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Hidden nodes are a fundamental problem that can potentially affect any wireless network where nodes cannot

hear each other. Although the hidden node problem is well known, so far only few papers have quantified its

effects in a comprehensive manner. This paper represents a first step towards getting a quantitative insight into

the impact of hidden nodes on the performance of wireless networks. We first carry out an exact queuing-theoretic

analysis for a 4-node segment and derive analytical expressions for the probability of packet collision, the mean

packet delay, and the maximum throughput, based on a model that closely follows the IEEE 802.11 standard.

We then extend the analysis and provide an approximation for a general linear topology that is asymptotically

exact at low load. Finally, we perform detailed simulations to validate our analytical results and show their

applicability to predict the performance of IEEE 802.11 networks with hidden nodes. The simulation and analysis

closely match. Moreover, they reveal that the impact of hidden nodes propagates through the network causing

some nodes to saturate at load as low as 15% of the capacity.
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1. Introduction

In recent years, IEEE 802.11 standard Wire-
less Local Area Networks (WLANs) have rapidly
gained popularity and become the solution of
choice for networking homes and campuses [1].
These networks use a variant of Carrier Sense
Multiple Access (CSMA) to control channel ac-
cess by the nodes [2].

In CSMA, a node is allowed to transmit a
packet only if it senses the channel idle. Packet
collisions are rare as long as nodes can hear each
other and the propagation delay is small. How-
ever, in wireless networks, nodes often cannot
hear each other. Such networks are then likely
to suffer from the so-called hidden node prob-
lem. This problem is illustrated in Fig. 1. In this
topology, node C cannot hear node A’s transmis-
sions. However, if node C transmits while node
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Figure 1. Packet collision due to a hidden node.
If nodes A and C transmit simultaneously, node
A’s packet will collide.

A is transmitting, node A’s packet will collide.
Node C is the hidden node in this case. Note
that this logical topology may in fact represent
more complex networks; we provide an example
in section 3.1.

Since hidden nodes cause packet collisions,
their presence can severely affect the performance
of wireless networks. As a matter of fact, the
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author of [3] considers the hidden node prob-
lem to be one of the “top ten challenges” in fu-
ture wireless architectures. Although some hid-
den node mitigation techniques do exist, such
as the RTS/CTS mechanism, they incur sig-
nificant overhead and are often not used [4–6].
In the IEEE 802.11 standard, for instance, the
RTS/CTS mechanism is only optional. Thus, in
practice, wireless networks are often exposed to
the hidden node problem. As wireless networks
proliferate, it is therefore vital to analyze and
accurately quantify the impact of hidden nodes
on network performance; not only to help under-
stand the behavior of current networks, but also
to help design future networks.

Although the hidden node problem is well
known, few papers so far have been devoted to
evaluating its impact on network performance.
Instead, most previous works have focused on hid-
den node mitigation techniques, see [7] and ref-
erences therein. We describe some of the main
related work in section 2.2. In particular, we
find that analytical models developed in previous
work do not capture queuing and retransmission
effects and oftentimes lead to inaccurate perfor-
mance evaluation or trivial solutions (such as a
single node capturing the channel).

This paper contributes to the fundamental un-
derstanding of how hidden nodes impact wireless
networks. Our analytical models closely follow
the IEEE 802.11 standard, and take into account
queuing and retransmissions at each node. We
first consider elementary 4-node topologies and
derive exact expressions for (i) the probability of
packet collision, (ii) the average packet delay, (iii)
and the maximum throughput. We then extend
the analysis to a general linear topology by iter-
atively applying the results obtained for the ele-
mentary topology. Although this extended anal-
ysis is provably exact only at low load, our simu-
lations show that it remains fairly accurate over
a wide range of load values. Using the NS sim-
ulator, we also show that our analysis predicts
the performance of IEEE 802.11 networks with
hidden nodes in a remarkably accurate fashion.
Both the analysis and simulation reveal an inter-
esting propagation effect which causes the nodes
in the linear network to saturate at offered traffic

load of as low as 15% of the (isolated) capacity,
even though each node shares the channel with
only one other node. This effect is reminiscent
of influence-propagation phenomena observed in
the context of multi-rate wireless networks [8].

This paper is organized as follows. In section 2,
we provide the relevant background on the IEEE
802.11 protocol necessary for understanding this
paper and discuss related work. In section 3, we
describe our model and notation. As a motiva-
tion, we also present a simple analysis that ig-
nores queuing and retransmission dynamics and
show its limitation. Then, in section 4 we present
the main results of this paper. In particular, an-
alytical expressions for the probability of packet
collision, maximum throughput, and mean packet
delay for an elementary 4-node topology are pro-
vided in sections 4.1, 4.2 and 4.3, respectively,
and an extension of these results to a general lin-
ear topology is presented in section 4.4. Several
of the more technical proofs are deferred to sec-
tion 5. We then present simulation results in sec-
tion 6, and conclude the paper in section 7.

2. Background

2.1. Outline of the IEEE 802.11 Basic Ac-

cess Method

In this section, we describe some of the salient
features of the IEEE 802.11 Wireless LAN pro-
tocol that are most relevant to the rest of this
paper. The protocol is described in detail in [1].

The IEEE 802.11 MAC protocol supports two
types of access mode: Point Coordination Func-
tion (PCF) and Distributed Coordination Func-
tion (DCF). The DCF mode is more commonly
used.

The DCF mode is essentially equivalent to
CSMA. A node transmits a DATA packet if it
senses the channel to be idle. The receiver, upon
receiving an error-free packet, returns an Ac-
knowledgment (ACK ) packet. If no ACK packet
arrives in response to a DATA packet, the packet
is retransmitted. The maximum allowed number
of retransmissions is in general quite large. For
instance, the default setting is 16 in Cisco aironet
cards [9]. The retransmissions are separated by
backoff intervals, which are integer multiples of
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BackoffSlotTime. The BackoffSlotTime, 20 µs,
is a small fraction of the transmission time of
a DATA packet (e.g. a 1500 byte packet takes
about 12× 103 µs when transmitted at 1 Mb/s
rate). Therefore, in most cases, an unsuccess-
ful transmission is retransmitted within a short
amount of time.

The DCF mode also supports the optional
RTS/CTS handshake that is designed to mitigate
the hidden node problem. Since we are interested
in quantifying the impact of hidden nodes in this
paper, we will assume that nodes do not use this
method, as it is often the case in practice.

