
Rateless Deluge:
Over-the-Air Programming of Wireless Sensor

Networks using Random Linear Codes
Andrew Hagedorn, David Starobinski, and Ari Trachtenberg

Dept. of Electrical and Computer Engineering
Boston University, Boston, MA 02215
Email: {achag,staro,trachten}@bu.edu

Abstract— Over-the-air programming (OAP) is a fundamental
service in sensor networks that relies upon reliable broadcast for
efficient dissemination. As such, existing OAP protocols become
decidedly inefficient (with respect to energy, communication or
delay) in unreliable broadcast environments, such as thosewith
relatively high node density or noise. In this paper, we consider
OAP approaches based on rateless codes, which significantly
improve OAP in such environments by drastically reducing the
need for packet rebroadcasting. We thus design and implement
two rateless OAP protocols, rateless Deluge and ACKless Deluge,
both of which replace the data transfer mechanism of the estab-
lished OAP Deluge protocol with rateless analogs. Experiments
with Tmote Sky motes on single-hop networks with packet
loss rates of 7% show these protocols to save significantly in
communication over regular Deluge (roughly 15-30% savingsin
the data plane, and 50-80% in the control plane), and multi-hop
experiments reveal similar trends. Simulations further shows that
our new protocols scale better than standard Deluge (in terms
of communication and energy) to high network density. TinyOS
code for our implementation can be found at http://nislab.bu.edu.

I. I NTRODUCTION

Sensor networks distinguish themselves in their unique ca-
pability of gathering detailed information in remote, isolated,
and often harsh environments. Yet, sensor networks’ software
often needs to be updated after deployment for a variety of
reasons, such as fixing software bugs, modifying tasks of
individual nodes or of the entire network, and patching security
holes. Within this context, over-the-air programming (OAP)
protocols play a key role as an enabling technology to nu-
merous sensor network applications, and several protocolsand
algorithms have been specifically designed for this purpose.

Although existing OAP protocols have many merits, they
suffer from fundamental limitations that can significantly
impair their use in future systems. Chiefly, the performance
of existing OAP protocols quickly degrades when the network
size and density get large, and even more so when packet
loss is high. The survey work in [12] reports simulation
results, based on TOSSIM, where the completion time of
Deluge [2] and MNP [4], two popular OAP protocols, can
easily take close to an hour on a 100-node network. This lack
of scalability can largely be attributed to the high control-plane
overhead associated with reliability requirements, and most
specifically with negative acknowledgment (NACK) mecha-

nisms. These mechanisms require every destination to contend
on a shared channel to notify the source about its missing
packets, producing the so-called “NACK implosion problem”.

Our main contribution in this work is to devise and fully
implement a fundamental solution to the aforementioned scal-
ability challenges faced by OAP. Our approach relies on the
use of rateless coding to eliminate the need to convey control
information aboutwhich packets require retransmission; with
this approach, a node need only receive a sufficient number
of distinct, encoded packets to recover a transmitted program.
Implementing rateless codes in the resource constrained envi-
ronment of a wireless sensor requires the design of efficient
mechanisms to reduce latency, computational complexity, and
memory overhead. To demonstrate the effectiveness of using
rateless codes for OAP, we propose and implement two new
protocols. The first protocol, calledrateless Deluge, signif-
icantly alters the transfer mechanism of the OAP Deluge
protocol to allow for the rateless transfer of program images.
The second protocol, calledACKless Deluge, augments the
rateless Deluge protocol with a packet level forward erasure
correction (FEC) mechanism that aims at eliminating the need
for extraneous control packets. ACKless Deluge transmits
extra encoded packets that prevent, with high probability,the
need for packet retransmissions.

In this paper, we provide a detailed description of the im-
plementation of these two new rateless-based OAP protocols.
In particular, we shed light on the various trade-offs that arise
in implementation of rateless OAP on a sensor networks, such
as the tradeoff between the size of program pages and the size
of the underlying finite field used for computation. We provide
extensive numerical results evaluating the performance ofour
protocols, based both on real network experiments with Tmote
Sky sensors and also on simulations. We show that precoding,
whereby new packets are encoded in anticipation of future
requests, can be exploited to substantially speed-up the data
transfer mechanisms of the rateless protocols. Our resultsfur-
ther indicate that the new protocols achieve significant savings
of energy and communication with respect to the standard
version of Deluge (over 50% in many cases). Their overall
completion times are comparable in low network densities or
low packet loss environments, but better than original Deluge
as packet loss rate or network density increases.

A. Paper organization

The rest of this paper is organized as follows. We first briefly
review state-the-of-art OAP protocols and provide background
on random linear codes in Sections II and III. Next, in
Section IV, we describe the implementation of the rateless
OAP protocols, with a special focus on the memory and
computational overheads that they entail. We also describe
the design of our FEC technique that reduces the effects
of packet loss and prevents requests for re-transmission. In
Section VI we compare the efficiency of the original Deluge
to the rateless implementations through experiments on our
testbed and simulations. Our conclusions are presented in
Section VIII.

