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Spot Pricing of Secondary Spectrum Access in
Wireless Cellular Networks

Huseyin Mutlu, Murat Alanyali, and David Starobinski

Abstract—Recent deregulation initiatives enable cellular
providers to sell excess spectrum for secondary usage. In this
paper, we investigate the problem of optimal spot pricing of
spectrum by a provider in the presence of both non-elastic
primary users, with long-term commitments, and opportunistic,
elastic secondary users. We first show that optimal pricing can
be formulated as an infinite horizon average reward problem
and solved using stochastic dynamic programming. Next, we
investigate the design of efficient single pricing policies. We
provide numerical and analytical evidences that static pricing
policies do not perform well in such settings (in sharp contrast
to settings where all the users are elastic). On the other hand, we
prove that deterministic threshold pricing achieves optimal profit
amongst all single-price policies and performs close to global
optimal pricing. We characterize the profit regions of different
pricing policies, as a function of the arrival rate of primary users.
Under certain reasonable assumptions on the demand function,
we prove that the profit region of threshold pricing is optimal
and independent of the specific form of the demand function, and
that it includes the profit region of static pricing. In addition, we
show that the profit function of threshold pricing is unimodal in
price. We determine a restricted interval in which the optimal
threshold lies. These properties enable very efficient computation
of the optimal threshold policy, which is far faster than that of
the global optimal policy.

Index Terms—Management of electromagnetic spectrum, sec-
ondary markets, congestion pricing, Markov decision processes,
threshold policies.

I. INTRODUCTION

A major global effort is underway to deregulate wireless
spectrum and achieve much better utilization of this scarce
resource. The Secondary Markets Initiative [2] of the Federal
Communications Commission (FCC), is one of the major steps
towards achieving this goal. It permits leasing of spectrum
licenses subject to approval by FCC. Similar regulatory efforts
are also underway in the EU [3].

Consequences of the secondary markets initiative can al-
ready be felt with the emergence of secondary cellular
providers, commonly called Mobile Virtual Network Oper-
ators (MVNOs) [4]. MVNOs buy spectrum and (possibly
also infrastructure) from primary providers, referred to as
Mobile Network Operators (MNOs). MVNOs add the value of
better penetrating certain markets and offering differentiated
products. A notable example of successful MVNO endeavor
in the US is Virgin Mobile who has teamed up with Sprint
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Nextel as its MNO and recently reached a subscriber basis of
over 4 millions customers [5].

In this paper, we are interested in investigating how a
provider, such as an MNO, should optimally price its excess
spectrum to secondary users (SUs), such as MVNOs. On the
one hand, a provider must ensure that the quality of service
(QoS) of its primary users (PUs), who typically have long-
term contracts, is not significantly affected by the admission
of SUs. This is because the presence of SUs may increase the
blocking of PU calls and hence lead to a punishment in the
form of loss of business due to poor service. On the other
hand, the provider is interested in maximizing its profit from
the admission of SUs.

Given that the amount of excess spectrum is likely to
fluctuate over time due to the inherent randomness in the PU
traffic, spot pricing, based on real-time channel occupancy,
emerges as the solution of choice. While spot and congestion-
based pricing have been extensively studied in the literature
(Cf. Section II), the typical model assumed in previous work
differs significantly from the setting considered herein. Chiefly,
most previous work assumes that the demand functions of
all the users are elastic to price, i.e., all the arrival rates
can be regulated with price. In contrast, in our setting, only
the demand function of the SUs is elastic to price, but the
arrival rate of PUs is not. As we will show, this difference is
salient enough to result in fundamentally different structures
for optimal (or near-optimal) pricing strategies.

Our first contribution in this paper is to formalize the profit
maximization problem of a cellular provider in the presence
of both PUs and SUs. Based on certain reasonable statistical
assumptions, we show that optimal pricing can be formulated
as an infinite horizon average reward problem and solved using
stochastic dynamic programming.

Our second contribution is to investigate the design of
efficient single pricing policies, i.e., policies where a provider
can either admit a SU and charge a fixed price or reject a
SU. These policies have the major advantage of making the
cost of spectrum much more predictable to SUs. We first show
that static pricing, which always applies the same admission
price to SUs independently of the channel occupancy, may
perform very poorly. This result stands in sharp contrast to
the case where all the users are elastic to price. On the
other hand, we provide numerical evidence that threshold
pricing, which applies a fixed admission price to SUs when the
channel occupancy is below some threshold T and rejects them
otherwise, performs very close to optimal. Further, we prove
that among all the possible single-price admission policies
(including randomized), threshold pricing is the optimal one.
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Our third contribution is to characterize the profit regions of
static pricing and threshold pricing. Our goal is to determine
the maximum arrival rate of PUs, at which it is still possible to
achieve profit from the admission of SUs. We characterize the
profit regions of different pricing policies. We prove that the
profit region of threshold pricing is optimal, i.e., it is identical
to that of optimal pricing and larger than that of static pricing.
Through numerical example, we show that the difference
between the profit regions of threshold and static pricing can
sometimes be very large. An interesting observation is that
the profit regions of all the pricing policies depend only on
the support of the demand function of the SUs, but not on
its specific form. This result applies to quite general demand
functions.

Our last contribution is to devise an efficient computational
procedure to calculate the optimal threshold and price for
threshold pricing. In particular, we prove that, for any given
threshold T , the profit function is unimodal in price. This en-
ables us to resort to well-known logarithmic search procedures
to compute the optimal price. Moreover, we show that the
optimal threshold is a non-decreasing function of price. By
using this property, we are able to reduce the search interval
for the optimal threshold, thus speeding up calculation of
the optimal threshold policy. We provide numerical results
showing that the optimal threshold policy can be computed
considerably faster than the global optimal policy.

