
1

Robust Location Detection with
Sensor Networks

Saikat Ray, David Starobinski, Ari Trachtenberg, Rachanee Ungrangsi

Abstract— We propose a novel framework for location de-
tection with sensor networks, based on the theory of identify-
ing codes. The key idea of this approach is to allow sensor
coverage areas to overlap so that each resolvable position is
covered by a unique set of sensors. In this setting, determining
a sensor-placement with a minimum number of sensors is
equivalent to constructing an optimal identifying code, an NP-
complete problem in general. We thus propose and analyze
new polynomial-time algorithms for generating irreducible (but
not necessarily optimal) codes for arbitrary topologies. Our
algorithms incorporate robustness properties that are critically
needed in harsh environments. We further introduce distributed
versions of these algorithms, allowing sensors to self-organize
and determine a (robust) identifying code without any central
coordination. Through analysis and simulation, we show that
our algorithms produce nearly optimal solutions for a wide
range of parameters. In addition, we demonstrate a tradeoff
between system robustness and the number of active sensors
(which is related to the expected lifetime of the system). Finally,
we present experimental results, obtained on a small testbed, that
demonstrate the feasibility of our approach.

I. I NTRODUCTION

Communication systems play an essential role in harsh
environments such as densely populated indoor locations,
building collapses, or extreme weather phenomena. Unfortu-
nately, existing systems often provide minimal infrastructure
for handling such environments on-site. Recent advances in
wireless sensor technologies [1, 2] make it possible to install
tiny devices in existing infrastructure, such as smoke detectors
or overhead lighting, that can form a network. These networks
can provide three dimensional building visualization along
with real-time monitoring of hot spots, structural failures, or
interference sources. Key to the above capabilities is a func-
tional means oflocation detection. The ability to determine the
locations of the necessary parties, be they trapped fire-fighters
or essential portable equipment, is critical to the usefulness of
sensor networks in harsh environments. At the same time, it is
precisely in such environments, where noise comes not only
from well-studied forms of interference but also from sensor
displacement and structural changes, that location detection is
very difficult.

Though several indoor location detection systems have been
described in the literature (cf. Section II), none of them have
been designed specifically for robustness. Chiefly, they lack
the robustness needed to protect against equipment failure

The authors are with the Electrical and Computer Engineering Department
at Boston University. This work was supported in part by the National Science
Foundation under NSF grants ANI-0132802, CCR-0133521, ANI-0240333
and by a SPRInG award from Boston University.

and changing structural topology. In particular, several existing
systems are based on the concept ofproximity-based detection,
in which user location is provided by a nearest sensor (or
beacon). When sensors fail in such systems, due to physical
damage or interference, an entire coverage area may be lost.

In this paper, we propose to address the issue of robust
location detection through a novel framework based on the
theory of identifying codes[3, 4]. Our approach generalizes
existing proximity-based location detection techniques by al-
lowing sensor coverage areas to overlap. Our key idea is to
ensure that each resolvable position is covered by a unique
set of sensors, which then serves as its signature. We make
use of identifying code theory to reduce the number of active
sensors required by the system, thereby allowing a large
number of sensors to be maintained in an energy-saving mode.
Alternatively, activating more sensors increases the robustness
of the system.

The main challenge in designing our system is to position
sensors so that every resolvable location can be identified
unambiguously. Toward this end, we divide a continuous
coverage area into a finite set of regions, with each region
being represented by a single point within its boundary. These
points are thereafter mapped to nodes in a graph, and these
nodes are connected by links whenever the corresponding
points in the physical system are able to communicate directly.
The identifying code problem is then to determine the nodes
on which to place and activate the sensors (orcodewordsin
the coding terminology), such that each node is within the
communication range of a different set of sensors.

The problem of finding a minimum identifying code for
an arbitrary graph is NP-complete [5]. Instead, we propose
a novel greedy algorithm, called ID-CODE, that produces
irreducible identifying codes from which no codeword can
be removed without violating the unique identifiability of
some position. Our numerical results show that the solution
produced by our algorithm is nearly optimal for a wide range
of parameters.