II. RELATED WORK

We survey here work directly related to OAP protocols. A
number of such protocols have been proposed in the last few
years. Among them, the Deluge protocol [1, 2] is currently the
de facto standard. In Deluge, each node periodically advertises
the most recent version of its program, and nodes request
(and receive) program updates based on these advertisements
using a NACK-based protocol for reliability. In order to
reduce contention on the shared channel, Deluge implements
advertisement and NACK suppression, which aim at avoiding
redundant transmissions of control packets. In addition, to en-
ablepipelining, a program is divided into fixed-size segments
(or pages), which in turn are divided into packets. As soon
as a node receives an entire segment, it can forward it on to
its neighbors. In [1], forward error correction in the form
of Reed Solomon codes and Tornado Codes is proposed as a
potential optimization of the Deluge protocol, but these codes
have a fixed rate and therefore require the retransmission of
entire pages if too many packets are lost.

OAP protocols that preceded Deluge include XNP, used in
TinyOS for single-hop reprogramming, and Multi-hop Over-
the-Air Programming (MOAP) [11]. MOAP is similar to
Deluge, but does not divide a program into pages. More recent
protocols include Multi-hop Network Programming(MNP)[4],
Infuse [3] and Sprinkler [7]. MNP implements sender selection
to limit the number of concurrent transmissions in each
neighborhood. Both Infuse and Sprinkler propose to set up
a TDMA schedule to reduce packet collisions. A detailed
description and comparison of these methods and a few others
is provided in [12].

While our implementations are based on the Deluge pro-
tocol, we expect that the new rateless coding transfer mecha-
nisms described in this paper could be overlayed on any of the
above protocols to substantially improve their performance.

Significant efforts have recently been devoted in developing
new macro-programming methods and middleware to reduce
the amount of data needed to update and modify programs;
see e.g., [5, 6, 8]. This paper’s contribution should be viewed
as complementary to these efforts.

X1

X2

X3

XK

original file

b
b
it
s

F

Y1

Y2

Y3

Yn

i,1

i,K

Yi

encoded file

Fig. 1. Illustration of random linear encoding

III. B ACKGROUND ON RATELESS AND RANDOM L INEAR

CODES

Rateless codes provide an efficient means of addressing
channel contention in sensor networks, while at the same time
minimizing control messages, such as those contributing tothe
ACK/NACK implosion problem. Fundamental to this strategy
is the fact that receivers do not need to indicate which specific
packets require retransmission; instead, they just have to
receive a sufficient number of independent packets, which can
then be used to decode the original message. Rateless coding,
thus, yields several key benefits, namely: communication and
energy savings, and lower control overhead.

Random linear coding provides a simple method for file
dissemination. In this model, a long fileX is split into
k segmentsX1, X2, . . . Xk, each of which can be thought
of as an element in a finite fieldF. These segments are
then encoded intom > k messages{Y1, Y2, . . . Ym} as the
following random linear combinationsYi =

∑k

j=1
βi,jXj ,

where βi,j are randomly chosen elements in the finite field
F. The parametersβi,j of the encoding can be easily adjusted
so that the rows[βi,1, βi,2, . . . βi,k] are linearly independent
with high probability. Thus, any host that receivesk of the
Yi’s can solve the corresponding system of linear equations to
determineX . Figure 1 graphically demonstrates the encoding
process.

This technique sports two features useful to OAP: (i) it
has no decoding inefficiency; and (ii) it is arateless code.
In classical block codes, the encoding length needs to be
determineda priori. In this case, however, if them encodings
Y1 . . . Ym prove insufficient (due to poor channel conditions,
for example), then the encoding node can easily generate a
number of extra packetsYi by using newly constructed random
elementsβ.

A. Motivating Example

As a simple example of the best-case gain achievable with
rateless codes, consider a one-hop clique consisting of a base

Fig. 2. A motivating example of the best-case gain achievable with rateless
codes. If each receiver misses a different packet, the traditional mode requires
the tranmission ofn requests andn retransmissions. However, with rateless
codes only 1 request and 1 retransmission is required.

station andn sensor nodes. Suppose that the base station
broadcastsn data packets and each node in the network fails
to receive a different packet. A traditional data dissemination
protocol, such as Deluge, would require that each sensor
transmits (on one shared broadcast channel) a NACK control
packet with the ID of its missing packet. Upon reception of
thesen NACKs, the base station would have to retransmit all
n data packets.

On the other hand, with rateless coding only one sensor
needs to request the transmission of an additional encoded
packet (assuming the other nodes can overhear that request).
Once the base station transmits one new packet, each node
can use this packet to recover the data. Rateless coding thus
yields ann-fold reduction in communication cost onboth the
control and data planes in this case.

IV. I MPLEMENTATION OF RATELESSOAP

The implementation of a rateless OAP involves two crucial
elements. The first element is the design of the rateless codeto
minimize latency, computational complexity, communication,
and energy use. In general, these design choices are influenced
by underlying hardware restrictions, such as the amount of
memory available and the processor architecture and speed.
The second element involves re-engineering the OAP data
transfer mechanism. The new rateless data transfer mechanism
must naturally integrate with the existing OAP protocol. This
portion of the design is highly specific to the OAP selected
(in our case, Deluge).

A. Finite Fields

The selection of the finite field sizeq of field Fq has a
considerable impact on the performance of the system in terms
of the computational complexity and probability to decode
successfully. Decoding fails when thek rows of the randomly

chosenk × k matrix are linearly dependent. The probability
of decoding failure is based on well-known considerations of
the number of linearly independentk × k matrices:

Pr(failure) = 1 −
(qk − 1)Πk−1

i=1
(qk − qi − 1)

qk2

Increasing the field sizeq also increases probability of
proper decoding at the expense of increased computational
complexity for finite field arithmetic. For any reasonable
field size, performing arithmetic on the fly is computation-
ally demanding, since multiplication is performed modulo an
irreducible polynomial and division requires an application
of the extended Euclidean algorithm [9]1. This computation
complexity can be traded off for memory by precomputing
multiplication or inverse tables. We chose a field of sizeq = 28

(corresponding to byte-length elements), which requires256
bytes of memory to store inverses and has a probability of
decoding failure of∼ 0.00392. By way of comparison, the
next byte-aligned field size ofq = 216 requires a65KB table,
which surpasses the10KB memory on the Tmote Sky motes.