2.2. Related Work

The CSMA protocol was introduced by Klein-
rock and Tobagi in [2]. The authors also noted
the hidden node problem, and proposed an al-
ternate protocol, called the Busy Tone Multiple
Access (BTMA) in [10]. In these papers, the anal-
ysis of the protocols has been carried out under
the assumption that “the interarrival times of the
point process defined by the start times of all the
packets plus retransmissions are independent and
exponentially distributed”; i.e. those form a Pois-
son process. This assumption is referred to as a
“random-look” assumption since Poisson arrivals
see time-averages (the so-called PASTA prop-
erty) [11]. Many subsequent papers use the same
assumption as a basis for their analysis, e.g. [12–
14] which propose various improvements over the
basic CSMA/BTMA and [15] which point out the
possible existence of hidden nodes in infrastruc-
ture mode WLAN.

The “random-look” assumption might be rea-
sonable when the average retransmission delay
is large compared to the packet transmission
time. However, in the IEEE 802.11 standard,
the retransmission delay is small compared to the
packet transmission time. Thus, one should not
expect such an assumption to provide a good ap-
proximation. To illustrate this point, we present
in section 3.3 a simple analysis of the probability
of a packet collision based on this “random-look”
assumption and show that the result significantly
underestimates the collision probability, even at
low load.

In [16], the author studied the maximum

throughput obtainable from an IEEE 802.11 net-
work with no hidden node. The main model-
ing assumption is that every node always has
a packet to transmit. The same assumption is
used in [17, 18]. We note, however, that this as-
sumption can lead to trivial solutions when hid-
den nodes are present. For example, consider
the topology shown in Fig. 1. In this topology,
it is clear that if both nodes A and C always
have packets to transmit, then node C will always
transmit, and node A will be unable to trans-
mit any packet. The techniques presented in [16],
therefore, are not applicable in the present con-
text. Other related works include [19, 20], which
also do not take queuing into account.

In the context of ALOHA and CSMA/CD,
early works carried out packet delay analysis.
For example, Sidi and Segall considered a two
user case in slotted ALOHA [21], and Takagi
and Kleinrock analyzed a slotted CSMA/CD sys-
tem [22]. Note that in the ALOHA protocol, re-
transmissions delays are large compared to the
packet transmission time. In CSMA/CD, on the
other hand, hidden nodes are not present since
the medium is wired. More recently, authors
in [23] carried out a queuing theoretical analy-
sis of the Bluetooth system. Bluetooth, however,
uses TDMA and therefore collisions due to hidden
nodes is not an issue.

3. Model and Simple Analysis

Our goal is to analyze the performance of
a wireless network with hidden nodes, taking
into consideration queuing and retransmissions at
each node. Since the analysis of a general net-
work is difficult, we decompose the problem and
consider first the simpler case of an elementary
4-node topology, which is interesting in its own
sake. For this topology, we obtain exact expres-
sions for the probability of packet collision, aver-
age system delay, and maximum throughput. Us-
ing an iterative technique, we then extend these
results to a general linear topology and provide
approximations that are asymptotically exact at
low load.
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Figure 2. Packet collision due to a hidden node. During the time node A transmits a packet, node C
senses the channel to be idle and starts transmitting a packet to node D. This transmission collides with
node A’s transmission.

3.1. The Elementary Topology

In this section, we describe our model of the ele-
mentary 4-node topology. The elementary topol-
ogy we consider is shown in Fig. 2 (this is a de-
tailed version of Fig. 1). In this topology, node A
sends packets to node B and node C sends pack-
ets to node D. We consider omni-directional
transmissions; the transmission ranges of nodes A
and C are depicted by the circles. As shown in
the figure, nodes A and C cannot hear each other;
node B hears both nodes A and C; node D hears
only node C. The channel is noise-free, so that
packets are lost only because of collisions. Each
node uses CSMA, and propagation delay is neg-
ligible.

It is easy to see that node A’s transmissions ex-
perience collisions due to the hidden node C. An
example is shown in Fig. 2(a). During the time
node A is transmitting, node C finds the chan-
nel idle and begins transmitting its own packet
to node D. This transmission also reaches node
B and destroys node A’s packet. On the other
hand, node C’s packets are always received by

node D.
It is worth pointing out that this topology mod-

els well some network configurations of practical
interest. Fig. 2(b) shows an example. In this fig-
ure, there are two overlapping IEEE 802.11 stan-
dard infrastructure network operating in the same
channel (which happens in commercial buildings
when multiple businesses install separate WLANs
compelling some networks to share the same
channel as there are only three nonoverlapping
channels). The access points—denoted by “AP
1” and “AP 2”—do not hear each other. More-
over, under usual usage pattern, the uplink traf-
fic (client to AP) in each network can be ne-
glected compared to the downlink traffic. Then,
this physical configuration is logically equivalent
to the topology shown in Fig. 2(a): AP 1 is rep-
resented by node A, and AP 2 by node C. The
client nodes are represented by nodes B and D re-
spectively. Therefore, it is interesting to analyze
this topology for its own sake.

We purposely assume that node C does not
send packets to node B; otherwise the throughput
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would be close to zero even at low load. The rea-
son is that any packet collision at node B triggers
retransmissions by both nodes A and C. These
retransmissions repeatedly collide resulting in a
vanishing network throughput. Thus, under any
reasonable base-station selection algorithm, the
node-AP associations will eventually converge to
the logical topology shown in Fig. 2(a) [24].

3.2. Statistical Model

We now introduce our notation and statisti-
cal model for the analysis. Both nodes A and
C maintain infinite buffer queues. The queues at
nodes A and C are denoted by QA and QC respec-
tively. The exogenous arrivals to QA and QC fol-
low independent Poisson processes with rate λA

(number of packets per unit of time) and λC re-
spectively. The DATA packet size is fixed and
the transmission time of each packet is T . The
transmission time of ACK packets is negligible.
The assumptions of Poisson arrivals and fixed size
packets lend to analytical tractability. These as-
sumptions are, however, not unrealistic. For ex-
ample, if the nodes A and C are access points,
as shown in Fig. 2(b), then the traffic consists of
many independent streams which is well modeled
by Poisson arrivals.

It is worth noting that the assumption that the
input process to the queue corresponds to a Pois-
son process does not imply that packet transmis-
sions and retransmissions, which form the out-
put process, also follow a Poisson process. In
fact, proper characterization of the output pro-
cess is the main challenge to accurately predict
quantities of interest, such as delay and maxi-
mum throughput. The analysis that we perform
in this paper addresses this challenge.

