik

=
N
∑

j=1

K
∑

k=1

1K (i, j, k)x∗ij +
N
∑

j=1

K
∑

k=1

1K (j, i, k)x∗ji

+
∑N+M
j=N+1

∑K
k=1 1K (i, j, k)

∑

v∈Bj−N
x∗iv

=
∑N
j=1 x

∗
ij

∑K
k=1[1K (i, j, k) + 1K (j, i, k)]

+
∑N+M
j=N+1

∑

v∈Bj−N
x∗iv

∑K
k=1 1K (i, j, k)

≤
∑N
j=1 x

∗
ij +

∑N+M
j=N+1

∑

v∈Bj−N
x∗iv

=
∑

v|(i,v)∈E
x∗iv ≤ 1,

where the first equality above follows from the definition of s∗.
The third equality follows from the fact that x∗ij = x∗ji. For the
first inequality, note that if (i, j, k) ∈ K , then no other triplet
with the same (i, j) is in K . Furthermore, if (i, j, k) ∈ K

then ψijk > 0 which implies ψjik < 0, hence (j, i, k) 6∈ K .

Next we relate the objective values of problems (12) and
(17), respectively. We have

∑

(i,j)∈E
wijx

∗
ij

=
∑

i∈A

∑

j∈A
wijx

∗
ij + 2

∑M
l=1

∑

i∈A

∑

j∈Bl
wijx

∗
ij

=
∑

i∈A

∑

j∈A
max

k=1,...,K
max{ψijk, ψjik}x

∗
ij

+ 2
∑M
l=1

∑

i∈A

∑

j∈Bl

max
k=1,...,K

max{ψi,l+N,k, 0}x
∗
ij

=
N
∑

i=1

N
∑

j=1

[
K
∑

k=1

1K (i, j, k)ψijk +
K
∑

k=1

1K (j, i, k)ψjik]x
∗
ij

+ 2
M
∑

l=1

N
∑

i=1

∑

j∈Bl

K
∑

k=1

1K (i, l +N, k)ψi,l+N,kx
∗
ij

=2
∑N
i=1

∑N
j=1

∑K
k=1 ψijk1K (i, j, k)x∗ij

+ 2
∑N
i=1

M
∑

l=1

K
∑

k=1

ψi,l+N,k1K (i, l +N, k)
∑

j∈Bl
x∗ij

=2
∑N+M
i=1

∑N+M
j=1

∑K
k=1,ψijk>0 ψijks

∗
ijk

=2
∑

(i,j,k)|ψijk>0 ψijks
∗
ijk

where the first equality above follows from (16) and the
fact that x∗ij = x∗ji. The last two equalities follow from the
definition of s∗.

In the remainder of this proof, we proceed to prove that
s∗ is an optimal solution to problem (12) by contradiction.
Suppose s∗ is not optimal, then there exists a feasible solution
ŝ to problem (12) with strictly higher objective value. From ŝ

construct a solution x̂ such that

x̂ij =



















∑K
k=1(ŝijk + ŝjik), if 1 ≤ i, j ≤ N, i 6= j,

∑K
k=1 ŝi,l+N,k, if 1 ≤ i ≤ N, j = Nl + i,

∑K
k=1 ŝj,l+N,k, if 1 ≤ j ≤ N, i = Nl + j,

0, otherwise.

Note that by the construction of x̂, we have x̂ij = x̂ji and
x̂ii = 0, ∀i, j. To show that x̂ is a feasible solution to problem
(17), we distinguish between two cases.

Case 1: 1 ≤ i ≤ N . In this case, as ŝ is a feasible solution
to problem (12), we have

∑

j|(i,j)∈E
x̂ij

=
∑N
j=1

∑K
k=1(ŝijk + ŝjik) +

∑M
l=1

∑K
k=1 ŝi,l+N,k

=
∑N+M
j=1

∑K
k=1 ŝijk +

∑N+M
j=1

∑K
k=1 ŝjik ≤ 1.

where the last equality follows from the fact that ŝjik = 0 for
any j = N + 1, . . . , N +M .

Case 2: Nl + 1 ≤ i ≤ Nl + N for some l such that 1 ≤
l ≤M . In this case, we have

∑

j|(i,j)∈E
x̂ij = x̂i,i−Nl =

∑K
k=1 ŝi−Nl,l+N,k ≤ 1.

We conclude that x̂ is a feasible solution to problem (17).
As the last step of the proof, note that

∑

(i,j)∈E
wij x̂ij

=
∑

i∈A

∑

j∈A
wij x̂ij +

∑M
l=1

∑

i∈A

∑

j∈Bl
wij x̂ij

+
∑M
l=1

∑

i∈Bl

∑

j∈A
wij x̂ij

=
∑

i∈A

∑

j∈A
wij x̂ij + 2

∑M
l=1

∑

i∈A
wi,Nl+ix̂i,Nl+i

=
N
∑

i=1

N
∑

j=1

(

max
t=1,...,K

max{ψijt, ψjit}

)

K
∑

k=1

(ŝijk + ŝjik)

+ 2
M
∑

l=1

N
∑

i=1

(

max
t=1,...,K

max{ψi,l+N,t, 0}

)

(
K
∑

k=1

ŝi,l+N,k)

≥2
∑N
i=1

∑N
j=1

∑K
k=1,ψijk>0 ψijkŝijk

+ 2
∑M
l=1

∑N
i=1

∑K
k=1,ψi,l+n,k>0 ψi,l+N,kŝi,l+N,k

=2
∑

(i,j,k)|ψijk>0 ψijkŝijk

With this we can see that
∑

(i,j)∈E
wij x̂ij ≥ 2

∑

(i,j,k)|ψijk>0 ψijkŝijk
> 2

∑

(i,j,k)|ψijk>0 ψijks
∗
ijk =

∑

(i,j)∈E
wijx

∗
ij ,

which contradicts the assumption that x∗ is optimal for (17),
therefore, s∗ is optimal for the subproblem.