B. Random Linear Codes

Our implementation of random linear codes is divided into
two parts: encoding and decoding. During encoding, a random
number generator is seeded with a key shared by all nodes and
a unique packet identifier to create random coefficients for
encoding a given packet (if security is a requirement, then the
shared key should be kept secret and distributed using a secure
key distribution scheme). Once the current page is encoded
into a packet, that packet and its identifier are transmitted
over the channel. Including the identifier in each transmission
allows the decoding mote to recreate the row of the random
matrix used to encode the data packet; the identifier and
key are combined to form a seed for the random number
generator. Once all rows of the matrix have been generated,
the decoding process uses Gaussian elimination with back
substitution to solve the set of linear equations and retrieve
the data. If decoding fails, the process recovers gracefully
by only discarding those packets that are linearly dependent
(indicated by zero rows in the reduced decoding matrix). The
decoding mote must retrieve enough new packets to replace the
dependent packets, and then it can generate the corresponding
new rows of the random matrix. The node repeats the decoding
process until it has obtained linearly independent packetsand
decoding succeeds.

The performance of random linear coding depends on the
number and size of the packets being decoded (i.e., the size
of the matrix). Both of these values are constrained by the
resources available to the motes: the default maximum data
payload size for TinyOS is29 bytes and there is a fixed
amount of RAM. The default value for Deluge is a48 packet
page, where each packet contains23 bytes of data. This data
payload size represents a worst case in terms of computational

1There are more efficient approaches to finite field arithmetic, such as using
special bases or picking trinomial irreducibles, but the fundamental issues
remain.

Fig. 3. State diagram at the source for a valid request for a data packet.
Upon reception of the request the source loads all data, encodes, and transmits
encoded packets. After transmitting the required number ofencoded packets
the source precodes the next page if available.

complexity for our algorithm; if the payload is smaller and the
number of packets per page remains the same, both encoding
and decoding will take less time. Due to the use of Gaussian
elimination, the decoding time2 is O(k3), where the size
of the random matrix isk × k. This means that the page
size should be kept small to reduce computational complexity.
For example, on Tmote Sky motes requires6.96 seconds, on
average, to decode a48 packet page. Reducing the page size
to 24 packets per page decreases the average decoding time
to 1.96 seconds.

C. Rateless Deluge

We next describe the full implementation of our first OAP
protocol called rateless Deluge. Rateless Deluge modifies the
original Deluge protocol in that it uses rateless codes to
transmit data. This change causes significant structural changes
to the mechanism for requesting and transferring data so that
communication in the control and data planes are reduced.
To ensure a fair comparison, all the other aspects of original
Deluge such as image advertisement and data storage are
kept identical. Hence, the only difference between the two
implementations lies in their transfer mechanisms.

The change to the request mechanism is fairly simple.
Rateless Deluge does not require knowledge of the specific
packets missed and therefore the transfer of a bit vector of
missed packets is unnecessary. Only thenumber of missed
packets must be transferred which can be represented as a
single byte. This means that for the page sizeP (in bytes),
rateless Deluge reduces the size of the request packet by
⌈log2(P − 8)⌉ bytes forP > 8. For 0 ≤ P ≤ 8 the packet
sizes are the same. This difference results in a slight change to
the request suppression method as well. In Deluge, if a node
overhears a request packet, it suppresses its own requests if

2Again, more asymptotically efficient row-reduction techniques are known
in the literature, but they do not appear practical for implementation in
constrained sensor motes.

Fig. 4. State diagram at the receiving node for a valid data packet. Once
the node has receivedk encoded packets it attempts to decode. If decode is
successful the node writes the data to Flash. Otherwise the node discards any
linearly independent packets and waits for more encoded packets.

the overheard bit vector is a superset of its own bit vector.
Otherwise, the node transmits its own request to the source.
In rateless Deluge, a node requests more packets only if it
does not overhear another request containing a larger number
of requested packets.

The change to the mechanism for transferring data is
much more substantial. The original protocol examines the bit
vectors it has received and transmits packets corresponding
to the union of all those bit vectors. For this, the sending
node retrieves a single data packet from Flash memory and
transmits it. This process repeats until all the requested packets
have been sent. Upon reception of a useful data packet, nodes
immediately write that packet to the Flash memory, wait
for additional packets, and request retransmission as needed.
This model is unrealistic for rateless implementations because
the entire page (composed ofk individual data packets) is
required for the encoding process. Similarly, decoding requires
k linearly independent encoded packets to obtain the original
page. Therefore significant changes must be made to the page
transfer state machine, both at the source and the receiving
nodes.