We denote the offered traffic load at node A
by ρA = λAT and at node C by ρC = λCT . For
guaranteeing the stability of the system, it is nec-
essary that ρA < 1 and ρC < 1. These conditions
are usually not sufficient because they do not con-
sider the time spent on retransmissions. We as-
sume that the system is started at time t = −∞,
so that it reaches its steady state at time t = 0.
The steady-state number of packets in QA and
QC is denoted by the random variables qA and
qC respectively.

In the configuration considered, node C’s pack-
ets are all correctly received at node D and, thus,
never retransmitted. Moreover, node C is always
free to transmit. Therefore, the statistical behav-
ior of node C corresponds to an M/D/1 queue
with service time T . The distribution of qC is
therefore well known (see, for instance, [25, page
220]).

However, a packet sent by node A collides if it
overlaps with node C’s transmission. Thus, node
A has to retransmit unsuccessful packets. So, in
spite of Poisson arrivals of fixed length packets,
the behavior of node A does not correspond to
an M/D/1 queue. We model packet retransmis-
sions in the following way: (i) the time between
retransmissions (i.e., the backoff delay) is negligi-
ble and (ii) the maximum number of retransmis-
sions allowed for each packet is unlimited. Our
analysis presented in the section 4 is exact under
these two assumptions. These modeling assump-
tions are not very restrictive in practice. Indeed,
the analysis shows that the average number of re-
transmissions per packet is smaller than 1.5 as
long as the queues are stable. Furthermore, in
section 6.2, we carry out detailed simulation of
an IEEE 802.11 standard network with the NS
simulator [26]. Simulation results confirm that
our analytical models are able to accurately pre-
dict the performance of an IEEE 802.11 standard
network.

3.3. A Simple “Random-Look” Analysis

As a motivation to our exact analysis, de-
scribed in section 4, we now carry out a simple ap-
proximate analysis based on the “random-look”
assumption and show its limitation.

Without any loss of generality, let the time at
which node A starts a packet transmission be
t = 0. This packet could either be the initial
transmission attempt, or a retransmission. Our
goal is to compute the probability that this packet
collides at the receiver, i.e., node B. For this
purpose, we condition on the state of node C at
time t = 0. Let the queue length at node C at
time t = 0 be denoted by the random variable
qC(0). We distinguish between the cases where
qC(0) = 0, and qC(0) > 0. We thus have

Pr{Collision}
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= Pr{Collision|qC(0) > 0} · Pr{qC(0) > 0}

+ Pr{Collision|qC(0) = 0} · Pr{qC(0) = 0}.

(1)

The conditional probabilities are easy to
compute. If qC(0) > 0, then node C is cur-
rently transmitting. Therefore, node A’s
packet collides with probability 1, i.e.,
Pr{Collision|qC(0) > 0} = 1. On the other hand,
if qC(0) = 0, i.e. if QC is empty at t = 0, a
collision will happen only if a packet arrives at
node C before t = T (note that this packet is
immediately transmitted). Since the arrival pro-
cess to node C is Poisson with rate λC , we get
Pr{Collision|qC(0) = 0} = 1− e−ρC .

To compute Pr{qC(0) = 0} and its comple-
ment, we now make use of the “random-look” as-
sumption, i.e., that the state of node C’s queue
at the time when node A starts a packet trans-
mission is the same as at any random point
of time [27]. Based on this assumption, we
have Pr{qC(0) = 0} = Pr{qC = 0} = 1− ρC (we
remind the reader that qC is a random variable
that corresponds to the steady-state queue length
whereas qC(0) is a random variable denoting the
queue length at time t = 0). Therefore, we obtain
the following expression for the collision probabil-
ity in the hidden node case:

Pr{Collision} = 1 · ρC + (1− e−ρC)(1− ρC)

= 1− e−ρC(1− ρC). (2)

To illustrate the issues with this analysis at the
very outset, Fig. 3 compares the analytical pre-
diction made by Eq. 2 with simulation results for
this system. The simulation set-up is described
in detail in section 6.

Figure 3 shows that the simple analysis signif-
icantly underestimates the collision probability,
which may in turn lead to incorrect packet delay
estimation. Moreover, it is clear from the figure
that the slope of the simulated and theoretical
curves differ as ρ→ 0. Therefore, the analysis is
not asymptotically exact as ρ→ 0.5 One of the

5We define an analysis asymptotically exact as ρ → 0 if
the analytical function f(ρ) and the exact function g(ρ)
satisfy limρ→0 f(ρ)/g(ρ) = 1. If f(0) = g(0) = 0, then the
definition implies that f ′(0) = g′(0).
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Figure 3. Probability of packet collision. Com-
parison between the simulation outcome and the
predictions of the simple analysis.

reasons for the discrepancy is that when a DATA
packet sent by node A collides, it is retransmit-
ted after a short backoff time period and this
retransmission has a higher chance of colliding
again since node C may not yet have completed
its transmission. So, the random-look assumption
does not provide a good quality approximation,
even at low load.

4. Analysis and Main Results

In this section, we present our main analyti-
cal results. In particular, we derive the probabil-
ity of collision, maximum throughput and mean
packet delay for the elementary topology in sec-
tions 4.1, 4.2 and 4.3, respectively, and generalize
these results for a general linear topology in sec-
tion 4.4. Some of the more lengthy proofs needed
for the derivation are deferred to section 5.

4.1. Probability of Packet Collision in the

Elementary Topology

Without loss of generality, suppose node A
starts the transmission of a new (fresh) packet at
time t = 0. If node C does not transmit anytime
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during the interval [0, T ], then node A’s transmis-
sion will be successful. Otherwise, node A needs
to retransmit its packet. The retransmission will
take place during the interval [T, 2T ] (we remind
that the backoff delay is assumed to be negligi-
ble). Again, this transmission will be successful
only if node C does not transmit during that in-
terval, and so forth. In general, node A will re-
quire N attempts until it succeeds in transmitting
its packet, where N is the smallest positive inte-
ger such that node C does not transmit during
the whole interval [(N − 1)T,NT ] (i.e. the queue
at node C remains empty).

Let E[N ] denote the mean number of transmis-
sions per packet. The packet collision probability,
denoted by Pcoll, corresponds to the fraction of
unsuccessful transmissions, that is,

Pcoll =
E[N ]− 1

E[N ]
= 1−

1

E[N ]
. (3)

Therefore, the derivation of an expression for Pcoll

reduces to computing E[N ].
Let qC(t) denote the queue length distribu-

tion of node C at time t. The derivation of
E[N ] is performed by conditioning on the follow-
ing two possible states of node C at time t = 0:
(a) qC(0) = 0, i.e., node C does not transmit, or
(b) qC(0) > 0, i.e., node C does transmit. We
therefore have

E[N ] = E[N |qC(0) > 0) · Pr{qC(0) > 0}

+ E[N |qC(0) = 0) · Pr{qC(0) = 0}. (4)

Define the constant κ = 1 +
W0(−ρCe−ρA−ρC)

ρC
.