Remark : It should be noted that (17) is always feasible (x =
0 is a feasible solution), thus, it is always possible to obtain
an optimal solution of the subproblem as specified above.

The maximum weighted matching problem is a well studied
problem in graph theory. Many algorithms and heuristics for
different matching variants have been proposed and it has been
shown that (17) can be solved in O(|V |3) amount of time
[16], that is, polynomial in the size of the input. In our case,
|V | = (M + 1)N and it takes O(KN(N + M)) additional
time to calculate the weights and obtain s∗ from x∗, thus,
subproblem’s complexity is O(KN(N +M)+(M +1)3N3).

VI. POLYNOMIAL SOLVABILITY OF THE MASTER PROBLEM

The complexity of the subproblem suggests that, in princi-
ple, the master problem (5) can also be solved in polynomial
time under mild technical conditions. First, we consider the
following problems concerning any given polytope L .

1) Separation problem of L (SP(L )): Given an arbitrary
vector r of suitable dimension, decide whether r ∈ L ,
and if not, find a hyperplane that separates r from L .
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2) Optimization problem of L (OP(L )): Given an arbi-
trary vector c of suitable dimension, find a vector r ∈ L

that maximizes c′r over L or assert that L is empty.

SP(L ) and OP(L ) are polynomially equivalent, that is,
if one is polynomially solvable, so is the other (cf. [17,
Theorem 6.4.9]). This equivalence holds when L is well-
described, namely, the facet-complexity (or equivalently, the
vertex-complexity) is bounded (cf. [17, Lemma 6.2.4]). Here,
we consider the boundedness of the vertex-complexity which,
roughly, means that all vertices of the polyhedron can be
written as a binary number –the encoding length– with a
number of bits bounded by a constant ([17, Definition 6.2.2]).
For example, it can be shown that Conv(R) is a well-described
polyhedron, assuming p̄i, Gij and η are all rational numbers,
for any i, j. Specifically, note that the encoding length for
p̄iGij

η
is bounded, for any i, j. Letting U be an upper bound

on this encoding length it follows that the vertex-complexity
of Conv(R) is at most (M +N)2KU . As OP(Conv(R)) is
polynomially solvable, the following lemma holds.

Lemma VI.1 SP(Conv(R)) is polynomially solvable.

Now let us consider the master problem of the form

max F (r)
s.t. r ∈ Conv(R),

r ∈ S ,
(18)

and note that α (cf. (5)) does not appear in the formulation.
Furthermore, the constraints concerning Conv(R) are not
explicitly given. For simplicity let us write the constraint
r ∈ S as Dr ≤ d, for an appropriate matrix D and a vector
d. Next, we define the infeasibility measure of problem (18)
as B(r) = max {B1(r), B2(r)}, where

B1(r) = min {||t||∞ | r − t ∈ Conv(R)} ,

B2(r) = min {v ≥ 0 | Dr − ve ≤ d} ,

and e is the vector of all 1’s. It can be seen that B1(r) is the
minimum L∞ distance of r from the set Conv(R). The next
lemma establishes that B(r) is a valid infeasibility measure;
the proof is in Appendix II available at [15].

Lemma VI.2 B(r) is a valid infeasibility measure, i.e., (i)
B(r) ≥ 0, and B(r) = 0 if r ∈ Conv(R) ∩ S ; (ii) B(r) is
convex in r.

To proceed we will need to establish a technical prop-
erty for the infeasibility measure B(·). Let us again con-
sider B1(r) and B2(r) separately, and define the ε-level
sets L B1

ε = {r | B1(r) ≤ ε}, L B2
ε = {r | B2(r) ≤ ε}, and

L B
ε = {r | B(r) ≤ ε} where ε is an arbitrary rational number.

Clearly, we have L B
ε = L B1

ε ∩ L B2
ε . The following lemma

establishes some useful results about L B1
ε .

Lemma VI.3 (i) L B1
ε is a polytope. (ii) OP(L B1

ε ) is poly-
nomially solvable. (iii) SP(L B1

ε ) is polynomially solvable.

Proof: (i) Note that

L
B1
ε =

{

r | ∃ r0 ∈ Conv(R), ||r − r0||∞ ≤ ε
}

,

where Conv(R) and {r | ||r||∞ ≤ ε} are polytopes, therefore
L B1
ε is also a polytope.
(ii) For arbitrary vector c, consider the optimization prob-

lem max
{

c′r | r ∈ L B1
ε

}

, and note that it is equivalent to
separately consider the following two optimization problems

max c′r0

s.t. r0 ∈ Conv(R),
max c′t0

s.t. ||t0||∞ ≤ ε,

because of the separable structure of the original problem.
Note that both problems above can be solved in polynomial
time, and the polynomial complexity of OP(L B1

ε ) follows.
(iii) Let the encoding length of ±ε be bounded by U0,

then encoding length of each extreme point of L B1
ε is upper

bounded by (M + N)2K(U + U0) where U is an upper
bound on the encoding length of p̄iGij

η
. Therefore, L B1

ε is
well-described and property (ii) implies that SP(L B1

ε ) is
polynomially solvable.

The following Lemma establishes a useful property of L B
ε .

Lemma VI.4 For any given r and ε > 0 we can determine
whether B(r) ≤ ε, or, if not, separate r from the set L B

ε .
Moreover, this can be done in running time that is polynomial
in (M +N)2KU and log(1/ε).