At the source, the transfer state machine must load, encode
and broadcast the encoded packets. A simplified state diagram
of the new mechanism at the source is given in Figure 3.
While it would be possible for the source to load each data
packet individually and have the same RAM overhead as
the original Deluge, the number of Flash memory accesses
would be prohibitive. For a page ofk data packets, the source
would have to performk loads for each encoded packet, since
each encoded packet is computed as

∑k

j=1
βi,jXj, where

Xj represents packetj. Hence, this approach would require
O(k2) Flash accesses to encode each page. A more efficient
implementation loads the entire requested page into memory
prior to encoding and transmits packets so that onlyk Flash
accesses are required, assuming that a buffer in RAM is
large enough to hold the full page. Once the entire page is

in memory, the source uses random linear codes to encode
and broadcast packets over the wireless channel. With this
approach, the number of Flash accesses does not exceed that
of original Deluge, and is even potentially lower in the caseof
retransmissions. Indeed, if a retransmission is required,then
original Deluge will have to reload some data packets into the
RAM. On the other hand, in the case of rateless Deluge, the
working page remains in the buffer. Note, however, that once
a different page has been requested, any further request for
the previous page will result in additional Flash loads.

Rateless Deluge further changes the transfer mechanism at
the source by attempting to anticipate future requests. Once the
current request has been fulfilled, rateless Deluge exploits the
fact that pages are requested in increasing order by precoding
the next page. While other nodes are decoding the previous
page, the sending node anticipates requests for the next page,
that is, it loads the next page into the page buffer and encode
new packets.

However, precoding requires two additional buffers since
this process holds multiple encoded packets in memory at
once. The process requires a buffer to hold the original page,
one to hold the unique identifiers of the encoded packets and
another to hold the encoded packets. Encoding on the fly as
described above does not require the latter two buffers. This is
because once a packet is encoded it is immediately transmitted
over the channel and the same memory can be used for the
next encoded packet.

Precoding at least partially mitigates the delay associated
with encoding at the expense of RAM consumption. That
said, in practice, the sending node must wait for a short
time period before encoding the next page to avoid excessive
Flash accesses which will waste time and energy. For instance,
consider the situation in which a single receiving mote needs
an additional packet. After a brief time out, this mote will
send a retransmission request to the source. If the source
begins precoding the next page immediately, the page buffer
of the source will contain the next page. Therefore, the
request for additional data will require the source to reload the
previous page before encoding. This problem can be avoided
by introducing a waiting period in between the last data packet
transmission associated with the previous page and the start
of precoding for the next page.

At the receiving nodes, the mechanism for data reception
is changed to allow the nodes to receivek encoded packets
and decode the page. A simplified state diagram of the new
mechanism at the receiving nodes is given in Figure 4. The
rateless version stores each encoded data packet in RAM along
with its unique identifier. However, this does not require a
new buffer in RAM. Nodes that are receiving packets ignore
requests to for data until decoding is complete; this allows
the buffer that holds the un-encoded page during encoding to
hold the received packets during decoding. Once the number
of encoded packets received equals the page size, the unique
identifiers are used to re-generate the random matrix and allthe
packets are decoded. If decoding is successful then the entire
page is written to the Flash memory and the page transfer is

complete.
However, if there are linearly dependent packets, then in

the process of Gaussian elimination there will be rows of all
zeros in theβ matrix. The packets corresponding to those rows
are discarded and additional packets are requested. The same
request suppression as described above is used here.

D. ACKless Deluge

Our second rateless OAP protocol is referred to as ACKless
Deluge and it attempts to completely eliminate the need
for NACKs. ACKless Deluge implements all the structural
changes described for rateless Deluge. However, it differsin
two significant ways. First, ACKless Deluge employs a FEC
mechanism at the packet level which sends extra encoded
packets in addition to the requested number of packets. We do
not employ bit-level convolutional or block codes to correct
bit errors, but instead enhance the rateless features of our
implementation by adding redundant packets to account for
packet loss. For example, in a trivial system where it is known
a priori that one packet will be dropped from each page of
size k then the FEC mechanism would sendk + 1 packets.
In doing so each receiving node would receivek packets and
no retransmission would be required. Our FEC mechanism
is designed to prevent requests for retransmission with high
probability and how this is accomplished is explored further
in Section V. The second major difference is the length of
the waiting period associated with precoding. The rationale
for a waiting period before precoding is that requests for
retransmissions will cause excessive Flash loads. However,
since ACKless Deluge prevents (with high probability) retrans-
missions, the need for a waiting period is largely eliminated.
Therefore, ACKless Deluge uses a minimum waiting period
before precoding.

E. Overhead

It is clear that rateless Deluge adds memory and computa-
tional overhead with regard to original Deluge. The magnitude
of this overhead depends on many factors, the most important
being the page size. The impact of the computational overhead
can be measured in terms of energy consumption, which is
explored in Section VII-B, and delay, which is examined
here. If there is no packet loss in the network, delay is
easily calculated because it depends only on the encoding and
decoding times. This is the case because all other factors (i.e.
the number of transmissions and the number of Flash reads
and writes) are identical. Figure 5 depicts the delay incurred
with four different schemes: i) without precoding, ii) with
precoding, but with no waiting period, iii) with precoding
and 0.5 second waiting period, and (iv) with precoding and
a 2 seconds waiting period. In each case, the figure shows
the amount of time needed to encode and decode 48 packets
for varying page sizes. The length of the waiting period
determines whether or not precoding is beneficial or not. When
there is a minimum waiting period (as is the case with ACKless
Deluge), precoding completely eliminates the time overhead
due to encoding. However, with increasing waiting periods and

5 10 15 20 25 30 35 40 45
0

2

4

6

8

10

12

Packets per Page

O
ve

rh
ea

d
(s

ec
on

ds
)

Without Precoding
Precoding, 2 second delay
Precoding, .5 second delay
Precoding, no delay

Fig. 5. Overhead (encoding and decoding) of rateless Deluge, with and
without precoding and with and without waiting period. The figure shows that
precoding can reduce the time overhead of rateless Deluge, but the precise
amount depends on the waiting period and the page size.

page sizes, some packets (possibly all) will not be encoded
during the precoding stage. For example, Figure 5 shows that
with a 2 seconds waiting period, no benefit is achieved from
precoding if the page size is less than 28 packets, because the
decoding process on the receiving nodes is shorter than the
waiting period.