The rest of the paper is organized as follows. In Section II,
we survey related work. Our model and notation are introduced
in Section III. In Section IV, we show how to derive the
optimal pricing policy and characterize the optimal prices.
In Section V, we investigate single-price policies, prove the
optimality of threshold pricing, and characterize the profit
regions of static, threshold and optimal pricing. In Section
V, we also prove unimodality of profit function of threshold
pricing. Then, in Section VI, we develop an efficient method to
compute the optimal price and threshold for threshold pricing.
We conclude the paper in Section VII.

II. RELATED WORK

The problem we consider in this paper is related to two
well studied areas in communication networks, namely, pricing
and call admission control. As such, we restrict our literature
review to those papers that are the most relevant. A survey
of other work related to pricing in cellular networks can be
found in [6].

In [7], Paschalidis and Tsitsiklis investigate dynamic,
congestion-based pricing of network resources. Their model
assumes that all the users are elastic to price. They show
that static pricing achieve good performance in general and
can even be optimal in some asymptotic traffic regimes.
This result was extended in [8] and [9], in the context of
large network asymptotics. In [10], Ziya et. al. show that the
optimal static price is unique. In [11], static spectrum pricing
strategies capturing the effects of network-wide interferences
are developed.

Threshold admission control policies have been extensively
studied. Refs. [12, 13] provide useful insights into the proper-
ties of such policies. The optimality of threshold pricing for

certain optimization problem is proved in [14, 15]. None of
these papers integrate pricing into their formulations.

Refs. [16–18] integrate pricing with admission control in
cellular networks. Ref. [16] considers time-of-day pricing
methods. In our work, we consider pricing strategies that
operate at much shorter time-scales, based on real-time in-
formation. Ref. [17] develops and evaluates “charge-by-time”
pricing algorithms, while in our work we consider charg-
ing per admission. Ref. [18] develops a stochastic dynamic
programming formulation that incorporates retrials. Our main
contribution with respect to this previous body of work is to
go beyond numerical optimizations and attempt to prove gen-
eral structural properties, applicable to very general demand
functions.

Ref. [19] analyzes a model similar to ours within the context
of a generic rental management optimization problem. This
work considers two type of customers, namely walk-in and
contract users. Walk-in users are priced according to the
congestion level of the system, similar to optimal pricing of
SUs in our model. Contract users, on the other hand, have
fixed prices and arrival rates which are analogous to our
PUs. Different than our work, [19] focuses on determining
structures of the optimal policy rather than providing a simple,
near-optimal alternative as done here.

III. NETWORK MODEL

In this section, we introduce our network model and notation
(additional notation specific to static and threshold pricing will
be provided in Section V). We consider a cellular network
where each cell provides access to C channels. In each cell,
calls from PUs arrive according to a Poisson process with fixed
rate λp > 0. A punishment in the amount of K monetary
units is imposed if all the channels are busy and a PU call
is blocked. SUs call arrivals also form a Poisson process
that is independent of the PUs call arrivals process and its
rate is modulated by the price charged by the provider. We
thus assume that there is a demand function λs(u) which
determines the arrival rate of SU calls, where u is the applied
price. The price is a function of the state of the system, i.e.,
a SU pays a price un for its call, if there are n busy channels
in the cell, where 0 ≤ n < C.

For both PUs and SUs, call holding times are exponentially
distributed with rate µ, independently of any other events.
Without loss of generality, we will assume µ = 1, i.e., the
mean call holding time is one unit of time.

The goal of the provider is to maximize the average profit
per unit of time gained from accepting SUs. This quantity is
denoted by R. We are interested in finding a pricing policy
that satisfies this goal. A pricing policy is a rule that dictates
which price should be advertised by the provider at any given
point of time.

Under the above assumptions, the system behavior follows
the dynamics of a continuous-time birth-death Markov pro-
cess, and explicit expression for the average profit R can be
provided as follows. First, let πn be the steady-state probability
of finding the system in state n, i.e., there are n busy channels.
Next, let λn = λs(un)+λp denote the total call arrival rate in
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state n and Λ = (λ0, λ1, ..., λC−1) denote the vector of arrival
rates. Then, the probability of finding the system in state n,
denoted by πn(Λ), can be explicitly written as follows:

πn(Λ) =
λ0λ1λ2...λn−1

n!

1 + λ0
1! + λ0λ1

2! + . . . + λ0λ1λ2...λC−1
C!

. (1)

Due to the PASTA (Poisson Arrivals See Time Averages)
property, the probability that a PU is blocked is πC(Λ). Thus,
the average profit is

R =
∑C−1

n=0 πn(Λ)λs(un)un − (πC(Λ)−E(λp, C))λpK, (2)

where E(λp, C) is the blocking probability of PUs in the
absence of SU arrivals. This quantity corresponds to the well-
known Erlang-B formula

E(λp, C) =
λC

p

C!∑C
n=0

λn
p

n!

. (3)

The first term in Eq. (2) represents the sum of the average
revenues collected from SUs in each state. The second term is
the average punishment due to accepted SUs. The expression
πC(Λ)−E(λp, C) represents the increase in the blocking prob-
ability of PUs due to accepted SUs. The quantity E(λp, C)
acts as the normalization term to ensure that the profit is zero
when all SUs are rejected.

In the sequel, we impose the following natural assumptions
on the demand functions. These assumptions are required to
guarantee the existence of a stationary optimal pricing policy
and prove some of our structural results.

Assumption 3.1: There exists a price umax for which
λs(umax) = 0. Moreover, λs(u) is a strictly decreasing,
differentiable function in u over the interval [0, umax] and
λs(0) is finite.

IV. DERIVATION OF THE OPTIMAL PRICING POLICY

In this section, we derive the optimal pricing policy and
present properties characterizing the optimal prices.