Here W0(z) denotes the Lambert function, which
is the solution to the equation xex = z in the un-
known variable x [28]. In sections 5.1, 5.2 and 5.3,
we will show that:

E[N |qC(0) = 0] =
eρC

1− ρC

(5)

E[N |qC(0) > 0] =

ρA + κρC + κρAeρC + κρA

eρA−1

κρA(1− ρC)
(6)

Pr{qC(0) > 0} =

(eρA − 1)(eρC − Pcoll − eρCPcoll)

1− Pcoll

. (7)

The expression for Pr{qC(0) = 0} is given by
the complementary probability of Eq. 7. Note
that Pr{qC(0) = 0} 6= Pr{qC = 0} since qC de-
notes the steady-state value, whereas qC(0) de-
notes the queue length at a special instant,
namely when node A starts transmitting a packet
(note also the difference in notation).

An expression for E[N ] in terms of Pcoll is ob-
tained by substituting Eqs. 5, 6, and 7 into Eq. 4.
Substituting E[N ] into the L.H.S of Equation 3
yields an equation in Pcoll. The solution is

Pcoll = 1−
(eρA − 1)− κρAρC

ρA+κρC

(eρA − 1)
(

eρC + ρC

ρA

)

− κρC

ρA+κρC

, (8)

which is the desired expression for the probability
of packet collision.

4.2. Maximum Throughput in the Elemen-

tary Topology

The maximum throughput of the network is
defined to be the largest traffic load at which the
expected queue lengths at nodes A and C remain
finite. The maximum throughput is therefore the
boundary of the stable region. In the stable re-
gion, the following two conditions must hold: (i)
Pr{qA = 0} > 0, and (ii) Pr{qC = 0} > 0. Since
QC is an M/D/1 queue, Pr{qC = 0} = 1− ρC,
whence ρC must be smaller than 1 for condi-
tion (i) to hold. We use Little’s law to find the
Pr{qA = 0}. Since, on average a packet at node
A takes E[N ] = 1

1−Pcoll
attempts for successful

transmission, the utilization of QA is given by
ρ̄A = λATE[N ]. Then, the probability that QA

is empty is given by Little’s Law:

Pr{qA = 0} = 1− ρ̄A = 1−
ρA

1− Pcoll

. (9)

So, for condition (ii) to hold, ρA must be smaller
than 1− Pcoll, where Pcoll is given by Eq. 8.

Eq. 9 does not yield a closed-form formula, but
allows us to compute the maximum throughput
numerically. For example, with ρA = ρC = ρ,
condition (ii) numerically translates to ρ < 0.401
by using Eq. 9 . Since ρ < 0.401 also satisfies con-
dition (i), we find that the maximum throughput
is ρ∗ = 0.401.

It is interesting to note that with ρA = ρC = ρ
the maximum throughput is lower than ρ = 0.5.
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The general linear case is even more surprising;
for some nodes, the saturation occurs at load
ρ = 0.15 even though each node shares the chan-
nel with only one other node. We discuss this
result in section 4.4.

Finally, we note that with ρ < 0.401, the av-
erage number of retransmissions per packet is al-
ways smaller than 1.5. Thus, our assumption that
the maximum allowed number of retransmissions
is unlimited is not very restrictive in practice.

4.3. Mean Packet Delay in the Elementary

Topology

In this section, we derive the average system
time spent by a packet at node A (or, simply
the delay). Due to space constraint, we will only
sketch the outline.

Let N attempts be required to transmit a fresh
packet successfully. Then, the service time of this
packet is NT . We note that the service times of
successive packets are independent, but not iden-
tically distributed. In particular, as shown in
sections 5.1 and 5.2, the expected service time
depends on the state of node C at the begin-
ning of a fresh packet transmission. Therefore,
the Pollaczek-Khinchin (P-K) mean value for-
mula [11, page 187] is not applicable directly.
Instead, we derive the average system time in a
manner similar to that done in [29, page 188].

Let TQ be the average waiting time in queue,
and Tsys the average system time, including both
queuing and service. Clearly,

Tsys = TQ + TE[N ] = TQ + T/(1− Pcoll). (10)

Now, let NQ be the mean number of packets wait-
ing in queue (but not in service) found by a new
arrival. Then, using Little’s law, NQ = λATQ.
Also, let R be the mean residual service time of
the packet in service if sampled at a random time.
Then,

TQ = NQTE[N |qC(0) = 0]

+R(1− Pr{qA = 0}) (11)

= λATQ TE[N |qC(0) = 0]

+R(1− Pr{qA = 0}). (12)

The conditioning in the expectation term follows
from the fact that qC(0) = 0 for all packets that

are enqueued, as explained in section 5.3. The
mean residual service time R is given by the fol-
lowing [11, page 172]

R =
E[(NT )2|qC(0) = 0]Pr{qC(0) = 0}

2TE[N ]

+
E[(NT )2|qC(0) > 0]Pr{qC(0) > 0}

2TE[N ]
. (13)

The second moment computations are long, but
similar to the procedures described in sections 5.1
and 5.2. The final expression for the case ρA =
ρC = ρ turns out to be the expression shown in
Eq. 14, which is the desired average packet delay.

4.4. Extension to General Linear Network

In this section, we extend our results of the
elementary topology to a general linear topology.
The linear topology is shown in Fig. 4. The nodes
are arranged in pairs, (Ai, Bi) (i = 0, 1, . . .). Each
node can sense/interfere with only its nearest
neighbors. Node Ai sends packets to node Bi;
exogenous arrivals to each node Ai follow an in-
dependent Poisson process with rate λi. As ex-
plained in section 3.1, Bi could represent a set of
nodes instead of a single node.

The packet transmissions from node Ai experi-
ence a probability of packet collision Pi. Our goal
is to approximate Pi (i = 0, 1, . . .) using the result
obtained in section 4.1. We do this by iteratively
calculating Pi’s, starting from P0.