The RAM memory overhead shows a similar trend: the
amount of extra memory consumed increases with the page
size. The major sources of increased RAM usage are the
table of multiplicative inverses, the page buffer, the precoding
buffer, and the buffer of unique identifiers. While the size of
the table of inverses is constant at 256 bytes, the size of each
of the other buffers is a linear function of the page size. Fora
page size of 20 packets per page this overhead translates into
1196 bytes in RAM which represents 11.6% of the 10 KB of
RAM on a Tmote Sky mote. When the page size increases
to 48 packets per page the additional cost is 24.5% of total
RAM.

The costs of rateless Deluge which are outlined above imply
that a page size that is smaller than the default Deluge page
size of 48 packets per page would be beneficial. However,
there is a trade off because at some point the reduction in
the page size becomes counter productive. To illustrate this
consider the extreme case where the page size is 1 packet;
both rateless and original Deluge will transmit a single packet
upon a new request and the benefit of rateless Deluge is
lost. While small page sizes greater than one will show some
benefit, higher page sizes increase the communication and
energy gains of rateless coding, as shown by our experiments
and simulations in the sequel. Figure 5 provides another
justification for using a page large enough. This figure shows
that when there is a waiting period before precoding, then a
reduction in the overhead is only seen when the pages size
exceeds a certain threshold. For these reasons, all experiments
are performed with a page size of 20 packets.

V. NUMERICAL FEC FOR ACKLESSDELUGE

The FEC mechanism in ACKless Deluge operates at the
packet level. It sends extra encoded packets to prevent the need
for additional control messages and retransmission with high
probability. In [10], it is suggested that extreme value theory
can be applied to determine the number of extra transmissions
required. Using knowledge of the number of recipients (N),
the number of packets required (M), and an estimate of the
loss probability (p) it is shown in Theorem 11 that the number
of transmissions is bounded by random variables converging
to the cdf of a normalized Gumbel distribution asN → ∞.
A Gumbel distribution is of the formG(x)= exp(−exp(−x).
Simulation in [10] shows that even though the convergence
is known only asN → ∞, the number of transmissions is
close for relatively lowN ; the simulation uses the example of
N = 100 . However, the formula of Theorem 11 provided in
[10] may not be accurate enough in sparse networks whereN

can be very small.
Clearly, the FEC mechanism in ACKless Deluge should be

flexible so that all values ofN can be accommodated. To allow
for an accurate answer for allN , ACKless Deluge numerically
computes the solution for small values ofN , as explained next.
In [10], the time for usern to receiveM packets, denoted by
the variableTn, is shown to be negative binomially distributed.
By definition,P (Tn ≤ t) = F (t) = I(1−p, M, t−M) where
I(x, a, b) is the regularized beta function. If you assume that
each node loses packets independently of all other nodes, the
probability that the maximum is less thant is the following:

Pr(maxi=1...N Ti ≤ t) = (F (t))N

By selecting t appropriately high, one can determine the
number of extra transmissions needed to guarantee success
with high probability.

Similarly to extreme value FEC, knowledge ofN andp is
necessary for the computation. A conservative estimate of the
packet loss can be obtained by active or passive probing. For
instance, a passive probing approach is to periodically transmit
pages without extra packets. The number of packets requested
for retransmission can be then used to estimate the packet loss
probability. The number of neighbors can easily be determined
by keeping a table of known neighbors based on overhead
advertisements and requests. Advertisements by nodes happen
systematically regardless of the amount of data present on the
nodes and are therefore a good way to gain an estimate of the
number of nodes in range. To accommodate network topology
changes, the table could be refreshed periodically. The accu-
racy of the estimates ofN andp has an effect on the amount
of communication required. An overly conservative estimate
will cause excessive transmission of data packets and a low
estimate will cause additional requests. The effects of using
numerical FEC in sparse networks and accurate estimates of
the parametersN andp are explored in Section VI-C.

VI. EXPERIMENTAL RESULTS

The experiments in this section evaluate the performance
of rateless Deluge and ACKless Deluge with respect to the

1 2 3 4 5 6 7 8 9

20

25

30

35

40

Percentage of Packets Lost

T
im

e
to

 D
is

se
m

in
at

e
(s

)

ACKless, with Precoding
ACKless, without Precoding
Rateless Deluge, with Precoding
Rateless Deluge, without Precoding

Fig. 6. Average dissemination time of rateless Deluge and ACKless Deluge,
as a function of the packet loss. Precoding reduces the dissemination time
over a single hop for both rateless versions.

original Deluge protocol. All the experiments are performed
on a test bed of 2.4 GHz Tmote Sky motes. Packet loss is
generated in two different ways depending on the experiment:
i) forced packet loss, which is the practice of dropping packets
uniformly at random at a certain rate; in this case the motes
transmit at their highest power setting over short distances
to ensure a good link; and ii) natural packet loss, which
induces packet loss by transmitting at the lowest power setting
in the presence of interference. Interference is provided by
motes transmitting over the advertisement, data, and control
channels; the delay between transmissions is chosen uniformly
at random between 3 and 7 milliseconds.