We also introduce the concept ofr-robust identifying codes,
which are capable of correcting up tor errors. We propose a
new algorithm calledr-ID-CODE that generalizes the basic
ID-CODE algorithm and produces irreducibler-robust codes.
The degree of robustness,r, is a design parameter that can
be traded off with the number of sensors required for the
proper functioning of the system. We present numerical results
illustrating this trade-off. We also show how ther-ID-CODE
algorithm can be run in a fully distributed manner. Thus, in
a dynamic system, sensors can self-organize and determine
a (robust) identifying code without any central coordination.



2

Finally, as a proof-of-concept, we present experimental results
obtained on a small testbed to illustrate the feasibility and
desirability of our approach compared to proximity-based
schemes.

This paper is organized as follows. Section II briefly surveys
related work in indoor location detection and identifying
codes. In Section III, we outline our proposed system, explain-
ing the relationship between robust location detection and the
construction of identifying codes for arbitrary graphs. In Sec-
tion IV, we describe our ID-CODE algorithm, prove some of
its key properties, and describe how to apply it to an arbitrary
topology. We introduce the concept ofr-robust identifying
codes in Section V and extend the ID-CODE algorithm to
produce them. We then develop distributed versions of these
algorithms in Section VI. In Section VII and VIII, we evaluate
the performance of our algorithms and illustrate the benefits
of the proposed approach through simulation and experiments,
respectively. The last section summarizes the main findings of
the paper and provides some concluding remarks.

II. RELATED WORK

A. Location Detection Systems

Location detection systems have been proposed and im-
plemented in the literature for a variety of applications. For
outdoor applications, the satellite basedGlobal Positioning
System(GPS) is commonly used [6]. GPS relies on tri-
lateration of position and time among four satellites, and
can determine location in many cases within a few meters.
However, occlusions, reflections, and multi-path effects limit
the usefulness of GPS in indoor, dense, or harsh environments.

Indoor location detection systems have been developed for
cases when GPS usefulness is limited. These systems can
be classified into three categories, based on wave frequency:
Infrared (IR), Ultrasound (US), and Radio (RF). Existing
systems work well for their designed purposes, but cannot
handle significant changes in communications paths or build-
ing topology.

Infrared : TheActive Badgelocation system [7] was one of
the first indoor location detection systems and is representative
of the IR-based approach to indoor location detection [8,
9]. This system provides each person with a badge that
periodically emits a unique ID using diffused IR that is
received by one of several receivers scattered throughout a
building. Badge location is then resolved by proximity to the
nearest receiver. In harsh settings, however, the communication
environment can be very dynamic, as people move about,
smoke or other impurities fill the air, or walls collapse. In
such settings, proximity to a single receiver is not sufficiently
robust or flexible to provide reliable location detection.

Ultrasound: Ultrasound-based systems also provide loca-
tion detection based on proximity, but improve accuracy by
measuring ultrasound time-of-flight with respect to a reference
RF signal. Systems such as theActive Bat [10] or MIT’s
Cricket [11] compare the arrival time of the two signals
from various known sensors in order to calculate a listener’s
location.

As with the IR-based schemes, current ultrasound-based
systems are not designed for robustness, since line-of-sight

paths may get obstructed or altered in the face of changing
room dynamics. In addition, these systems are particularly
sensitive to the possible destruction of sensors.

Radio: Radio waves provide a powerful means of location
detection because of their ability to penetrate many types
of surfaces and objects, and due to their range, scalability,
and maintenance benefits. Rather than using differences in
arrival time, as done by ultrasound systems, RF-based location
detection systems determine location based on received signal
strength, predicated on a knownSignal-to-Noise Ratio(SNR).
RADAR [12] pre-computes an SNR-map for a building. A
vector of signal-strengths received at various base-stations is
compared to this map to determine position. Other RF-based
systems include SpotON [13] andNibble [14].

As with the previously mentioned schemes, there are still
inherent issues of robustness when utilizing RF. The failure
of a sensor or the introduction of new signal path from
spurious reflectors (e.g., people walking around) or shifting
internal structures can severely impair existing systems. SNR-
based systems have also the problem of being sensitive to
environmental conditions. Recently, [15] suggested a scheme
for location detection, based on computing the centroid of
the positions of several base stations, that addresses some of
these issues. However, this scheme applies only to large open
environments.