Since A0 is the only node which can send pack-
ets to B0, packets sent by node A0 do not ex-
perience any collision, and P0 = 0. Moreover,
since P0 = 0, the topology formed by the four
nodes A1, B1, A0, B0 is the same as the elemen-
tary topology depicted in Fig. 2(a). Therefore,
P1 is given by Eq. 8, with ρA ← ρ1 = λ1T and
ρC ← ρ0 = λ0T .

Now, in the general case, assume Pi has been
computed. Then, the effective load on node Ai

is equal to ρ̄i = λiT
1−Pi

. Also, the busy periods of
node Ai (i = 0, 1, 2, . . .) are still integer multiples
of T . So, the behavior of node Ai can be approx-
imated by an M/D/1 queue with rate ρ̄i. There-
fore, an expression for Pi+1 can be derived us-
ing Eq. 8, with ρA ← ρi+1 = λi+1T and ρC ← ρ̄i.
This iterative procedure can then be used to com-
pute Pi for all i, i = 0, 1, 2, . . .. We note that
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Tsys/T =
−2− 4κ− ρ + 2ρ(κ + ρ)− e3ρ(1 + κ)(2− ρ)(1− 2ρ)

2(eρ − 1)(1− ρ)(1− ρ− ρeρ)(1 + κ− eρ(1 + κ) + ρκ)
+

e2ρ(1 + κ)(2 + ρ(−9 + 2ρ)) + eρ(2 + ρ(5− 2ρ) + κ(4 + 6ρ2 − 4ρ3))

2(eρ − 1)(1− ρ)(1− ρ− ρeρ)(1 + κ− eρ(1 + κ) + ρκ)
(14)

. . .
PPP 1 02

A B A B A B2 2 1 1 0 0

=0

Figure 4. General linear network.

the M/D/1 approximation is asymptotically ex-
act at low load, as the number of retransmissions
tends to zero in this regime. Our simulation re-
sults in section 6 show that this approximation
carries over to fairly large load values.

It is interesting to note that the procedure gen-
eralizes to the case when the network is infinite.
In particular, assume that ρi = ρ for all i, and the
sequence, P0, P1, P2, . . . converges to P . Then, P
is the probability of collision experienced by the
nodes An (n ≥ N), with N sufficiently large6.
Then, P is given by substituting ρA ← ρ and
ρC ←

ρ
1−P

in Eq. 8, and solving the resultant fixed
point equation.

5. Proof of Key Expressions

5.1. Calculation of E[N |qC(0) = 0]
In this section, we derive Eq. 5. First, we recall

that QC behaves as an M/D/1 queue. This queue
passes through alternate cycles of idle and busy
periods. Let us refer to Fig. 5, which shows the
fashion in which idle periods alternate with busy
periods. We denote the idle period durations by
X1, X2, X3, . . . and the busy period durations by
L1, L2, L3, . . ., etc. X1 is measured from t = 0.
Idle periods are i.i.d. exponentially distributed
random variables with mean E[X] = 1/λC , and

6More precisely, Pn is arbitrarily close to P ; i.e. given
ε > 0, |P − Pn| < ε for all n ≥ N .

busy periods are i.i.d random variables with mean
E[L] = T/(1− ρC) ([11], Chapter 5.8). We note
that the duration of each busy period is an in-
teger multiple of T , since the service time (the
transmission time) of each packet is deterministic
and equal to T .

Next, we recall that node A succeeds in trans-
mitting its packet at the N -th attempt, that is,
during the interval [(N − 1)T,NT ]. Let us de-
note by M , the number of busy periods of QC

until node A successfully transmits its packet (in
Fig. 5, M = 3). We note that the end of the M -th
busy period of QC always falls within the inter-
val [(N − 2)T, (N − 1)T ]. Next, denote by Y the
time interval between the end of the M -th busy
period of QC and the point of time t = (N − 1)T .
Y is defined to be 0 if the first transmission is suc-
cessful, i.e. N = 1. The variables N , M , and Y
are all random. The relation between these ran-
dom variables can be expressed as follows

NT =

M
∑

i=1

Xi +

M
∑

i=1

Li + Y + T. (15)

By taking the expectation on both sides of Eq. 15
and dividing by T , we obtain

E[N |qC(0) = 0]

=
1

T
E

[

M
∑

i=1

Xi

]

+
1

T
E

[

M
∑

i=1

Li

]

+
1

T
E [Y ] + 1
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=
1

T
E

[

M
∑

i=1

Xi + Y

]

+
1

T
E

[

E

[

M
∑

i=1

Li|M

]]

+ 1

(16)

=
1

T
E

[

M
∑

i=1

Xi + Y

]

+ E[M ]
E [L]

T
+ 1 (17)

=
1

T
E

[

M
∑

i=1

Xi + Y

]

+ E[M ]
1

(1− ρC)
+ 1. (18)

The transition from Eq. 16 to Eq. 17 follows from
the fact that the busy periods of QC are i.i.d. and
independent of M .

Our goal now is to derive expressions for

E
[

∑M
i=1 Xi + Y

]

and E[M ]. The key observa-

tion for deriving these quantities is that the ex-
pression

∑M
i=1 Xi + Y must be an integer multi-

ple of T . This property follows from Eq. 15 and
the fact that the sum of the durations of busy pe-
riods, i.e.

∑M
i=1 Li, is itself an integer multiple of

T . We therefore can write

M
∑

i=1

Xi + Y = (K − 1)T, (19)

where K ≥ 1 is an integer. Our next step is to
compute E[K] which, from Eq. 19, will allow us

to determine E
[

∑M
i=1 Xi + Y

]

.

We proceed in the following way. Construct a
new time axis t′ from t by removing the busy pe-
riods Li’s. This new axis is shown in Fig. 5. As
shown in this figure, the m-th busy period on t′

axis is represented by a point occurrence at time
t′ =

∑m
i=1 Xi. These occurrences are separated

by i.i.d exponential variables, Xi’s. So, they con-
stitute a Poisson process with intensity λC . We
denote this process by P.

Furthermore, since each busy period is an inte-
ger multiple of T , the interval [(N − 1)T,NT ] on
t axis is mapped to [(K − 1)T,KT ] on t′ axis. K
is therefore characterized to be the smallest pos-
itive integer so that the interval [(K − 1)T,KT ]
on t′ axis has no arrival of the process P.

Now we are in a position to compute E[K].
Since P is a Poisson process with rate λC , the
probability that there is at least one arrival of
P during any interval on length T on t′ axis is

(1− e−ρC). Thus,

Pr(K = k) =
(

1− e−ρC

)k−1
e−ρC , and (20)

E[K] = eρC . (21)

E[M ] is also calculated with ease using the prop-
erties of P. On t′ axis, M is simply the total num-
ber of arrivals of P in the interval [0,KT ]. Define
νj to be the number of arrivals of the process P
during the interval [(j − 1)T, jT ] on t′ axis. For
example, in Fig. 5, ν1 = 2 and ν2 = 1. Then, M
is the sum of arrivals in each of the sub-intervals,
i.e.