A. Single Hop

All single-hop experiments are performed on a 16-motes
testbed that form a fully connected graph. At the beginning
of the experiment a 9-pages image is present on one mote
(i.e., the base station). The experiment ends once every mote
has the entire image in Flash. Data is collected in two ways.
A single mote is connected to a PC and records all network
activity and each node in the network logs local statistics and
stores them to Flash memory. Each data point represents the
average over five trials. The experiments are conducted under
forced packet loss.

Two single hop experiments are performed. The first exper-
iment shows the benefits of precoding, namely, the practice of
anticipating future requests to mitigate the cost of encoding.
Figure 6 shows that for both rateless and ACKless Deluge
precoding significantly decreases the time to disseminate afile
over one hop; for example, Figure 6 shows that when 7 percent
of packets are lost, precoding reduces the time to disseminate
by 9.1 percent for rateless Deluge and 24.9 percent for
ACKless Deluge. The reduction for ACKless Deluge is much
larger because it assumes no additional transmission is needed
and it does not wait for requests before starting to precode.
Looking at the specific numbers at 7 percent loss, ACKless
Deluge is 6.5484 seconds faster with precoding than ACKless
Deluge without precoding. At 20 packets per page, the cost to

1 2 3 4 5 6 7 8 9
5

10

15

20

25

30

Percentage of Packets Lost

T
im

e
to

 D
is

se
m

in
at

e
(s

)

Original Deluge
Rateless Deluge
ACKless Deluge

Fig. 7. Comparison of average dissemination time of a 9-pages image with
increasing packet loss for each protocol.

1 2 3 4 5 6 7 8 9
180

200

220

240

260

280

300

320

340

360

380

Percentage of Packets Lost

N
et

w
or

k
D

at
a

P
ac

ke
ts

Original Deluge
ACKless Deluge
Rateless Deluge
Optimal

Fig. 8. Average number of packets transmitted on the data plane as a function
of the packet loss for each protocol.

encode a single packet is on average .03897 seconds and the
encoding cost is 7.0146 for the entire 9-pages file. In this case,
ACKless Deluge has mitigated 93.4 percent of the encoding
overhead. This confirms the calculation of Section IV-E that
indicated that precoding mitigates the overhead of encoding.
In fact, for the case of ACKless Deluge, the overhead almost
completely disappears.

The second experiment compares the original, rateless, and
ACKless Deluge protocols in terms of the time to disseminate
the image, the number of data packets transmitted, and the
number of requests transmitted in the network. Figure 7 shows
the amount of time in seconds to disseminate the entire
image to all nodes. Since this experiment is performed on
our testbed, these times include all computational overhead
of our implementation. With minimal packet loss, original
Deluge performs significantly better than either version of
rateless Deluge. However, as the packet loss increases, original
Deluge becomes worse than ACKless Deluge starting from a
packet loss rate of 4.5 percent and than rateless Deluge starting
from a packet loss rate of 8.5 percent. Rateless Deluge always
performs worse than ACKless Deluge because of the waiting
period it uses to prevent excessive Flash loading.

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

Percentage of Packets Lost

N
et

w
or

k
R

eq
ue

st
 P

ac
ke

ts

Original Deluge
Rateless Deluge
ACKless Deluge
Optimal

Fig. 9. Average number of packets transmitted on the controlplane as a
function of the packet loss for each protocol.

The transmissions in the data plane for each version as
well as the minimum number of transmissions are shown in
Figure 8. The minimal number of packets is 180 since there
are 20 data packets per page and 9 pages in the image. At
low packet loss, rateless Deluge performs near optimal while
the other two versions perform similarly. However, as packet
loss increases, original Deluge requires significantly more data
packets to disseminate the image. As expected, rateless Deluge
transmits less data packets than ACKless Deluge.

The transmissions in the control plane for each version and
the minimal number are shown in Figure 9. The minimum
number of packets is 9, one for each page in the image. In this
case, original Deluge always performs worse than both rateless
versions. ACKless Deluge uses near optimal transmissions
for all rates of packet loss and rateless Deluge performs in
between ACKless and original Deluge.

The conclusions to be drawn from the single hop ex-
periments are that with increasing packet loss rateless and
ACKless Deluge both perform better than the original version
in communication complexity. Furthermore, as packet loss
increases the rateless versions disseminate the image in less
time; the reductions in the communication on the data and
control planes of the rateless version are significant enough
to overcome the inherent overhead of rateless codes. When
comparing the two rateless protocols, ACKless Deluge shows
significant reduction of transmissions in the control planeand
rateless Deluge performs better in the data plane. This is
an expected result because ACKless Deluge adds extra data
packets to eliminate retransmission while rateless Delugeonly
sends the minimum amount of data packets requested.

B. Multi-Hop

The multi-hop experiments are performed with a varying
numbers of motes and natural packet loss. In each experiment,
one mote possesses the entire 9-pages image,N

2
motes are

placed a single hop away from the source, andN
2

are placed
two hops away from the source. Each data point represents
an average over five trials. Once again, the data is collected

4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

35

40

45

50

Number of Motes

T
im

e
to

 D
is

se
m

in
at

e
(s

)

Rateless Deluge
ACKless Deluge
Original Deluge

Fig. 10. Average time to disseminate an image over a two-hop network for
each protocol, as a function of the network size.

in two ways. A single mote is connected to a PC and records
all network activity and each node in the network logs local
statistics and stores them to Flash memory.