A. Stochastic Dynamic Programming Formulation

The maximization of the profit function in Eq. (2) is a com-
plex multi-dimensional optimization problem and becomes
quickly intractable as C grows. One approach to alleviate this
problem is to formulate it as an average reward stochastic
dynamic programming (DP) problem [20, 21]. Specifically,
the optimal prices u∗n and optimal profit R∗ corresponding
to the optimal policy can be computed using the so-called
Bellman’s equations since all the states in the Markov chain
are recurrent (see Proposition 7.4.1 in [21]).

Bellman’s equations are usually formulated for discrete-time
Markov chains. In our case, the Markov chain is continuous,
but it can be discretized using a procedure called uniformiza-
tion, where the transition rates out of each state are normalized
by the maximum possible transition rate v, which in our case
is given by the following expression:

v = λs(0) + λp + C. (4)

Fig. 1. Uniformized Markov Chain

The uniformized Markov chain with corresponding transition
rates is shown in Fig. (1).

Bellman’s equations are generally guaranteed to return the
optimal solution only for a finite action (control) space U,
where U represents the set of all possible prices advertised by
the provider. Hence, prices must be discretized. We denote the
discretization step with ∆u. The cardinality of the action space
is thus |U| = dumax/∆ue. On the one hand, consideration
of a limited range of prices leads to a potential reduction
in the profit. On the other hand, if the demand function
λs(u) is continuously differentiable in u, this reduction is
at most linear in discretization step ∆u since the profit in
Eq. (2) is a smooth function of u0, u1, · · · , uC−1. Hence the
alluded profit loss can be made arbitrarily small at the expense
of higher computational complexity by selecting a smaller
∆u. In Section VI, we describe an efficient computational
procedure, applicable to threshold pricing, that scales to very
large cardinality |U|.

Equipped with the above formulation, we can now compute
the optimal pricing policy using the Bellman equations:

J∗ + h(n) = maxun∈U[λs(un)un + h(n + 1)λ(un)
v

+h(n− 1)n
v + h(n)(1− λ(un)

v − n
v )]

(5)

for n = 0, 1, 2...C − 1 and

J∗ = −λpK + h(C − 1)
C

v
, (6)

whereas the optimal profit is:

R∗ = J∗ + E(λp, C)λpK. (7)

The first term in the right-hand side (RHS) of Eq. (5) repre-
sents the profit gained at state n from the acceptance of a SU.
The second and third terms are contributions to the revenue if
the next transition is an arrival or departure, respectively. The
last term is a consequence of the uniformization procedure.
The effect of punishment due to blocked PU calls is captured
by the first term in the RHS of Eq. (6). The prices maximizing
the RHS of Eq. (5) represent the optimal prices.

The unknowns in the above equations are h(n) and J∗.
The quantities h(n) denote the relative reward in state n with
respect to state C. When the optimal policy is applied, h(n)/v
represents the difference between the total revenue gained over
an infinite time horizon when starting the process from state n
and that gained when starting from state C. The quantities R∗

and J∗ differ only by a normalization constant used to ensure
the non-negativity of the profit.
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Fig. 2. Optimal prices for various PU arrival rates (λp) . C = 20, K = 100,
λs(u) = (10− u)+ and ∆u = 10−6.

The solution of Bellman equation can be obtained by using
various techniques described in the literature, such as policy
iteration or relative value iteration [20, 21]. Policy iteration
theoretically requires on the order of O(|U|C) iterations to
converge while value iteration is not guaranteed to converge
within a finite number steps. However, value iteration has a
lower computational complexity at each iteration. In practice,
as in other infinite horizon average reward problems [22],
policy iteration appears to converge faster.

For different PU arrival rates λp, Figure (2) shows the
values of the optimal prices (computed using policy itera-
tion), for the demand function λs(u) = (10 − u)+ (where
(·)+ = max(·, 0)), and parameters C = 20, K = 100, and
∆u = 10−6. The figure indicates that, as λp increases, the
prices become higher in each state, and that SUs should not be
accepted when the number of busy channels exceeds a certain
threshold. More insight into this behavior will be provided in
the sequel.

B. Properties of the Optimal Policy

In this section, we provide some results characterizing the
optimal prices. First, we consider the ideal case of unlimited
capacity.

Lemma 4.1: In the infinite capacity case (i.e., C → ∞),
the optimal prices for all states are equal to

u∞ = arg max
u∈U

(λs(u)u),

and the corresponding profit is

R∞ = λs(u∞)u∞.

Note that R∞ is an upper bound on the profit achievable in
any finite capacity system.

The following lemma states that in a finite capacity system,
the optimal price in each state is larger than the optimal price
in the infinite capacity case.

Lemma 4.2: For any 0 ≤ n ≤ C − 1, u∗n ≥ u∞.

The next result states that the optimal prices are monoton-
ically increasing in n.

Lemma 4.3: For any 0 ≤ n ≤ C − 1, u∗n+1 ≥ u∗n.
Proofs of these properties follow similar methods to those

used in [7]. The main difference lies in taking into considera-
tion the effects of PU arrivals and punishments. These proofs
can be found in [23].

A consequence of the above properties is that the optimal
price for any state lies between u∞ and umax. This fact can
be exploited to reduce the size of the action space U when
computing the optimal prices using Eq. (5).

V. SINGLE-PRICE POLICIES

In this section, we investigate the design of single-price
policies. In each state, these policies can either admit a SU and
charge a fixed price u or reject a SU (which is equivalent to ask
for a price umax or higher). For such policies the objective is
to optimize the value of u as well as the admission policy
i.e., the decision of whether or not to admit a SU that is
willing to pay the price. These policies are attractive because
they allow a provider to advertise a single-price. They are
also computationally easier to derive. Moreover, compared to
optimal pricing, they provide more insight into the structure
of good pricing policies.

A simple single-price policy is the so-called static pricing
where SU calls are always applied the same admission price,
unless all the channels are busy. For the cases where the
demand functions of all the users are elastic to price and
punishments are not imposed, static pricing is known to
perform well and to be even asymptotically optimal in several
regimes [7–9]. However, in this section, we show that, in
the presence of inelastic users (PU) and punishments for
blocked PU calls, the performance of static pricing degrades
significantly.