B. Identifying Codes

The system proposed in this work overlays anidentifying
codeon a proximity-based location detection system in order
to improve resolution and robustness.

Identifying codes were introduced in [3] as a means of
uniquely identifying faulty processors in a multiprocessor
system. These codes, which are described in detail in Sec-
tion IV, have enjoyed much attention in the coding theory
literature. In general, finding an optimal identifying code is
known to be an NP-complete problem [5]. The available
constructions in the literature have so far been restricted to
regular graphs such as hypercubes, meshes, and trees [16].
The works in [17] suggest the use of these known identifying
codes for surveillance purposes in an outdoor setting, but
they require a regular, mesh topology. Unlike multiprocessor
networks, wireless networks usually do not form a regular
graph even if the nodes are arranged on a regular spatial grid,
especially in indoor settings with many obstacles and reflec-
tors. Moreover, sensor networks require robustness that is not
available from standard identifying codes. Our system makes
use of a robustness-oriented modification of identifying codes
built over an arbitrary topology, as described in Sections III
and IV. Our techniques for building these codes are practically
realizable and provide codes with sizes close to known lower
bounds and, hence, almost optimal.

III. SYSTEM OVERVIEW

Our proposed system divides the coverage area into locat-
able regions represented by a designated point. This system
can operate in either or both of two dual modes:location
serviceor location tracking. In the location service mode, the



3

system periodically broadcasts ID packets from designated
sensors. An observer can determine her location from the
packets that she receives. In the location tracking mode, an
observer transmits her ID and the system determines her
location from the sensors receiving the ID. Hereafter, we shall
describe the system as it operates in the location service mode,
though our results apply analogously to the location tracking
mode.

Our sensor network is designed as follows: first, a set of
points is selected for a given area. Then, based on physical
point connectivity (RF in our example), transmitting sensors
are placed on a subset of these points corresponding to an
identifying code. This placement guarantees that each point is
covered by a unique set of transmitters. Thus, an observer can
determine his location from the unique collection of received
ID packets.

The transmitter placement induces an indistinguishable re-
gion around each locatable point (i.e., an observer would re-
ceive the same set of ID packets anywhere in this region). This
system alone does not guarantee coverage beyond the points
incorporated into the graph model. To ensure more widespread
coverage, additional techniques should be employed [18, 19].

A. Example

The following example illustrates our approach in more
detail. Consider the pointsP = {a, b, c, d, e, f, g} on a simple
floor plan illustrated in Fig. 1(a), and let the RF-connectivity
among these points be represented by the arrows in Fig. 1(b);
in other words, there is an arrow between positionsp1 andp2 if
and only if a transmitter placed atp1 can directly send packets
to a receiver placed atp2 through RF. Given such connectivity
information between every pair of points, our objective is to
build a system using a minimum number of transmitters that
allows an observer to infer his location at any point inP .

For this purpose, we place four wireless transmitters at
positionsa, b, c andd, each periodically broadcasting a unique
ID. We assume that packet collisions are avoided by an
appropriate medium access control (e.g.,simple randomization
or a full-scale protocol [15]) and that the observer collects
received packets over a (small) timeT . For instance, in
Fig. 1(c) an observer in the region of pointf receives IDs
from the transmitters at positionsb and d. The set of IDs
received at a given positionx is called theidentifying setof
x and denotedID(x).

If the identifying set of each point inP is unique, then
targets can be correctly located at these points using a table-
lookup of the packet IDs received. The reader can verify that,
for this example, the identifying sets are unique and given as
follows:

v : a b c d e f g
ID(v) : {a, b} {a, b, c} {b, c} {d} {c, d} {b, d} {a, d}
In general, we model a physical environment with a graph

G = (V,E), whose verticesV model locatable regions and
edgesE connect regions with RF connectivity. Fig. 1(d) shows
the graph for the example in Fig. 1(b). Note that vertices of the
graphs can be mere points in space, and physical transmitters
need only be placed at those points designated by the chosen

g a
b

c

f

e

d

(a) Discrete
Locations.

f

g a

b

d

c
e

(b) Connectivity.