Proof: Fix r and ε > 0. Computing B2(r) amounts to
solving a linear programming problem which can be done in
polynomial time. Due to Lemma VI.3 we can determine in
polynomial time whether r ∈ L B1

ε . We distinguish four cases:
Case 1: r ∈ L B1

ε and B2(r) ≤ ε. In this case we have
B(r) = max {B1(r), B2(r)} ≤ ε.
Case 2: r ∈ L B1

ε and B2(r) > ε. Finding a separating
hyperplane that separates r from L B2

ε can also be done in
polynomial time since checking whether r ∈ L B2

ε amounts
to checking feasibility of a well-described linear programming
problem with a finite number of constraints. In particular, it
suffices to find i such that (Dr)i − di ≥ (Dr)j − dj , ∀j 6= i.
The separating hyperplane is defined by the i-th row of D.
Case 3: r 6∈ L B1

ε and B2(r) ≤ ε. By Lemma VI.3, SP(L B1
ε )

can be solved polynomially.
Case 4: r 6∈ L B1

ε and B2(r) > ε. In this case we can follow
the procedure in either Case 2 or Case 3.

Now we are ready to prove the polynomial complexity of
problem (18) under the following assumption on F (·).

Assumption A
For every instance of (18) and given an r ∈ R

(N+M)2K: (i)
we can compute F (r) and a subgradient of F (·) evaluated at
r in time that is polynomial in the size of the instance of (18);
and (ii) F (r) grows polynomially in r, that is, |F (r)| is upper
bounded by a polynomial function of |r|1 with degree equal
to a power of the size of the instance of (18).

Theorem VI.5 Let Assumption A prevail. Then the convex
optimization problem (18) is polynomially solvable.

Proof: To prove the polynomial-time solvability, it suf-
fices to check polynomial computability, polynomial growth
and polynomial boundedness of the feasible set (cf. [18,
Theorem 5.3.1]).
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(1) Polynomial computability: F (r) satisfies Assumption A(i)
and B(r) satisfies the statement of Lemma VI.4.
(2) Polynomial growth: F (r) is of polynomial growth by
Assumption A(ii). To justify the polynomial growth of B(r),
we consider B1(r) and B2(r) separately. First, note that
B1(r) ≤ ||r||∞ ≤ ||r||1 because 0 ∈ Conv(R). To upper
bound B2(r) we have

B2(r) = max(0,maxi((Dr)i − di))
≤ ||Dr − d||1 ≤ ||D||1 · ||r||1 + ||d||1.

Therefore B(r) is also of polynomially growth.
(3) Polynomial boundedness of the feasible set: It suffices to
establish that the feasible set of every instance of problem (18)
is bounded and is contained in a ball centered at the origin
with radius that is bounded by a polynomial in the size of the
instance of (18). This is evident for Conv(R).

Remark : Assumption A on F (r) is not as restrictive as
it seems to be. Assumption A(i) is satisfied by most utility
functions of interest. Assumption A(ii) appears more restric-
tive as several functions violate it. However, it can be easily
satisfied by making certain transformations. For example, if
F (r) = −

∑

i e
ri , then we can equivalently consider the

function − log(
∑

i e
ri) which is of polynomial growth.

Equipped with Theorem VI.5, we know that there exists an
algorithm that finds an optimal solution r∗ to problem (18)
in polynomial time. As the last step to solving the master
problem (5), we also have to compute α∗ in polynomial time.
This problem amounts to finding a polynomial number of
extreme points of Conv(R) such that r∗ can be expressed as
a convex combination of those. By Caratheodory’s theorem,
(M + N)2K + 1 extreme points suffice. Despite the fact
that the form of Conv(R) is not explicitly given, we know
that OP(Conv(R)) can be solved in polynomial time, and
that the polytope Conv(R) is well-described. Therefore, [17,
Theorem 6.5.11] guarantees the existence of a polynomial time
algorithm achieving this goal. We summarize the major result
of this section in the following theorem.

Theorem VI.6 Let Assumption A prevail. Then the convex
optimization problem (5) is polynomially solvable.

Theorem VI.6 is an interesting theoretical result. It asserts that
even though Conv(R) has an exponential number of extreme
points [8], and computing its explicit form is expensive (i.e.,
it takes exponential time), we can still solve (5) in polynomial
time. To that end, however, one would have to use the ellipsoid
method, which is typically slow and impractical even for
moderate-sized problems. Instead we expect the decomposi-
tion method we have presented to be more efficient in practice.

VII. A POLICY WITHOUT THE LINEAR APPROXIMATION

In this section we outline how to remove the linear ap-
proximation of transmission rates (cf. (4)) and obtain a policy
under the exact expression of (3). With the exact rate func-
tion Conv(R) becomes difficult to characterize and makes
(5) intractable. Earlier attempts in the literature used either
approximation techniques, e.g., discretization, or restricted

routing strategies [8, 9]. Here, we use linearization to obtain
the structure of the policy and then remove the linearization
to devise a policy under the exact expression (3).

More specifically, we first solve (5) using the linear ap-
proximation in (4) as outlined in Sec. IV and obtain a set of
transmission schemes under which the network will operate;
let r1, . . . , rD be the corresponding rates. Based on the dis-
cussion in earlier sections, we know that for each transmission
vector rn (n = 1, . . . , D), rnijk > 0 implies that node i
transmits class k traffic to node j. Now letting each node
use the maximum available power if it transmits, the modified
transmission vector r̃n corresponding to rn is

r̃nijk = W log(1 + γ̃nijk) −W log(1 + γ̃njik),

where for any (i, j, k) and n = 1, . . . , D

γ̃nijk =
1(rnijk > 0)p̄ijkGij

ηW +
∑K
v=1

∑N+M
l=1,l 6=i

∑N+M
u=1 1(rnluv > 0)p̄luvGlj

.