Instead, we show next that among all single-price poli-
cies (including randomized), a deterministic threshold pricing
policy performs optimally. In threshold pricing, SU calls are
admitted and charged a price u when the channel occupancy is
smaller than some threshold T and rejected otherwise. We also
provide numerical evidence showing that threshold pricing
performs very close to the optimal.

A. Optimality of Threshold Pricing

Theorem 5.1: For any price u (including the optimal one),
a threshold admission policy is optimal among all single-price
policies.

Proof: Let us redefine the system such that punishment
in the amount of u units are imposed for each rejected SU call
instead of rewarding u for an accepted one. Optimizing such
a system follows same methods and results the same optimal
policy. This new formulation of the problem is identical to the
well-known MINOBJ problem analyzed in [14] where SU and
PU calls are analogous to new and handover calls, respectively.
It is shown in [14] that a threshold admission policy is the
optimal solution for the MINOBJ problem and, thus, the same
result applies to our setting. Note that the analogy is valid
when K > u. If this is not the case, then the admission policy
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Fig. 3. Average profit vs primary load (λp) for different pricing policies.
System parameters: C = 20, K = 100, λs(u) = (10 − u)+ and ∆u =
10−6.

is obvious, namely, always admit SU calls.

Figure (3) compares the average profits achieved by the
optimal, static, and threshold policies for a linear demand
function λs(u) = (10−u)+ (we explain in Section VI how to
compute the optimal price and threshold). Figure (4) makes the
same comparison for the following popular non-linear demand
function [24]

λs(u) = (Ae−γu2 − ε)+ , (8)

where A and γ are scaling factors, and ε > 0 is a small
constant introduced to enforce Assumption 3.1. Both figures
show that threshold pricing performs close to optimal while
static pricing performs significantly worse. Furthermore, we
observe that beyond a certain value of λp, static pricing stops
generating profit while threshold pricing continues doing so.

We next provide some intuition on why threshold pricing
performs so well. In Section V-D, we will show that the
maximum value of λp, denoted λp,max, for which threshold
pricing achieves positive profit is the same as the maximum
value of λp for which optimal pricing achieves positive profit.
Furthermore, we know that when λp → 0, both static pricing
and threshold pricing perform very well. This regime is equiv-
alent to the case where all the users are elastic to price, a model
studied in [7]. There it is shown that static pricing is optimal
in certain asymptotic regimes. These results obviously extend
to threshold pricing since it is the optimal single price policy.
The arguments above explain the near-optimal performance of
threshold pricing for the cases λp → 0 and λp → λp,max.
Thus, one can expect that in between these two extremes,
the profit of threshold pricing will not differ much from the
optimal profit.

B. Properties of Threshold Pricing

Having showed that threshold pricing is the optimal single-
price policy, we next derive an expression for the profit

Fig. 4. Average profit vs primary load (λp) for different pricing policies.
System parameters: C = 20, K = 100, λs(u) = (10e−0.04u2 −0.1)+ and
∆u = 10−6.

obtained with this policy, denoted by RT (λs). Note that, the
profit function is defined as a function of λs rather than u. This
considerably simplifies the notation and proofs in the rest of
the paper.

We start by computing the blocking probabilities for the
PUs and SUs:

BPU (λs, T )=πC (9)

=
(λs+λp)T λC−T

p

C!∑T−1
n=0

(λs+λp)n

n! + (λs+λp)T
∑C

n=T
λn−T

p

n!

;

BSU (λs, T )=
C∑

n=T

πn (10)

=
(λs+λp)T

∑C
n=T

λn−T
p

n!∑T−1
n=0

(λs+λp)n

n! + (λs+λp)T
∑C

n=T
λn−T

p

n!

.

Note that, arrival rate until congestion level reaches T channels
is λs+λp and just λp afterwards. Finally, we can provide an
explicit expression for RT (λs) as follows:

RT (λs)=(1−BSU (λs, T ))λsu(λs)−BPU (λs, T )λpK
+E(λp, C)λpK.

(11)

where u(λs) is the inverse function of λs(u). The first term in
Eq. (11) is the revenue collected from SU calls. The second
term is a result of the punishment due to blocked PU calls.
The last term is the normalization term which is used to ensure
that profit is zero when there are no SUs (see Eq. (3)).

Next, we derive an important property of the blocking
probabilities BPU and BSU , that will be exploited in the next
section. Specifically, we show that the ratio of these blocking
probabilities depends only on the PU’s call arrival rate λp and
threshold T but not on the price or the demand function of
the SU.

Lemma 5.2: The ratio BP U (λs,T )
BSU (λs,T ) is independent of u and

λs.
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Proof:

BPU (λs, T )
BSU (λs, T )

=
λC−T

p

C!∑C
n=T

λn−T
p

n!

(12)

which is independent of u and λs.

C. Unimodality of the Profit Function

In this section, we show that for each given threshold T ,
the profit function of threshold pricing RT is unimodal in u (a
function is unimodal over a certain interval, if it has a single
maximum over that interval).

First, we define the following function which represents
instantaneous profit rate when SU arrival rate is λs

Q(λs) = λsu(λs). (13)

Unimodality of RT requires the following mild assumption on
the demand function:

Assumption 5.3: The function Q(λs) is concave i.e.,
Q′′(λs) ≤ 0 where the derivative is taken with respect to
λs.
Assumption 5.3 implies that the marginal instantaneous profit
is decreasing with respect to user demand. It ensures a well-
behaved demand function [25]. This assumption is widely
made in the literature [7, 10, 25] and is satisfied by several
types of functions, such as linear and exponentially decaying
demand functions.

The proof of our theorem will be based on the following
lemma, which is proved in the Appendix.