M =

K−1
∑

j=1

νj . (22)

The sum runs up to (K − 1) since νK = 0 by the
definition of K. By taking expectation on both
sides, we get

E[M ]

= (E[K]− 1) E[ν | ν > 0] (23)

= (eρC − 1)
ρC

1− e−ρC

= ρCeρC , (24)

where we omit the subscript of ν as they are i.i.d.
Substituting E[K] from Eq. 21 and E[M ] from

Eq. 24 in Eq. 18, we get

E[N |qC(0) = 0]

=
1

T
E

[

M
∑

i=1

Xi + Y

]

+ E[M ]
1

(1− ρC)
+ 1 (25)

= [eρC − 1] + [ρCeρC ]
1

(1− ρC)
+ 1 (26)

=
eρC

1− ρC

. (27)

This proves Eq. 5.
We now compute a quantity that will be used

in section 5.3. Let W be the amount of time
node A transmits and node C does not during
the transmission attempts of this packet. Then,

W =

[

M
∑

i=1

Xi + Y

]

+ T. (28)

Therefore,

E[W |qC(0) = 0] = E

[

M
∑

i=1

Xi + Y

]

+ T
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= T [eρC − 1] + T = TeρC . (29)

5.2. Calculation of E[N |qC(0) > 0]
Now we derive Eq. 6. The derivation is sim-

ilar to the derivation of Eq. 5 presented in sec-
tion 5.1 except that we need to consider an addi-
tional residual busy period of QC .

Let us refer to Fig. 6. It is given that QC is go-
ing through a busy period at time t = 0. Let this
busy period end at t = L0. Now, similar to sec-
tion 5.1, define Li (i = 1, 2, . . .) to be the length
of i-th busy period, Xi to be the idle period pre-
ceding i-th busy period, and M to be the number
of busy periods of QC following t = L0 until node
A successfully transmits its packet during the in-
terval [(N −1)T,NT ]. The time interval between
the end of the M -th busy period of QC and the
point of time t = (N − 1)T is again denoted by
Y . These random quantities are related by the
following equation,

NT =
M
∑

i=1

Xi +
M
∑

i=1

Li + Y + T + L0. (30)

We take expectations on both sides of Eq. 30
and obtain

E[N |qC(0) > 0] (31)

=
1

T
E

[

M
∑

i=1

Xi + Y

]

+
1

T
E

[

E

[

M
∑

i=1

Li|M

]]

+1 +
1

T
E [L0] (32)

=
1

T
E

[

M
∑

i=1

Xi + Y

]

+ E[M ]
E [L]

T
+ 1

+
1

T
E [L0] . (33)

Our goal now is to obtain the individual expec-
tations. We begin by E[L0].

First note that, although L0 is the residual
busy period of QC , t = 0 is not a random instant.
Thus, the standard expression for the residual
time does not apply. We will therefore compute
E[L0] from the basic principles.

Figure 7 shows a typical sample path for the
case qC(0) > 0. During an instant when node C
was idle, node A finishes its busy period. This
busy period is followed by an idle period, I, which

is exponentially distributed with parameter λA.
The idle period I ends at time t = 0. Since it
is given that qC(0) > 0, node C is busy when I
terminates.

Our next task is to compute the probability
density of the length of the busy period that con-
tains t = 0, in terms of the known probability
density of the length of busy periods of node
C (an M/D/1 queue), fX(x). Let B̄, an arbi-
trary busy period of QC of length x, begin at
the time I = I0, and let σ denote the rest of the
idle period I. Due to the memoryless property
of the exponential distribution I, σ is exponen-
tially distributed with parameter λA. Therefore,
the probability that B̄ contains t = 0—given that
the length of B̄ is x—is equal to Pr{σ < x} =
(1−e−λAx). Therefore, the probability density of
B, the busy period that contains t = 0, is given
by

pB(x) = (1− e−λAx)fX(x)/κ. (34)

Here, κ =
∫ ∞

x=0
(1 − e−λAx)fX(x)dx is the nor-

malizing constant. κ is computed by noting that
w =

∫ ∞

x=0
e−λAxfX(x)dx satisfies the functional

equation w = e−(λA+λC−λCw)T [11, page 212],

whence κ = 1 +
W0(−ρCe−ρA−ρC)

ρC
.

Finally, the probability density of the resid-
ual time L0, given that the length of B is x, is
computed by noting that Pr{L0 ≤ r|B = x} =
Pr{σ ≥ x− r|σ ≤ x}, whence

pL0|B(r|x) =
λAe−λAx

1− e−λAx
eλAr. (35)

So, E[L0|B = x] = x
1−e−λAx −

1
λA

. Combining
with Eq. 34, we obtain

E[L0] =
T

κ(1− ρC)
−

T

ρA

. (36)

Our next goal is to compute E
[

∑M
i=1 Xi + Y

]

.

Unlike the previous case, however,
∑M

i=1 Xi + Y
is not an integer multiple of T . We thus intro-
duce a new variable that will allow us to use the
technique presented in section 5.1.

Let s be the smallest integer so that sT > L0.
We define τ = sT − L0. Due to the memoryless
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property of σ, it follows that the distribution of
τ is given by

pτ (y) =
λAe−λAy

1− e−ρA

, (37)

where y ∈ [0, T ]. It follows then

E[τ ] = T/ρA − T/(eρA − 1). (38)

We now note that
∑M

i=1 Xi+Y −τ is an integer
multiple of T . This is because, rewriting Eq. 30,

M
∑

i=1

Xi +Y −τ = NT −
M
∑

i=1

Li−T −(L0 + τ) ,(39)

and all the terms in the R.H.S of Eq. 39
are integer multiples of T . So, we can write
∑M

i=1 Xi + Y = τ + (K − 1)T .
To compute E[K], we will apply the same

technique that we used in section 5.1. We con-
struct a new time axis t′ from t by removing
the busy periods Li (i = 1, 2, . . .). This new
axis is shown in Fig. 6. The only difference is
that we choose t′ in such a way that the point
of time t = L0 is mapped to t′ = −τ . As
we explained in section 5.1, the m-th busy pe-
riod on t′ axis is represented by a point occur-
rence at time t′ =

∑m
i=1 Xi − τ , and these occur-

rences constitute a Poisson process with intensity
λC . We again denote this process by P. The
interval [(N − 1)T,NT ] on t axis is mapped to
[(K − 1)T,KT ] on t′ axis. K is again character-
ized to be the smallest positive integer so that the
interval [(K − 1)T,KT ] on t′ axis has no arrival
of the process P.