Next we use the modified transmission vectors and solve
the following utility maximization problem

max F (r̃)

s.t. r̃ −
∑D
n=1 α̃nr̃

n = 0,
∑N+M
j=1 r̃ijk = 0, ∀i 6= s(k), d(k),∀k,

Ar̃ ≤ b,
∑D
n=1 α̃n = 1, α̃n ≥ 0, n = 1, . . . , D,

(19)

with decision variables r̃ and α̃. The optimal solution provides
a transmission policy time-sharing among the schemes with
rates r̃1, . . . , r̃D. Note that we solve problem (19) without
further iterations of the decomposition method to add more
transmission schemes. That is, we adopt and fix the transmis-
sion schemes obtained under the linear approximation. It can
be seen that if b ≥ 0, then problem (19) is feasible if we add
0 to the allowable transmission schemes r̃1, . . . , r̃D. (This is
always possible if we set p̄ijk = 0 for all (i, j, k).) However,
feasibility in general is not guaranteed.

The line of development so far implies that the policy
obtained from (19) is asymptotically optimal as p → 0.
Numerical examples in Sec. XI illustrate that the policy
remains close to optimal even when p is far away from 0.

VIII. OPTIMIZATION OVER POWER LIMITS

So far we have assumed that the power limits p̄i of all
sensor nodes i = 1, . . . , N are fixed. As we will see, higher
power limits lead to higher utility, but, of course, higher energy
consumption. As energy preservation is critical in WSNETs,
it becomes of interest to optimize the power limits used by the
sensor nodes to achieve a certain utility target. In this section
we discuss how this can be accomplished.

Let us view the utility maximization problem formulated in
Sec. II as parametrized by the vector of power limits, denoted
by p̄ = (p̄1, . . . , p̄N ). Consider

F̄ (p̄)
4
= max F (r)

s.t. r ∈ Conv(R(p̄)) ∩ S ,
(20)

where we write R(p̄) to explicitly denote the fact that the
set of rate vectors depends on p̄. F (p̄) denotes the optimal
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value. The first, and rather intuitive, property we show is
monotonicity; the proof is almost immediate.

Lemma VIII.1 (Monotonicity) Suppose p̄1 and p̄2 are two
vectors of power limits. If p̄1 ≥ p̄2, then F̄ (p̄1) ≥ F̄ (p̄2).

Next we show that the optimal utility is concave in p̄ if we
scale the power limits uniformly.

Theorem VIII.2 (Concavity) Suppose the power limit vector
p̄ belongs to W = {p̄ | p̄ = φp̄0, φ > 0} where p̄0 > 0 is a
constant vector. Then F̄ (p̄) is concave in p̄ over W .

Proof: First observe that due to Lemma II.1 for each
extreme point r of Conv(R) there exists an extreme point p

of Conv(P) such that r = Hp. Moreover, extreme points of
Conv(P) are in the set P̄ = {p ∈ P | pijk ∈ {0, p̄ijk}}.
It follows that each extreme point rn of Conv(R) can be
written as rn = Qnp̄ for some appropriate matrix Qn, for
n = 1, . . . , L. Consequently, the problem in (20) can be
equivalently formulated as

F̄ (p̄) = max F (r)
s.t. r =

∑

n αnQnp̄,
r ∈ S ,
∑

n αn = 1, αn ≥ 0, n = 1, . . . , L.

(21)

Let p̄1, p̄2 ∈ W , or equivalently, p̄1 = φ1p̄
0 and p̄2 = φ2p̄

0

for some φ1, φ2 > 0. Since F (r) is concave, for any θ ∈ [0, 1]

θF̄ (p̄1)+(1 − θ)F̄ (p̄2)

≤F (
∑

k Qn(αnθφ1 + βn(1 − θ)φ2)p̄0), (22)

where (r∗(p̄1),α) and (r∗(p̄2),β) are optimal solutions of
(21) corresponding to p̄1 and p̄2, respectively. Note that θφ1+
(1 − θ)φ2 > 0. Let

τn = αnθφ1+βn(1−θ)φ2

θφ1+(1−θ)φ2
,

rτ =
∑

nQnτ
n(θφ1 + (1 − θ)φ2)p̄0,

where τn ≥ 0. Then, since S is a polyhedron,

∑

n τn =

∑

n αnθφ1 +
∑

n βn(1 − θ)φ2
θφ1+(1−θ)φ2

= 1,

rτ = θr∗(p̄1) + (1 − θ)r∗(p̄2) ∈ S .

These imply that (rτ , τ ), where τ = (τ1, . . . , τL), is a feasible
solution to problem (21) when the power limit vector equals
(θφ1 + (1 − θ)φ2)p̄0. Therefore, using (22), we conclude

F̄ (θp̄1 + (1 − θ)p̄2) ≥ F (rτ ) ≥ θF̄ (p̄1) + (1 − θ)F̄ (p̄2).

The above theorem is critical in trading-off energy con-
sumption with achieved utility. Suppose we are interested in
minimizing energy consumption subject to achieving a utility
level equal to some given value, say Fmin. Assuming that
power limits are scaled uniformly for the whole network by a
factor φ, we can formulate the problem as

min φ
s.t. F̄ (φp̄0) ≥ Fmin,

(23)

where F̄ (φp̄0) is defined in (20). Thm. VIII.2 asserts that
the above is a convex optimization problem, thus, a global
minimum, say φ∗, can be obtained using standard gradient-
based algorithms. One complicating factor is that closed form
expressions for F̄ (φp̄0) and its derivative are not available.
The decomposition algorithm of Fig. 1 can evaluate F̄ (φp̄0)
and its derivative can be obtained using finite differences.