Lemma 5.4: For all λs > 0,
B′

SU (λs, T )
1−BSU (λs, T )

>
−B′′

SU (λs, T )
2B′

SU (λs, T )
,

where the derivatives are taken with respect to λs.
We can now state our theorem:
Theorem 5.5: For a fixed threshold T , the function RT is

unimodal with respect to the price u over the interval [0, umax].
Proof: We will prove that RT (λs) is unimodal with

respect to λs. Since by Assumption 3.1 the function λs(u)
is strictly decreasing, this will also prove the unimodality of
RT with respect to u.

We refer to any value of λs at which the derivative of
RT (λs) is equal to zero as a critical point. We will denote such
a point with λ∗s , i.e., R′T (λ∗s) = 0. To prove the theorem, we
will show that R′′T (λ∗s) < 0, for any λ∗s . This means that there
can be at most one critical point and it must be a maximum.

Let X = BP U (λs,T )
BSU (λs,T ) (recall Lemma 5.2). Then, we can

rewrite the profit function and its first and second derivatives
as follows:

RT (λs) = (1−BSU (λs, T ))Q(λs)
−XBSU (λs, T )λpK + E(λp, C)λpK; (14)

R′T (λs) = (1−BSU (λs, T ))Q′(λs)
−B′

SU (λs, T )(Q(λs) + XλpK); (15)

R′′T (λs) = (1−BSU (λs, T ))Q′′(λs)
−B′′

SU (λs, T )(Q(λs) + XλpK)
− 2B′

SU (λs, T )Q′(λs).
(16)

Since R′T (λ∗s) = 0, we obtain from Eq. (15):

Q′(λ∗s)
Q(λ∗s) + XλpK

=
B′

SU (λ∗s, T )
1−BSU (λ∗s, T )

(17)

From Assumption 5.3 and Eq. (16), a sufficient condition
for R′′T (λ∗s) < 0 is

Q′(λ∗s)
Q(λ∗s) + XλpK

>
−B′′

SU (λ∗s, T )
2B′

SU (λ∗s, T )
, (18)

which holds true by Lemma 5.4 and Eq. (17).

D. Characterization of the Profit Regions of Static and Thresh-
old Pricing

In this section, we characterize the profit regions of different
pricing policies. Specifically, we are interested in determining
the maximum value of λp, denoted by λp,max, for which each
of these policies still achieves a positive profit. The results in
this section also require Assumption 5.3.

We prove that there exists a range of values of λp (which
can be very large) for which threshold pricing achieves a
positive profit while static pricing does not. Moreover, we
show that profit region of threshold pricing is equal to optimal
policy’s profit region. Remarkably, the value of λp,max for
all policies depend only on umax, but is independent of the
demand function otherwise.

We first establish the condition for which static pricing stops
generating profit (i.e., blocks all SU calls).

Lemma 5.6: Static pricing with optimally selected price
generates profit if and only if

umax > (E(λp, C − 1)− E(λp, C))λpK. (19)

Proof: Profit is generated if optimal SU arrival rate is
nonzero. We prove the lemma by showing that if condition
(19) is satisfied then λ∗s > 0 and if it is not then λ∗s = 0, i.e.,
there is no SU arrival and no profit is generated.
Next, we analyze the expression

∂RC(λs)
∂λs

∣∣
λs=0+ (20)

where RC(λs) represents profit function of static pricing
which is same as Eq. (11) when T = C. The notation 0+

is used to mean that the derivative is taken to the right of 0.
If ∂RC(λs)

∂λs

∣∣
λs=0+ > 0 then there exists λs > 0 that generates

profit. (i.e., λ∗s 6= 0).
In Theorem 5.5 we show that RC is unimodal with respect to
u and λs under Assumption 5.3. Due to the unimodality of
RC , if ∂RC(λs)

∂λs

∣∣
λs=0+ ≤ 0 then λ∗s = 0.

Note that, in the case of static pricing

BSU (λs, C) = BPU (λs, C) = E(λs+λp, C).

It can be verified algebraically (Lemma 2.1 in [26]) that

∂E(λs+λp,C)
∂λs

= (1− E(λs+λp, C))
· (E(λs+λp, C − 1)− E(λs+λp, C)),

(21)
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and by using this equation we can evaluate ∂RC(λs)
∂λs

at λs =
0+ as

∂RC(λs)
∂λs

∣∣
λs=0+ = (1− E(λp, C))

·(umax − (E(λp, C − 1)− E(λp, C))λpK).
(22)

Note that E(λp, C) < 1. Therefore, the sign of Eq. (22)
depends only on the second term of the product.

An interesting corollary from this lemma is that if K = 0
(i.e., there is no punishment), then static pricing policy will
accept SUs for all values of λp, and hence achieves the
maximum profit region. This result indicates that the non-
optimality of static pricing is due to both the presence of
non-elastic PUs and punishments.

Next, we conduct a similar analysis for threshold pricing.
We consider the case T = 1. We show in the analysis
of optimal pricing profit region that T = 1 is the optimal
threshold when the PU arrival rate is close to λp,max.

Lemma 5.7: Threshold pricing with T = 1 and optimally
selected price generates profit if and only if

umax > E(λp, C)K. (23)

Proof: It can be shown that

∂BP U (λs,1)
∂λs

= (1−BSU (λs, 1))BPU (λs, 1) 1
λs+λp

, (24)

∂BSU (λs,1)
∂λs

= (1−BSU (λs, 1))BSU (λs, 1) 1
λs+λp

. (25)

By using Eqs. (24) and (25), we can evaluate ∂R1(λs)
∂λs

at λs =
0+ as

∂R1(λs)
∂λs

∣∣
λs=0+ = (1−BSU (0, 1))

· (umax −BPU (0, 1)K).
(26)

Note that, BPU (0, 1)=E(λp, C). The result follows based on
arguments similar to those of the previous lemma.