The probability distribution of K remains as
before; namely,

Pr(K = k) =
(

1− e−ρC

)k−1
e−ρC , and (40)

E[K] = eρC . (41)

To compute E[M ], we count the number of ar-
rivals in each sub-interval. Define ν0 to be the
number of arrivals of P during the interval [−τ, 0],
and νj (j ≥ 1) to be the number of arrivals of P
during the interval [(j−1)T, jT ] on t′ axis. Then,
M , the total number of arrivals of P during the
interval [−τ,KT ] is the sum of νj ’s:

M =

K
∑

j=0

νj =

K−1
∑

j=0

νj , (42)

since νK = 0 by the definition of K. νj (j =
1, 2, . . . ,K − 1) are i.i.d and independent of τ .
However, ν0, depends on τ . Also note that the
possibility ν0 = 0 is not excluded. We compute
the expectation of ν0 separately by conditioning
on τ . Since P is a Poisson process, E[ν0|τ ] =
λCτ , whence, E[ν0] = λCE[τ ] = ρC

ρA
− ρC

eρA−1 .

Here, we substituted E[τ ] from Eq. 38. Therefore,

E[M ] = E[ν0] + (E[K]− 1) E[ν | ν > 0] (43)

=
ρC

ρA

−
ρC

eρA − 1
+ ρCeρC . (44)

Now we substitute E[K] from Eq. 41 and E[M ]
from Eq. 44 into 33, and obtain the desired ex-
pectation:

E[N |qC(0) > 0]

=
eρA+ρC − eρC − 1

(eρA − 1)(1− ρC)
+

ρA + κρC

κρA(1− ρC)
. (45)

This proves Eq. 6.
The following quantity will be used in sec-

tion 5.3. Let W be the amount of time node A
transmits and node C does not during the trans-
mission attempts of this packet. Then,

W =

[

M
∑

i=1

Xi + Y

]

+ T. (46)

It follows that

E[W |qC(0) > 0]

= E

[

M
∑

i=1

Xi + Y |qC(0) > 0

]

+ T (47)

= T

[

1

ρA

−
1

eρA − 1
+ eρC

]

. (48)

5.3. Derivation of Pr{qC(0) > 0}
In this section, we derive Eq. 7, the probability

that node C is transmitting at the time node A
starts transmitting a fresh packet, i.e. qC(0) > 0.

We first observe that the event qC(0) > 0 oc-
curs with nonzero probability if and only if an
arrival to node A finds QA empty and QC busy.
Clearly, qC(0) > 0 for all such arrivals, since the
packet is transmitted immediately. It is also clear
that qC(0) = 0 for the arrivals that find both
QA and QC empty. On the other hand, if an ar-
rival finds QA nonempty—i.e. it is queued—then
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with probability 1, node C is empty at the time
this packet is transmitted; otherwise, the previ-
ous packet sent by node A would not have been
transmitted successfully. So,

Pr{qC(0) > 0} = Pr{An arrival to node A finds

QA empty and QC nonempty}.

However, by the PASTA (Poisson Arrivals See
Time Average) property, an arrival to node A
finds the system is at its steady-state distribu-
tion. Thus,

Pr{qC(0) > 0} = Pr{qA = 0, qC > 0}. (49)

We will derive Eq. 49 by computing Pr{qA =
0, qC = 0} using Little’s law. We observe that
the event qA = 0, qC = 0 is equivalent to that the
system consists of QA and QC is empty. So, we
can find Pr{qA = 0, qC = 0} by applying Little’s
law to the whole system. The utilization of the
system is given by:

System Utilization = fraction of time node C
transmits + fraction of time node A transmits

and node C does not.

Let W denote the amount of time node A trans-
mits and node C does not during the transmission
attempts of a packet. We can then write the Sys-
tem Utilization:

ρ̄sys = λCT + λAE[W ], (50)

and the probability that the system is empty

Pr{qA = 0, qC = 0} = 1− ρ̄sys. (51)

We compute E[W ] by conditioning. We dis-
tinguish between the cases when qC(0) = 0 and
qC(0) > 0. The conditional expectations are
given by Eq. 29 and Eq. 48. So,

E[W ]

= E[W |qC(0) > 0] · Pr{qC(0) > 0} (52)

+ E[W |qC(0) = 0] (1− Pr{qC(0) > 0}) (53)

= T

[(

1

ρA

−
1

eρA − 1

)

· Pr{qA = 0, qC > 0}

+ eρC

]

. (54)

The substitution of Pr{qC(0) > 0} is made using
Eq. 49.

Various probabilities are related by the funda-
mental relation:

Pr{qA = 0, qC > 0} = Pr{qA = 0} (55)

− Pr{qA = 0, qC = 0}.

Substituting Pr{qA = 0} from Eq. 9, Pr{qA =
0, qC = 0} from Eq. 51 and E[W ] from Eq. 54 in
Equation 55, we get our desired expression

Pr{qC(0) > 0} = Pr{qA = 0, qC > 0} (56)

=
(eρA − 1)(eρC − Pcoll − eρCPcoll)

1− Pcoll

. (57)

This proves Eq. 7.

6. Simulation Results

In this section we present simulation results
that verify the correctness of our analysis as well
as its ability to predict the performance of IEEE
802.11 networks.

6.1. Validation of the Analysis

In order to validate our analysis, we have de-
veloped a discrete event simulator in Matlab [30]
that simulates the elementary topology shown
in Fig. 2(a) and make exactly the same model-
ing assumptions as those described in section 3:
namely, the packet arrivals at the nodes are in-
dependent Poisson processes with rate λ, each
frame takes one unit time to transmit, unsuc-
cessful frames are retransmitted immediately, and
maximum retransmission per packet is unlimited.
The simulation is run for 100,000 unit time. Since
there is no modeling mismatch, we expect essen-
tially an exact match between the simulation and
the theory.

This is indeed the case as shown in Figs. 8
and 9. Fig. 8 plots the probability of packet
collision (the Packet Error Rate), while Fig. 9
plots the mean system time of a packet. Both
figures compare the analytical results with those
obtained by simulation. From the plots, it is clear
that the match between the simulation and an-
alytical results is excellent, which validates the
correctness of our analytical results.
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Figure 8. Simulation vs. Theory: Probability of
packet collision.