IX. THE LIFETIME OF SENSOR NETWORKS

In this section we consider the implications of power
optimization on the lifetime of the network. Let us assume
that the energy expended by the sensors to receive and decode
information is negligible compared to the energy expended
while transmitting.1

We define the lifetime T of a WSNET as the length of time
during which no node runs out of energy resources. As we
have seen, the transmission policies we consider time-share
among several transmission schemes. Assume that T is in a
much longer time-scale than the time-scale in which the policy
switches among the various transmission schemes; hence, the
change of T does not affect the time horizon considered in
Sec. II. Let p be the long-term time average of the power
vectors corresponding to all transmission schemes employed
by the transmission policy. For each node i = 1, . . . , N set ci
such that c′ip =

∑M+N
j=1

∑K
k=1 pijk. Then T ≤ χi

c′

ip
, for all

i = 1, . . . , N , where χi is the available energy at sensor node
i. In matrix notation, Cp ≤ χ/T , where C ∈ R

N×(N+M)2K

whose ith row equals c′i and χ = (χ1, . . . , χN ).
To capture the trade-off between system utility and the

lifetime of the WSNET, we propose the following utility
maximization problem with parameter T :

F̂ (T ) = max F (Hp) (24)

s.t. p =
∑J
n=1 αnp

n,

Hp ∈ S ,

Cp ≤ χ/T,
∑J
n=1 αn = 1, αn ≥ 0, n = 1, . . . , J.

where p1, . . . ,pJ are the extreme points of Conv(P). Notice
that in problem (24), we still seek to maximize the system
utility with time division, under fairness and flow conservation
constraints. The difference here is that we add a hard constraint
on the lifetime of the WSNET.

Problem (24) is a convex programming problem. (Note that
the objective F (Hp) is concave in Hp and therefore concave
in p, and the constraints are linear in p and α.) Thus, we
have a problem similar to (5) and a complete analog of the
algorithm in Fig. 1 can be used to solve large-scale instances
of (24). The details are in Appendix III available at [15].

The results of Sec. VI can also be extended to include
problem (24). Namely, if F (Hp) satisfies Assumption A then
problem (24) is also solvable in polynomial time. The proof is
almost identical with Theorem VI.6 and is omitted for brevity.

1This assumption can actually be relaxed if we impose some additional
technical conditions.
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It is interesting to examine how the lifetime parameter T
affects the system utility. The first observation is monotonic-
ity. Namely, if T decreases, the feasible set of (24) gets
larger, thus, the optimal system utility can be no smaller.
The maximum possible system utility is corresponding to the
case T = 0. Furthermore, as problem (24) is a concave
maximization problem, a standard argument shows that F̂ (T )
is concave in 1/T . We have the following theorem.

Theorem IX.1 F̂ (T ) is monotonically nonincreasing in T ,
upper bounded by F̂ (0), and concave in 1/T .

Though F̂ (T ) is in general non-convex in T , Thm. IX.1
suggests how to trade-off utility vs. the lifetime T . The first
observation is that our algorithm can be used to efficiently
obtain a transmission policy for any desirable T . Moreover, it
allows us to solve an optimization problem of the form

max
T

(F̂ (T ) − ζ/T ), (25)

for some scalar ζ. This can be interpreted as maximizing utility
while paying a cost for short lifetime. Problem (25) is concave
in 1/T and can be solved very efficiently using line search
techniques.

Finally, we note that the network lifetime may have different
definitions depending on the application we are concerned
with. For instance, lifetime can also be defined as the time that
the energy level of each node drops below a certain threshold,
or some critical routers run out of energy. Our model can be
extended to handle those cases and all the results still hold.

X. DEALING WITH NODE FAILURES

Next we discuss how to accommodate node failures in
our decomposition framework. Suppose we solve problem (5)
and obtain the transmission vectors r1, . . . , rD. If we detect
that node l has failed, we do not have to solve the utility
maximization problem from scratch. Instead, we make use
of the following re-optimization technique: reuse the obtained
transmission vectors and modify them to obtain a set of valid
transmission vectors for the modified WSNET. The modified
transmission vector r̃n corresponding to rn is given by

r̃nijk =

{

0, if i = l, or j = l, or s(k) = l, or d(k) = l,

rnijk, otherwise.

Then we consider the following problem

max F (r̃) (26)

s.t. r̃ −
∑D
n=1 α̃nr̃

n = 0,
∑N+M
j=1 r̃ijk = 0, ∀i 6= s(k), d(k),∀k,

Ar̃ ≤ b,
∑D
n=1 α̃n = 1, α̃n ≥ 0, n = 1, . . . , D,

and view the above problem as the restricted master problem.
Let p̄ljk = 0 ∀j, k, and the subproblem has the same form
as problem (10). Starting from (26) and transmission schemes
with rates r̃1, . . . , r̃D iterate using the algorithm of Fig. 1
to derive an optimal transmission policy for the modified
WSNET (where node l is removed).

Note that the coefficient matrix in problem (26) is sparse,
as all the rows related to node l are forced to 0; this can be
exploited to reduce the size of the problem and the resulting
running time of the algorithm. In several cases, this re-
optimization procedure results in much shorter running time
than solving the original problem from scratch; we provide
numerical results in the next section. We close this section by
noting that multiple node failures can be similarly handled.

XI. NUMERICAL RESULTS

In this section we present some illustrative numerical results
to assess the efficiency of the proposed approach.

Example 1: The first example we consider is a WS-
NET with sensor nodes uniformly distributed in the box
[−10m, 10m] × [−10m, 10m]. The network has a single
gateway at the origin which can receive data from multiple
nodes simultaneously. We use the same identical parameters as
in [8]. In particular, Gij = KSij(d0/dij)

α, where K = 10−6,
d0 = 10, dij is the distance between nodes i and j, α = 4,
Sij = Sji are independent and identically generated from a
lognormal distribution with a mean of 0dB and variance 8dB,
and p̄i = 0.1 Watts for all nodes i. The noise is characterized
by η = 10−10 and W = 106.