We next show that the profit region of threshold is larger
than that of static pricing. We do so by showing that the RHS
of Eq. (23) is larger than that of Eq. (19).

Lemma 5.8: For C > 1 and λp > 0

(E(λp, C − 1)− E(λp, C))λp > E(λp, C). (27)

Proof: Manipulating expressions we obtain that Eq. (27)
holds if only if

E(λp, C) >
λp − C

λp

which is equivalent to

1− E(λp, C) <
C

λp
.

Note that at this point the claim is proved for C > λp. Further
manipulation yields

1− E(λp, C) <
1
λp

∑C−1
n=0

λn
p

n!∑C
n=1

λn−1
p

n!

(28)

=
1
λp

1 +
∑C−1

n=1

λn
p

n!

1 + C−1
∑C

n=2
λn−1

p C
n!

(29)

<
1
λp

1 +
∑C−1

n=1

λn
p

n!

1 + C−1
∑C−1

n=1

λn
p

n!

<
C

λp
. (30)

Finally, we state our theorem which is a result of the
previously stated lemmas.

Theorem 5.9: If Eq. (27) holds then for any demand func-
tion λs(u) there exists values of λp for which static pricing
blocks all SU calls but threshold and optimal pricing do not.

Proof: By Lemma 5.8, there exist a λp for which the
following is true:

(E(λp, C − 1)− E(λp, C))λpK ≥ umax > E(λp, C)K (31)

and by Lemmas 5.6 and 5.7 the result follows.

E. Profit Region of Threshold Pricing is Optimal

In this is section we show that the profit region of threshold
pricing is the same as profit region of optimal pricing. We start
by characterizing the profit region of optimal pricing. For this
purpose, we need the following additional lemma which is
proven in the appendix.

Lemma 5.10: If umax ≤ E(λp, C)K then ∂R(Λ)
∂λs,0

≤ 0 where
R(Λ) is profit function for optimal pricing defined in Eq. (2)
and λs,0 = λs(u0) i.e., SU arrival rate when system is empty.

Lemma 5.11: Optimal pricing generates profit if and only
if

umax > E(λp, C)K. (32)

Proof: Lemma 5.10 indicates that the profit function is
decreasing in λs,0 when umax ≤ E(λp, C)K which means
that the optimal value of λs,0 is 0 i.e., u∗0 = umax. By lemma
4.3 we know that optimal prices are increasing with occupancy.
Therefore the optimal prices for all states are equal to umax.
This means that there is no SU arrival and consequently
no profit is generated when Eq. (32) is not satisfied. By
lemma 5.7 we know that when umax > E(λp, C)K threshold
pricing generates profit. Since optimal pricing must be better
or equal to threshold pricing, we conclude that optimal pricing
generates profit when Eq. (32) is satisfied.
This lemma also shows that when system is critical loaded
(i.e., PU arrival rate is very close to λp,max) the optimal
threshold for threshold pricing is T = 1 for any demand
function which satisfies Assumption 5.3.

The following theorem states the optimality of threshold in
terms of achieving the maximum profit regime. This theorem
is an immediate consequence of Lemmas (5.7) and (5.11).

Theorem 5.12: The profit region of threshold pricing is
optimal.
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Fig. 5. Profit regions for different values of umax where C = 20 and
K = 100. If a (λp, umax) pair lies in the dark-grey area all three pricing
policies generate profit. If it lies in the light-grey area only threshold and
optimal pricing generate profit.

In Fiq. (5) we show profit regions for different pricing
policies. The policies generate profit when (λp,umax) pair lies
in the shaded regions of Fiq. (5). For example if λp = 50
and umax = 70, threshold pricing generates profit while static
pricing does not. The difference between profit regions can
be quite high depending on the value of umax. As umax gets
closer to K, λp,max goes to infinity because SU calls and PU
calls worth the same and it does not make sense to reject SU
calls.

VI. EFFICIENT COMPUTATION OF THE OPTIMAL
THRESHOLD AND PRICE

Our numerical results in the previous section have showed
that threshold pricing performs close to optimal and far better
than static pricing. In this section, we show another benefit of
threshold pricing, namely, low computational complexity.

In Section V-C we showed that the profit function of thresh-
old pricing is unimodal. This allows us to exploit efficient
logarithmic search techniques, such as Fibonacci search [27],
to find the optimal price for a given threshold in O(log |U|)
iterations. This result is significant because the discretization
step ∆u should be chosen very small in order to minimize the
loss of profit due to price discretization.

The optimal threshold and price of the threshold policy
can be computed by finding optimal price and comparing
corresponding profits for all possible threshold values. This
process requires overall O(C log |U|) iterations. In the rest of
this section we show that the search intervals for the optimal
price and threshold can be greatly restricted. Having smaller
search intervals significantly speeds up the optimization.

The following lemma shows that the optimal price for
threshold pricing is higher than or equal to u∞. Hence, we can
restrict the search range for the optimal price to the interval
[u∞, umax].

Lemma 6.1: For any given threshold T , u∗(T ) ≥ u∞,
where u∗(T ) is the optimal price when the threshold is set
to T .

Proof: Let u− < u∞. From Assumption 3.1 on
the demand function, we know that λs(u−) > λs(u∞)
and Q(λs(u−)) < Q(λs(u∞)). Moreover, for any
T we have BSU (λs(u∞), T ) < BSU (λs(u−), T ) and
BPU (λs(u∞), T ) < BPU (λs(u−), T ). These inequalities lead
to the following conclusion:

(1−BSU (λs(u−), T ))Q(λs(u−))−BPU (λs(u−), T )λpK
< (1−BSU (λs(u∞), T ))Q(λs(u∞))−BPU (λs(u∞), T )λpK.

Thus, for any T (including T ∗) the profit decreases as prices
go below u∞. Therefore, for any T , u∗(T ) ≥ u∞.