The multi-hop experiment compares original, rateless, and
ACKless Deluge in terms of the time to disseminate the image,
the number of data packets transmitted, and the number of
requests transmitted in alow density network. Figure 10 shows
the amount of time in seconds to disseminate the image over
two hops; in the figure, the number of motes shown on the x-
axis is divided evenly between the two hops. The figure shows
that both rateless Deluge and ACKless Deluge perform slower
than original Deluge over two hops. However, as the number of
motes increases the average dissemination time of both rateless
versions increases noticeably slower than that of original
Deluge. This trend suggests that at higher density the rateless
versions would disseminate the image faster, unfortunately our
testbed is not large enough to verify this conjecture. Scalability
to higher density networks is explored further in Section VII-
A.

The results for the communication complexity on data and
control planes show that, even at low density, the rateless
versions significantly reduce the amount of transmissions
on the multi-hop network. Both rateless protocols transmits
fewer data packets than original Deluge as the number of
receiving motes increases. Similarly to single hop, rateless
Deluge transmits fewer data packets than ACKless Deluge.
Both rateless versions perform far better than original Deluge
in the control plane, and once again, ACKless Deluge is near
optimal.

C. FEC

As explained in Section V, using numerical FEC is appro-
priate since the extreme value theory bound of [10] is not
accurate for smallN . For these experiments we have selected
Pr(maxi=1...N Ti ≤ t) = .95. The number of extra packets
sent with each transmission is dependent on the number
of neighbors and the probability of loss. Figure 11 shows
the reduction in data packets transmitted to distribute a 9-
pages image in sparse networks. The experiments uses forced

1 2 3 4 5 6 7 8 9

200

250

300

350

400

Percentage of Packets Lost

D
at

a
P

ac
ke

ts
 to

 D
is

se
m

in
at

e

Extreme Value FEC
Numerical 12 Motes
Numerical 9 Motes
Numerical 3 Motes
Numerical 1 Mote
Optimal (In Expectation)

Fig. 11. Comparison of numerical FEC and extreme value FEC [10] in terms
of data packet transmissions versus packet loss. NumericalFEC allows for
reduced communication of the data plane.

packet loss and varying network densities and shows that
the numerical method reduces the amount of data transmitted
significantly compared to the analytical one. Additionally, as
would be expected, increasing network density causes the
number of packets to be sent to converge towards the analytical
expression employed by the extreme value approach.

Section V also indicates that ACKless Deluge requires
knowledge of two parameters: the probability of loss,p, and
the number of neighbors,N . To explore the sensitivity to these
parameters consider a network in which the source has 8 single
hop neighbors and the network has a loss probability of 5%.
In this case ifp is assumed to be correct andN is slightly
overestimated as 12 the number of data packets increases by
4.2% and the number of request packets is the same. However,
if N is estimated as 100 then the number of data packets
increases by 32%. WhenN is underestimated as 1, the number
of data packets decreases by 2.4% and the number of requests
increases by 38%. This shows that significantly over estimating
N causes a large increase in the number of data packets, but
only a small under estimation causes a significant increase
in the number of control packets sent. IfN is assumed to
be correct andp is overestimated as 9% packet loss, the
number of data packets increases by 14.3% and the number of
requests is approximately the same. Whenp is underestimated
as 1% packet loss the number of data packets decreases by
12.7% and the number of requests increases by 7.7%. These
examples reflect large error in the estimate ofN andp, but it
should be noted that the algorithm is tolerant to small errors
in the estimate. Overall, when the goal of using the protocol
is to reduce the amount of transmission in the control plan,
a overestimation of either parameter increases the number of
data packets sent, but maintains the amount of control packets
sent.

VII. SIMULATION

A. Scalability

The preceding experiments have shown that at low network
densities and packet loss, rateless Deluge transmits fewerdata

10 20 30 40 50 60 70 80 90 100

200

400

600

800

1000

1200

1400

Number of Nodes

N
et

w
or

k
D

at
a

P
ac

ke
ts

Original Deluge
ACKless Deluge
Rateless Deluge

Fig. 12. Average number of packets transmitted on the data plane as function
of the network density, for each protocol.

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

Number of Nodes

N
et

w
or

k
R

eq
ue

st
 P

ac
ke

ts

Original Deluge
ACKless Deluge
Rateless Deluge

Fig. 13. Average number of packets transmitted on the control plane as a
function of the network density, for each protocol.

and control packets than original Deluge. However, to be an
effective solution, rateless Deluge must also scale well with
increasing network density. To simulate these conditions we
have used the TinyOS simulator, TOSSIM, and configured
it so that all motes are within one hop of the source and
packets are dropped at a rate of 7 percent. Only the numbers
of data and control packets transmitted have been collectedfor
these simulations. No timing data has been collected because
TOSSIM considers all processing to happen instantaneously.
This does not lend itself to a fair comparison since all of the
overhead of rateless Deluge is due to processing and, thus,
would be ignored.