Comparison with enumeration: We obtain a transmission
policy using the approach outlined in Sec. VII, namely, we
make the linear approximation to obtain the structure of the
policy and use this structure to devise a policy under the exact
transmission rate expressions of (3). We compare the policy we
obtain in this fashion with what we call the enumeration ap-
proach proposed in [8]. This latter approach does not make the
linear approximation we made in (4); it instead uses directly
the exact expression for transmission rates given in (3). It
solves (5) by enumerating all feasible transmission rate vectors
in Conv(R). To that end, it discretizes the possible values
p ∈ P can take, generates all possible transmission schemes,
and from those it derives the corresponding rate vectors r.
Table I contains the results. In all cases, the objective is to

TABLE I

COMPUTATIONAL EFFICIENCY COMPARISON (SINGLE GATEWAY)

N Enumeration Time Decomposition Time Single-hop
2 14.44 0.02 14.44 0.01 14.4
3 122.28 0.02 122.28 0.01 122.2
4 689.16 0.13 689.16 0.02 167.6
5 7962.63 63.4 7960.87 0.02 582.3
6 out of memory - 6339.97 0.03 191.9

maximize total throughput (reported in bps) and the fairness
constraints have the form ρi+1 ≤ 2ρi, i = 1, . . . , N − 1,
where ρi denotes the throughput of node i. The 1st column of
Table I lists the number of nodes in the network. The 2nd and
3rd columns list the throughput achieved by the enumeration
approach and the corresponding CPU time in seconds. The 4th
and 5th columns list the throughput achieved by our algorithm
and the corresponding CPU time in seconds. Finally, the last
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column reports the throughput achieved by the single-hop
strategy, i.e., when each node sends directly to the gateway. 2

A couple of remarks are in order. First, comparing Columns
2 and 4 of Table I suggests that even at power levels of 0.1
Watts our approach is very accurate. Typical sensor networks
operate at lower power which is bound to improve accuracy.
Second, the inherent combinatorial explosion of possible trans-
mission schemes limits the use of the enumeration method
to very small instances (in the 6-node case we run out
of memory). In comparison, computational requirements in
our method scale rather nicely. Without particular effort at
optimizing the code we can currently solve problems with
50 nodes in less than 1 minute. Third, note that time-sharing
(multi-hop strategy) can dramatically improve performance
over the naive single-hop strategy. For the cases reported in
Table I the improvement is on the order of 3000%.

Optimization over power limits: To demonstrate the effects
of power optimization we considered the 5-node case in
Table I. Setting Fmin = 6500, the approach of Sec. VIII yields
φ = 0.81. That is, sensors can scale down their power by φ
and this is enough to achieve a throughput equal to Fmin.

Node failure: Next we consider the re-optimization tech-
nique of Sec. X. We first calculate the optimal utility and rate
vectors for a WSNET with N sensor nodes and then let node
N fail. For a test network with N = 35, the CPU time for re-
optimization was 0.57 seconds, while it takes 24.4 seconds to
solve the modified problem from scratch. The optimal values
are of course the same.

Utility vs. life-time: As we discussed in Sec. IX, our
framework allows us to trade-off utility vs. the lifetime of the
WSNET. In Fig 2 we plot the system throughput of the 30-
node network when T varies from 0 to 100, and the energy for
each node is 1 unit. The curve F̂ (T ) shows the monotonicity
with respect to T . Obviously F̂ (T ) is not a convex function
and is upper bounded by F̂ (0). We also depict (dashed line)
F̂ (T ) − ζ/T for ζ = 50000. Solving problem (25) yields an
optimal lifetime of T ∗ = 10.

High-power levels: The last part of this example explores
the accuracy of our approach in WSNETs with much higher
power levels. Again we compare the approach of Sec. VII with
the enumeration approach. The results are reported in table II,
where p̄ is the maximum available power (Watts) for every

2All the programs were run on a computer running Redhat Linux 8.0 with
an Intel Xeon CPU of 3.06 GHz, and 3.6 Gbytes main memory.

node. Note that for the cases reported the SINR is typically
on the order of 40dB (p̄ = 5000 case) and it can be much
greater for some cases. The results verify that our approach is
fairly accurate even at these unrealistically high power levels.

TABLE II

ACCURACY OF OUR APPROACH WITH HIGH POWER LEVELS

p̄ Our Approach Enumeration Gap
1000 4.486 × 106 4.486 × 106 0%
5000 1.216 × 107 1.249 × 107 3%
8000 1.481 × 107 1.611 × 107 8%

Example 2: Our next example explores the benefits of
multi-hop in a larger WSNET. The objective is total through-
put maximization and the fairness constraints mandate equal
throughput for all nodes. The test network consists of a
gateway located at (0, 0) and two clusters containing equal
number of nodes: one cluster contains nodes uniformly dis-
tributed in the box [10m, 20m] × [10m, 20m] and the other
cluster consists of uniformly distributed nodes in the box
[25m, 35m] × [25m, 35m]. Let us denote by CA and CB ,
respectively, these two clusters. All the other settings are
identical to our first example, except that we use the expected
value of Sij to calculate the channel gains throughout. Table III
compares the throughput (in bps) of our algorithm with two
policies: a single-hop and and a 2-hop policy. According to
the latter one, nodes in CB transmit to nodes in CA for a
50% fraction of time and the remaining 50% fraction of time
nodes in CA transmit directly to the gateway. Note that due to
the special (and deliberate) structure of the WSNET, this 2-hop
policy would be quite effective. Indeed, as Table III shows, the
2-hop policy performs quite well. Still, our policy can improve
throughput by up to 37.4% (30-node case). The performance
of the single-hop policy is understandably dismal.

TABLE III

COMPARISON OF DIFFERENT POLICIES IN LARGER WSNETS

N Decomposition Single-hop 2-hop
20 672.99 26.59 625.07
26 851.20 27.09 633.41
30 949.77 31.26 691.12

Example 3: In the last example, we compare our method
with the heuristics proposed in [13]. Specially, in [13], the
authors proposed a similar framework in the context of ultra-
wideband (UWB) networks. They found that the optimal
power allocation should be such that each node either transmits
with the maximum power or remains silent. Further, to find
a good joint routing and scheduling scheme for an arbitrary
network, they proposed a number of routing (MELR, MER,
DIR, etc.) and scheduling (Exclusion Region, Total Exclusion,
All-at-Once, etc.) heuristics. Then, they considered all the
possible combinations of routing and scheduling heuristics.
Among all the utilities achieved by any of these combinations,
we choose the maximum as the one to compare with.
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Fig. 3. Comparison between the utilities achieved by the decomposition
algorithm and the heuristics in [13].