Next, we prove that optimal threshold is T∞ ≤ T ∗ ≤ C
where

T∞ = arg max
0≤T≤C

(RT (λs(u∞))

i.e., T∞ is the optimal threshold when price is set to u∞. This
statement enables us to reduce search interval for the optimal
threshold. Thus speeding up the computation time of threshold
pricing policy. For the proof we need the following lemma.

Lemma 6.2: Assume λs and u are independent variables.
The optimal threshold T ∗ is a non-increasing function of λs

assuming u is fixed. It is also non-decreasing function of u
assuming λs is fixed.

Proof: This lemma is obtained by applying Theorem 2 of
[19] (see Section II). In order to apply results of [19] to our
threshold model we assume that there are no walk-in users. We
consider PUs and SUs as two different contract user classes
for which prices are set to K and u and arrival rates are λp

and λs, respectively. Theorem 2 of [19] states that in such a
setting if we increase u (λs is fixed) the corresponding optimal
threshold for SUs will increase. Moreover, if we reduce λs (u
is fixed) the threshold will increase again.

Now, we can state the theorem
Theorem 6.3: Optimal threshold is in the range

T∞ ≤ T ∗ ≤ C. (33)

Proof: Assume u is increased in the amount of α units
to u + α. Let β = λs(u) − λs(u + α) be the corresponding
decrease in demand. By using Lemma 6.2 we can claim

T ∗(λs, u) ≤ T ∗(λs, u + α) ≤ T ∗(λs − β, u + α) (34)

Eq. (34) means if we increase u, the corresponding optimal
threshold will not decrease.
Since optimal price, u∗, is higher than u∞, we can conclude
that T∞ ≤ T ∗.

Using the above theorem and lemmas, we can thus compute
T ∗ and u∗(T ∗) very easily, namely, we first compute the
optimal price u∗(T ) (within the range [u∞, umax]) for each
threshold T ∈ [T∞, C], using a logarithmic search procedure.
Then, we establish the optimal threshold

T ∗ = arg max
T∞≤T≤C

RT (λs(u∗(T ))),

with corresponding optimal price u∗(T ∗).
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C tOP
run/tTP

run ROP RTP RSP

250 5.9 3.8 3.1 0
500 11.1 42.1 39.7 15.0
750 18.7 111.6 108.4 75.5
1000 27.7 188.6 185.7 155.3

TABLE I
REVENUES OF OPTIMAL PRICING (OP), TP, AND SP AND RATIO OF RUN

TIMES OF OP AND TP. SYSTEM PARAMETERS: λp = 9
10

C , K = 100,

λs(u) = C
250

(10e−( u
5−1)2 − 10−1)+ FOR u ≥ 5, AND ∆u = 10−6 .

In Table II, we present a numerical comparison of the
time required to compute the threshold policy and optimal
policy. For computation of the optimal policy policy iteration
is used due to reasons mentioned in section IV. Moreover,
the policy iteration procedure is also speeded up by taking
advantage of unimodality. Both algorithms were developed
in MATLAB and run on a Pentium M 1.7GHz PC. These
numerical results demonstrate the practical importance of the
optimization method developed in this section.

VII. CONCLUDING REMARKS

In this paper we have investigated the problem of devising
efficient pricing policies for secondary spectrum usage. Specif-
ically, we have formalized the problem of profit maximization
for the usage of wireless spectrum in the presence of both
primary and secondary users (PUs and SUs). We have provided
a stochastic dynamic programming formulation of the problem
and shown how to derive the optimal stationary pricing policy
using policy iteration or relative value iteration.

A drawback of the optimal policy is to charge SUs different
prices over time, depending on the channel occupancy. This
makes the cost of spectrum access much less predictable and
could potentially reduce demand. Thus, we have investigated
the design of simple, yet efficient, single-price policies. We
have provided numerical and analytical evidences that static
pricing policies do not perform well in such settings (in
contrast to settings where all the users are elastic). On the
other hand, we have proven that deterministic threshold pricing
achieves the optimal profit amongst all the single-price policies
and performs close to global optimal pricing for a variety of
demand functions.

Under certain reasonable assumptions on the demand func-
tion, we have proven that the profit function of threshold
pricing is unimodal in the price. We have also showed that
the optimal threshold lies within a specific interval. By taking
advantage of these properties we showed that the optimal
threshold policy is computationally more efficient than the
optimal policy.

Lastly, we have introduced the new concept of profit region.
The profit region indicates the range of arrival rate of PUs
for which a secondary market is viable (i.e., positive profit
is achievable by selling spectrum to secondary users). The
success of secondary market initiatives hinges on the design
of simple pricing policies that maximize the profit region. In
this work, we have proven that the profit region of threshold
pricing is optimal (again, under appropriate assumptions on

the demand function). Furthermore, this profit region depends
only on the support of the demand function and, in particular,
the parameter umax, but not on the specific form of the demand
function.

APPENDIX A
PROOF OF LEMMA 5.4

It can be verified that
∂

∂λs
(− ln(1−BSU (λs, T ))) =

B′
SU (λs, T )

1−BSU (λs, T )
(35)

and
∂

∂λs
(−1

2
ln(B′

SU (λs, T ))) = − B′′
SU (λs, T )

2B′
SU (λs, T )

. (36)

From Eqs. (35) and (36) it follows that

B′
SU (λs, T )

1−BSU (λs, T )
− −B′′

SU (λs, T )
2B′

SU (λs, T )
> 0 (37)

if and only if

1
2

∂

∂λs

(
ln

( B′
SU (λs, T )

(1−BSU (λs, T ))2
))

> 0. (38)

Since the ln(·) function is strictly increasing, Eq. (38) is
equivalent to

∂

∂λs

( B′
SU (λs, T )

(1−BSU (λs, T ))2
)

> 0. (39)

It can be shown that
B′

SU (λs, T )
(1−BSU (λs, T ))2

= Y
( E′(λs+λp, T )
(1− E(λs+λp, T ))2

)
, (40)

where Y = T !( 1
T ! + λp

(T+1)! + ... + λC−T
p

C! ). Since Y > 0 and
it is independent of λs, Eq. (39) is satisfied if and only if

∂

∂λs

( E′(λs + λp, T )
(1− E(λs + λp, T ))2

)
> 0. (41)

Recall total arrival rate λ = λs + λp. Since taking derivative
with respect to λs is same as taking derivative with respect to
λ, Eq. (41) is equivalent to

∂

∂λ

( E′(λ, T )
(1− E(λ, T ))2

)
> 0. (42)

It can be verified that Eq. (42) is true by the proof of
Proposition 6.1 in [10]. This completes the proof of the lemma.