Figure 12 shows the number of data packets transmitted to
disseminate a 9-pages image at varying network densities. At
low density the simulation performs similarly to the experi-
ments on the motes; rateless Deluge has near optimal perfor-
mance while ACKless and original Deluge perform similarly.
However, as the number of receiving nodes increases, original
Deluge rapidly increases the amount of packets it sends while
ACKless Deluge keeps transmitting a consistent amount. The
amount transmitted by rateless Deluge appears to convergesto
that by ACKless Deluge. The number of control plane packets

10 20 30 40 50 60 70 80 90 100
1500

2000

2500

3000

3500

4000

Number of Nodes

E
ne

rg
y

(m
J)

Original Deluge
ACKless Deluge
Rateless Deluge

Fig. 14. Average energy use per node over a single hop with increasing
network density.

transmitted is shown in Figure 13. As the density increases,the
amount of control packets transmitted by the original version
of Deluge, increases rapidly, while the amount transmittedby
rateless and ACKless Deluge increases much more slowly.

B. Energy Savings

The amount of energy used to disseminate an image is
another very important metric that can be used to compare
the behavior of the different protocols. Indeed, wireless sensor
networks are (generally) powered by batteries and lower
energy usage will extend the lifetime of the network. To get an
idea of the energy savings over a single hop, simulations are
run using the power modeling capabilities of PowerTOSSIM,
an extension of TOSSIM. Since PowerTOSSIM does compute
processing energy it provides a valid comparison. In our
simulation, a 9-pages image is disseminated to a varying
number of modes over a single hop with a packet loss rate
of 7 percent.

The results of our simulation are presented in Figure 14,
which shows the average energy consumed in millijoule (mJ)
per node at different network densities. The total energy of
the original protocol is substantially larger than each of the
rateless versions. This is because the original protocol expands
a larger amount of communication on both the data and control
planes. At lower densities, rateless Deluge performs better than
ACKless Deluge, but as the number of nodes increases the
energy use of each rateless protocol begins to converge.

VIII. C ONCLUSION

In this paper, we have shown the benefits of using
random linear codes for over-the-air programming of sensor
networks. Compared to Deluge, one of the most widely used
OAP protocol at present, our implementations (i) reduce
communication on both the data and control planes, (ii)
reduce latency at moderate levels of packet loss, (iii) are more
scalable to dense networks, and (iv) generally consume far
less energy, a premium resource in wireless sensor networks.

We have presented two rateless OAP protocols, namely
rateless Deluge and ACKless Deluge. Although ACKless
Deluge adds communication on the data plane, it is
particularly efficient on the control plane as it almost
completely eliminates the needs for retransmission requests
by receiving nodes and packet retransmissions by sources.
Since it unlikely that nodes will request packets belonging
to a previous page, ACKless Deluge is able to take full
advantage of precoding and speed-up data transfer. We have
provided a simple mathematical approach to determining
the number of extra packets needed by ACKless Deluge in
order to guarantee, with high probability, that all the nodes
receive enough packets to decode a page. Overall, this work
has shown that rateless Deluge, augmented with our FEC
mechanism, achieves excellent performance with respect to
almost all the metrics relevant to wireless sensor networks.
More generally, we expect rateless code transfer mechanisms,
similar to these presented in this paper, to be practical and
useful for any communication protocol in wireless sensor
network that must overcome traffic congestion and packet
loss due to packet broadcast.

IX. A CKNOWLEDGEMENTS

The authors wish to thank the reviewers for their editorial
inputs. This work is partially funded by the National Science
Foundation under grants CNS-0435312 and CCF-0729158 and
by a grant from Deutsche Telekom Corp.

REFERENCES

[1] A. Chlipala, J. Hui, and G. Tolle. Deluge: Data dissemination for
network reprogramming at scale. Class Project, http://www.cs.be
rkeley.edu/̃ jwhui/research/deluge/cs262/cs262a-report.pdf, Fall 2003.

[2] J. Hui and D. Culler. The dynamic behavior of a data dissemination
protocol for network programming at scale. InSenSys’04, Baltimore,
Maryland, USA, Nov. 2004.

[3] S. Kulkarni and M. Arumugam. Infuse: A TDMA-based data dis-
semination protocol for sensor networks, November 2004. Technical
Report MSU-CSE-04-46, Department of Computer Science, Michigan
State University.

[4] S. Kulkarni and L. Wang. Mnp: Multihop network reprogramming
service for sensor networks. In25th IEEE International Conference
on Distributed Computing Systems, pages 7–16, 2005.

[5] P. Levis and D. Culler. Mate: A virtual machine for tiny networked
sensors. pages 85–95, Oct. 2002.

[6] T. Liu and M. Martonosi. Impala: A middleware system for managing
autonomic, parallel sensor systems. InACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP’03), June
2003.

[7] V. Naik, A. Arora, P. Sinha, and H. Zhang. Sprinkler: A reliable
and energy efficient data dissemination service for wireless embedded
devices. In26th IEEE Real-Time Systems Symposium, 2005.

[8] N. Reijers and K. Langendoen. Efficient code distribution in wireless
sensor networks. InWSNA, 2003.

[9] V. Shoup.A Computational Introduction to Number Theory and Algebra.
Cambridge University Press, 2005.

[10] D. Starobinski, W. Xiao, X. Qin, and A. Trachtenberg. Near-optimal data
dissemination policies for multi-channel, single radio wireless sensor
networks. InIEEE INFOCOM, 2007.

[11] T. Stathopoulos, J. Heidemann, and D. Estrin. A remote code update
mechanism for wireless sensor networks. Technical report,UCLA, 2003.

[12] Q. Wang, Y. Zhu, and L. Cheng. Reprogramming wireless sensor net-
works: Challenges and approaches.IEEE Network Magazine, 20(3):48–
55, May-June 2006.