The rate function in [13] is linear in SINR. In the context
of our work, the linear relationship translates to

rijk = C(γijk − γjik), ∀i, j, k, (27)

where C is a constant. This is different from the logarithmic
rate function (3) used in this work. However, our approx-
imation scheme can be easily modified such that the rate
function (27) can fit in our framework. In particular, we first
use the linear approximation (4) to derive the structure of the
transmission schemes, then modify the transmission vectors
according to (27) assuming maximum transmission power,
following a method analogous to the method described in
Sec. VII. Finally, we optimize over the modified transmission
vectors in order to find a near-optimal transmission policy.

To numerically compare the results of the two methods, we
consider the throughput maximization problem of a network
with 40 nodes uniformly distributed in the box [0m, 100m]×
[0m, 100m]. In addition, there is a single gateway located at
(50m, 50m) and all the information is intended for this gate-
way. The fairness constraints are ρi+1 ≤ 2ρi, i = 1, . . . , N−1,
where ρi denotes the throughput of node i.3 We let C = 105.
The maximum power of each node is 10−3 Watts and the
background noise is 10−5 Watts. The channel gain between
node i and j is given by Gij = d−4

ij , where dij is the distance
between node i and j. To proceed, we randomly generated 20
networks and for each network we compare the throughputs
obtained by the heuristics in [13] and the decomposition
algorithm proposed in this paper. The results are shown in Fig.
3. For each case, we denote by ρh the throughput achieved by
the heuristics in [13], and by ρd the throughput achieved by
the decomposition method. The number on the top of each
column is ρd−ρh

ρh × 100%, namely, the percentage by which
the decomposition method outperforms the heuristics in [13].

In all the cases shown in Fig. 3, the throughput calculated
by the decomposition algorithm is higher than the heuristics

3The heuristics in [13] are intended for proportional fair rate allocation,
but with some slight modifications their method can also be applied to the
throughput maximization with fairness constraints.

in [13]. The average gain in throughput is 50%, but in some
cases it is as much as 100% or more.

We should point out that the numerical results presented in
this example are obtained in the region of small powers, which
is the practical and interesting operating region for sensor
networks. We do not claim that our method is unconditionally
superior to the method in [13]. The heuristics in [13] can
outperform our method when we significantly deviate from
the small power region or when the node density increases.

To assess the effect of the node density, we adopted the same
setting as above, fixed the number of nodes to 20, and varied
the coverage area. That is, the nodes are uniformly distributed
in the box [0, x]× [0, x] and the gateway is at (x/2, x/2) with
x varying in [0, 100]m. For each case, we randomly generate
10 networks and compare the average throughput obtained by
the heuristics in [13] with our approach. Our tests show that
when the network density is around 1 sensor per 10 m2, the
performance of the heuristics in [13] is competitive to that
of our algorithm. However, when the density decreases our
algorithm quickly outperforms the heuristic in [13]. For ex-
ample, when the density is 1 sensor per 20 m2, our algorithm
outperforms by about 20% on average.

XII. CONCLUSIONS

We considered the problem of scheduling transmissions
in WSNETs to maximize the total system utility subject to
fairness constraints. In our setting, utility is a function of long-
term average transmission rates. We proposed a decomposition
algorithm and established its convergence. The resulting policy
involves time-sharing over a number of feasible transmission
schemes. Time-sharing convexifies the achievable region for
transmission rate vectors and thus, achieves higher utility than
any individual scheme. To the best of our knowledge, there is
no alternative in the existing literature other than enumerating
all feasible transmission schemes (the enumeration approach)
for solving this problem in the general setting we consider.

The efficiency of our decomposition algorithm rests on
efficiently solving a subproblem that identifies “promising”
transmission schemes. To that end, we adopt a linear approx-
imation of achievable rates which is asymptotically exact in
the regime of low power levels. This regime is appropriate
for moderately dense WSNETs or denser WSNETs operating
in noisy environments. Still, the subproblem is an integer
linear programming problem. Nevertheless, we exploit its
structure and show that it is polynomially solvable. The linear
approximation yields the structure of the transmission policy
which we use to derive a policy under the exact (Shannon)
expressions for transmission rates. We note that the policy we
obtain can be implemented in a causal fashion, provided that
the network is initialized with a sufficient (and finite) number
of packets at every node. This initial condition does not affect
the long-term average transmission rates.

A result of independent interest is that when this linear
approximation is in effect the problem of computing the
optimal policy can, in principle, be solved in polynomial time.
Yet, this does not lead into a practical algorithm. We expect
the decomposition method to be more efficient in practice.
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Our framework allows us to optimize sensor power levels to
achieve a given utility target. This can translate into significant
energy savings with a certain quality of service guarantee on
the system utility. In our setting, we can solve the utility
optimization problem subject to a hard constraint on the
network lifetime. Alternatively, we are able to efficiently find
a desirable operating point on a lifetime vs. utility curve.

The numerical results we presented suggest that our ap-
proach is accurate even for power levels higher than typically
encountered. They also convincingly demonstrate that our
approach can handle sizable instances of the problem. For
example, we are able to solve problems with 50 or so nodes in
less than a minute. This is a dramatic improvement over what
is computationally feasible with an enumeration approach
(e.g., as in [8]). Moreover, our approach substantially outper-
forms some of the best known joint scheduling and routing
heuristics [13] in the regime of low power transmissions.