6.2. Simulation of IEEE 802.11 network

Verifying the applicability of our analytical
models to real systems is our next task. In or-
der to do so, we have created a simulation en-
vironment based on the ns simulator [26], which
simulates wireless networks based on IEEE 802.11
standard. Table 1 summarizes the main param-
eter settings for the simulator. The values used
for retry limits and propagation model are de-
fault. RTS threshold is set to 3000 so that nodes
do not use RTS/CTS handshake.

6.2.1. Elementary Topology

We start by describing simulation outcomes for
the elementary topology shown in Fig. 2(a).
Probability of packet collision: Fig. 10 com-
pares the probability of packet collision resulted
in NS simulation, and the theoretical prediction.
From the plot, it is clear that the simulation and

the analysis match very well. Small discrepancy is
observed only at a very high traffic load (ρ ≈ 0.4
is the saturation point), where some of our mod-
eling assumptions are no longer valid. We also
point out that the probability of packet collision
is already 50% in this area. So, a practical net-
work may anyway not be able to work at such
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Figure 9. Simulation vs. Theory: Average delay
seen by the packets at node A.

high traffic loads.
Average system time: Next, we compare the
simulation and theoretical results for the average
system time, shown in Fig. 11. The y-axis is nor-
malized by the packet transmission time T . It is
clear that the theoretical prediction matches well
with the simulation results, especially at lower
values of traffic load. At higher values of traf-
fic load, where probability of collision is nearly
50% (cf. Fig. 10), some discrepancy arises due to
nonzero backoff intervals.
Maximum throughput: Finally, we consider
the maximum throughput of this network. Fig. 12
shows the average system time, normalized by
the packet transmission time T , versus the traf-
fic load. The simulation clearly indicates that
the queue of node A saturates around a load
of ρ = 0.4. The theoretical prediction of the
maximum throughput, derived in section 4.2, is
ρ∗ = 0.401 which agrees very well with the simu-
lation result.

6.2.2. Linear Topology

Now we describe simulation outcomes for the
general linear network. The topology is shown in
Fig. 4, where we used 15 pairs of nodes: (A0, B0)
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Table 1
Key NS parameters.

Routing protocol DumbAgent
Propagation model TwoRayGround
Data rate 1 Mb/s
Carrier sense threshold 2.5× 10−10

Receiving range Threshold 2.5× 10−10

Packet size 2000 Byte
Short retry limit 7
Long retry limit 4
RTS Threshold 3000

to (A14, B14). Exogenous arrivals at each node Ai

follow independent Poisson processes, each with
a common rate λ (hence, by definition, ρ = λT ).
Probability of packet collision: Fig. 13 com-
pares the analytical and ns simulation results
for probability of collision at nodes A1, A7 and
A14. The figure clearly shows that our analytical
expression is asymptotically exact at low load.
Moreover, the analysis clearly captures the be-
havior of the curves, although discrepancies are
observed when the probability of collision is high.
It is interesting to observe that as we go further

to the left (cf. Fig. 4), the probability of collision
becomes very high even at relatively low load.
This is perhaps surprising since packets of node
Ai are only affected by the transmissions of node
Ai−1. An intuitive reason is as follows: due to
the transmissions at node A0, node A1’s packets
collide, which are retransmitted. These retrans-
missions cause further packet collisions at node
A2. So, node A2’s packets experience a higher
probability of packet collision, which in turn af-
fects node A3; and so on. Therefore, the impact
of hidden nodes is cumulative in this topology.
Maximum throughput: The nodes in the
linear network can achieve different maximum
throughput. In particular, when the common ex-
ogenous load value, ρ, is increased, the leftmost
node saturates first, due to the cumulative effect
explained above. In Table 2, we show the maxi-
mum throughput observed at nodes A1, A7 and
A14 in the simulation as well as the theoretical
predictions.
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Figure 10. Probability of packet collision: Com-
parison between NS simulation and theory.

Table 2
Maximum throughput in the linear network.

Theory Simulation
A1 0.401 0.400
A7 0.160 0.185
A14 0.140 0.160

We find that the theoretical predictions are lower
than simulation outcomes. The discrepancy oc-
curs due to the fact that our theoretical results for
the general linear network are based on low load
assumption, so they are less accurate near the
saturation point. Nevertheless, the theory does
predict the right order of magnitude—in fact, it
provides a lower estimate—which is often suffi-
cient for many purposes.

7. Conclusion

In this paper, we have quantified the impact of
hidden nodes on the performance of linear wire-
less networks. We have performed an analysis
based on a model that closely follows the IEEE
802.11 protocol, taking into consideration the ef-
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Figure 11. Average system time: NS simulation
vs. theory.

fects of queuing and retransmissions at each node.
In order to make the analysis tractable, we have

decomposed the general network into elementary
4-node topologies. For these topologies and based
on our statistical assumptions, we have derived
exact expressions for the probability of packet col-
lision, maximum throughput and mean packet de-
lay. We then generalized these results to the case
of general linear wireless networks. In particular,
we developed a simple iterative procedure that
allows to approximate the packet collision proba-
bility and maximum throughput at each node of
a linear wireless network.

We made use of simulation to verify the cor-
rectness of our analysis as well as its applicability
to predict the performance of IEEE 802.11 net-
works. The analytical results were verified by a
Matlab based discrete event simulation, whereas
we used the IEEE 802.11 standard NS simulator
to verify the merits of the analytical predictions.
The Matlab simulation results matched exactly
with the analytical predictions, thereby validat-
ing our analysis. The NS simulations showed that
our analytical results provide high quality predic-
tions of network performance; slight discrepancy
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Figure 12. Maximum throughput: NS simulation.
Theoretical prediction is ρ∗ = 0.401.

was observed only at traffic load where the proba-
bility of packet collision is already very high. For
the case of the general linear network, we also
observed and discussed an interesting propaga-
tion effect, whereby some of the nodes saturate
at traffic load values as low as ρ ≈ 0.15, even
though each node is directly affected by only one
other node.

Although our analysis focused on IEEE 802.11
networks, it can also be used for predicting
the performance of other types of wireless net-
works, such as sensor networks. Since sensor
networks often implement CSMA-based protocols
(see e.g. [31, 32]), the scenarios described and an-
alyzed in this paper could be especially useful in
the design and evaluation of these networks. In
this respect, the extension of our analysis to gen-
eral topologies represents a very interesting re-
search area open for future work.
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