APPENDIX B
PROOF OF LEMMA 5.10

Recall the profit function (Eq. (2)) for optimal pricing which
can be rearranged as the following

R(Λ) =
N(Λ)
D(Λ)

+ E(λp, C)λpK (43)

where

N(Λ) = Q(λs,0) + Q(λs,1)λ0
1! + Q(λs,2)λ0λ1

2! +
. . . + Q(λs,C−1)

λ0λ1...λC−2
(C−1)! −Kλp

λ0λ1...λC−1
C!

(44)

and

D(Λ) = 1 + λ0
1! + λ0λ1

2! + . . . + λ0λ1...λC−1
C! . (45)
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Here λn = λs,n + λp where λs,n = λs(un) i.e., the total
arrival rate when system is in state n.

We start by proving that if

∂R(Λ)
∂λs,0

∣∣
λs,0=0

≤ 0 (46)

then
∂R(Λ)
∂λs,0

≤ 0. (47)

The derivative of R(Λ) with respect to λs,0 is

∂R(Λ)
∂λs,0

=
∂N(Λ)
∂λs,0

D(Λ)−N(Λ)∂D(Λ)
∂λs,0

D2(Λ)
. (48)

It can be verified that
∂N(Λ)
∂λs,0

= Q′(λs,0) +
N(Λ)−Q(λs,0)

λ0
(49)

and
∂D(Λ)
∂λs,0

=
D(Λ)− 1

λ0
. (50)

and by substituting Eq. (49) and Eq. (50) into Eq. (48) we
have

∂R(Λ)
∂λs,0

=
(Q′(λs,0)−Q(λs,0)

λ0
)D(Λ)+N(Λ)

λ0

D2(Λ)
. (51)

Note that, the sign of the RHS of Eq. (51) is determined by
the numerator

(Q′(λs,0)−Q(λs,0)
λ0

)D(Λ)+
N(Λ)

λ0
. (52)

Next, we show that Eq. (52) is decreasing in λs,0. The
derivative of Eq. (52) is

∂
∂λs,0

((Q′(λs,0)−Q(λs,0)
λ0

)D(Λ)+N(Λ)
λ0

)=Q′′(λs,0)D(Λ). (53)

Since D(Λ) > 0 and Q′′(λs,0) < 0, due to Assumption 5.3,
Eq. (52) is decreasing with respect to λs,0. Therefore if
∂R(Λ)
∂λs,0

∣∣
λs,0=0

≤ 0 then ∂R(Λ)
∂λs,0

≤ 0 for λs,0 > 0.

The second step of our proof is to show if

umax ≤ E(λp, C)K (54)

then
∂R(Λ)
∂λs,0

∣∣
λs,0=0

≤ 0. (55)

The sign of RHS of Eq. (55) is defined by Eq. (52). If λs,0 = 0
then Q(0) = 0, Q′(0) = umax and λ0 = λp. By substituting
these values into Eq. (52) we obtain

(Q′(0)−Q(0)
λp

)D(Λ)+
N(Λ)

λp
= umaxD(Λ) +

N(Λ)
λp

=

umax +umax
λp

1!
+umax

λpλ1

2!
. . .+ umax

λpλ1 . . . λC−1

C!

+Q(λs,1)
1
1!

+ Q(λs,2)
λ1

2!
. . . + Q(λs,C−1)

λ1 . . . λC−2

(C − 1)!

−Kλp
λ1 . . . λC−1

C!
. (56)

It is enough to prove the statement for K = umax

E(λp,C) since
larger values of K make the RHS of Eq. (56) only smaller.
By inserting

K =
umax

E(λp, C)
= umax

1 + λp

1! + λ2
p

2! . . .
λC

p

C!
λC

p

C!

(57)

and rearranging, Eq. (56) becomes

umaxD(Λ) +
N(Λ)

λp
= [umax − umax

λ1 . . . λC−1

λC−1
p

]

+[umaxλp + Q(λs,1)− umax
λ1 . . . λC−1

λC−2
p

]

+
C−1∑

i=2

λ1 . . .λi−1

i!
[umaxλp+Q(λs,i)−umax

λi . . .λC−1

λC−i−1
p

]. (58)

Next, we show that all three terms in the above equation are
negative. The first term is negative because λn ≥ λp for n =
1, 2, ..., C − 1. For the second and the third term the sign is
defined by the following expression

umaxλp + Q(λs,n)− umax
λn . . . λC−1

λC−n−1
p

(59)

for n = 1, 2...C − 1. Since λn ≥ λp

umaxλp +Q(λs,n)− umax
λn . . . λC−1

λC−n−1
p

≤ umaxλp + Q(λs,n)− umaxλn

= Q(λs,n)− umaxλs,n

= (u(λs,n)− umax)λs,n. (60)

Since u(λs,n) ≤ umax, all the terms are negative. Therefore if
umax < E(λp, C)K then ∂R(Λ)

∂λs,0

∣∣
λs,0=0

≤ 0. Together with the
first part of the proof this concludes the proof of the lemma.
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