We end by noting that our results can also be used to provide
a benchmark on achieved utility to which one can compare
alternative transmission scheduling and routing policies.
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APPENDIX I
PROOF OF LEMMA II.1

(i) Consider the following set

P̄ = {p | pijk ∈ {0, p̄ijk},p ∈ P}

and note that every feasible p ∈ P can be expressed as
a convex combination of the points in P̄ . Thus Conv(P)
is finitely generated by the points in P̄ and is therefore a
polyhedron. Clearly, it is also bounded, hence a polytope (i.e.,
a bounded polyhedron). Since R is a linear mapping of P ,
the same argument establishes that Conv(R) is a polytope.

(ii) Next, let r ∈ Conv(R) and suppose that the extreme
points of Conv(R) are r1, . . . , rL. These extreme points are
also elements of R, so they can be written as rn = Hpn for
some pn ∈ P and n = 1, . . . , L. Thus, for αn ≥ 0 satisfying
∑L
n=1 αn = 1,

r =
∑

n

αnr
n =

∑

n

αnHpn = Hp,

where p =
∑

n αnp
n ∈ Conv(P). Now, let p ∈ Conv(P)

and let p1, . . . ,pJ be the extreme points of Conv(P). For
βi ≥ 0 satisfying

∑

i βi = 1, p =
∑

i βip
i. These extreme

points are also elements of P . Set ri = Hpi; we have ri ∈ R.
It follows

Hp =
∑

i

βiHpi =
∑

i

βir
i ∈ Conv(R).

(iii) Let r be an extreme point of Conv(R). Then there
exists a cost vector c ∈ R

(N+M)2K such that r is the unique
minimizer of c′x over x ∈ Conv(R). Using part (ii), this latter
problem is

min c′x

s.t. x = Hp, p ∈ Conv(P).
(28)

Let (r,p∗) be an optimal solution. Then p∗ is an optimal
solution to

min c′Hp

s.t. p ∈ Conv(P).
(29)

(If not, there exists an optimal solution p̃ of (29) and Hp̃ 6= r

is optimal for (28), which contradicts the fact that r uniquely
solves (28).) Now, there also exists some extreme point pi of
Conv(P) which is optimal for (29). In particular, c′Hpi =
c′Hp∗ = c′r and Hpi also solves (28). Since r is a unique
solution of (28) we have r = Hpi.

APPENDIX II
PROOF OF LEMMA VI.2

(i) As B1(r) and B2(r) both satisfy condition (i), B(r) also
satisfies this condition.

(ii) Let r1, r2, and t1, t2 such that ri− ti ∈ Conv(R) and
B1(r

i) = ||ti||∞, for i = 1, 2. Then for any β ∈ [0, 1], we
have

βr1 + (1 − β)r2 − βt1 − (1 − β)t2 ∈ Conv(R),

and

B1(βr
1 + (1 − β)r2) ≤ ||βt1 + (1 − β)t2||∞

≤ β||t1||∞ + (1 − β)||t2||∞
= βB1(r

1) + (1 − β)B1(r
2),

where the first inequality is due to the definition of B1(r) and
the second inequality follows from the convexity of L∞ norm.

Next, note that B2(r) = max(0,maxi((Dr)i− di)), where
(Dr)i denotes the ith element of Dr. It follows that B2(r)
is convex in r. As the pointwise maximum of two convex
functions B1(r) and B2(r), B(r) is also convex.

APPENDIX III
THE DECOMPOSITION ALGORITHM FOR UTILITY

MAXIMIZATION SUBJECT TO A LIFETIME CONSTRAINT

Suppose we have an extreme point p1 of Conv(P), which
belongs to {p | Hp ∈ S ,Cp ≤ χ/T} and let m ∈
{1, . . . , J}, then the restricted master problem at the mth
iteration is

min −F (Hp)
s.t. p −

∑m
n=1 αnp

n = 0,
∑m
n=1 αn = 1,

N+M
∑

j=1

pijkGij−pjikGji

η
= 0, ∀i 6= s(k), d(k),∀k,

AHp ≤ b,
Cp ≤ χ/T,
αn ≥ 0, n = 1, . . . ,m,

(30)
and the corresponding subproblem is

max λ′p

s.t. p ∈ P,
(31)

with cost vector λ = λ(m), where as before we have
(p(m),α(m);λ(m), µ(m),ν(m),σ(m), ξ(m)) as the optimal
primal-dual pair for the restricted master problem (30) with
ξ(m) being the optimal dual variable corresponding to the
lifetime constraint.

Following the same recipe as described in Fig. 1, we
can obtain an optimal solution to problem (24) in a finite
number of iterations. The argument is almost identical and
is therefore omitted for brevity. Furthermore, problem (31) is
still equivalent to the maximum weighted matching problem
constructed in a similar way as in Sec. V, and is solvable
in polynomial time. In particular, to solve problem (31), we
construct the same undirected graph G = (V ,E ). Let δijk =
λijkp̄ijk ∀i, j, k, and the weight for each edge (i, j) ∈ E is
given by

wij =































max
k=1,...,K

max{δijk, δjik, 0}, ∀i, j ∈ A ,

max
k=1,...,K

max{δi,N+l,k, 0}, ∀i ∈ A , j ∈ Bl,

max
k=1,...,K

max{δj,N+l,k, 0}, ∀i ∈ Bl, j ∈ A ,

0 otherwise.

Furthermore, we construct the set K as follows. For each
1 ≤ i ≤ N , 1 ≤ j ≤ N + M , we select only one, if any, k
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satisfying the conditions

k =

{

argmaxt=1,...,K max{δijt, δjit, 0}, if j ≤ N,

argmaxt=1,...,K max{δijt, 0}, otherwise,

and
{

δijk = max{δijk, δjik, 0} > 0, if j ≤ N,

δijk > 0, otherwise,

and let (i, j, k) be an element of K . Given the graph G

constructed above, we can obtain the optimal solution of (31)
in the same way as in Sec. V.