�����
�����
�����

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
��� f
d

c

b

a

e

g

(c) Sensor placement
(filled circles). Cover-
age area is delimited
by dashed lines.

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

a

b

ce

g

f
d

(d) Position of the
sensors on the graph.

Fig. 1. Our proposed location detection system.

identifying code. Alternatively, graph vertices can be used to
represent all the points where sensors are positioned. In such
a case, transmitting sensors are activated on a subset of these
points determined by a corresponding identifying code. Other
sensors can be maintained in sleep mode.

In the following section, we develop a theoretical frame-
work, based on identifying codes, for placing transmitting
sensors in our location detection system.

IV. I DENTIFYING CODES FOR ARBITRARY GRAPHS

As mentioned in Section II, the problem of constructing
optimal identifying codes for arbitrary graphs is known to be
NP-complete. Therefore, rather than looking for an optimal so-
lution, we propose a greedy algorithm to constructirreducible
identifying codes. The irreducibility property means that the
deletion of any codeword results in a code that is no longer
an identifying code. Thus, the proposed algorithm always
converges to a local minimum. In fact, our simulation results
presented in Section VII show that the solution achieved by
this algorithm is nearly optimal for a wide range of parameters.

A. Notations and Definitions

Let G = (V, E) be a given graph with verticesV and
edgesE. Then, we define the distance metricρ(u, v) to be
the number of edges along the shortest path from vertexu



4

to v. The ball of radiush aroundv is denotedB(v, h) and
defined to be{w ∈ V : ρ(w, v) ≤ h}. Thus,B(v, 1), which
we shall denote simply asB(v), represents the set of vertices
that are adjacent tov, together withv.

Any non-empty subsetC ⊆ V is called acode for the
corresponding graphG = (V,E), and its elements are called
codewords. Given a codeC, the identifying setof a vertex
v ∈ V is defined to beIC(v) = B(v)∩C. A codeC is called
an identifying codeif IC(u) 6= IC(v) 6= ∅ for all u 6= v ∈ V ;
that is, the identifying set of every vertex in the graph is unique
and non-empty1 (so that every vertex is uniquely identified by
its identifying set). An identifying codeC is calledirreducible
if deletion of any codeword fromC results in a code that is
no longer an identifying code. A graphG = (V, E) is said to
bedistinguishableif it permits an identifying code; otherwise,
G is an indistinguishable graph.

B. Code Construction Algorithm

Formally, our problem of location detection is:Given a
distinguishable graphG = (V,E), determine a subsetC ⊆ V
of minimum cardinality that is an identifying code.Since
this problem has been shown to be NP-complete, we instead
consider a practical modification:Given a distinguishable
graph G = (V, E), compute a subsetC of V such thatC
is an irreducible identifying code forG.

The first step in solving the above question is to determine
whether a given graph is distinguishable. The following lem-
mas show that this determination is not hard to do in practice.

Lemma 1 For a given graph G = (V, E), if C is an
identifying code, then everyC′ ⊇ C is also an identifying
code.

Proof: Assume that there existsC′ ⊇ C that is not an
identifying code. Then, by definition, there existu, v ∈ V with

IC′(u) = IC′(v)
C ∩ C′ ∩ B(u) = C ∩ C′ ∩ B(v)

C ∩ B(u) = C ∩ B(v), sinceC ⊆ C′
IC(u) = IC(v),

which contradicts the assumption thatC is an identifying code.

Thus, to check if a graph is distinguishable, one must
merely check that there are no two vertices with the same
ball. Empirically, we have found that almost all graphs are
distinguishable unless their average degree is very low or
very high. Graphs that are indistinguishable generally have
a collection of vertices that are physically close to each other.
The work in [4] describes a simple method for transforming an
indistinguishable graph into a distinguishable one by deleting
a minimum number of vertices.

Algorithm ID-CODE, which we now describe, builds an
identifying code for a distinguishable graph. It begins by
designating every vertex in an input graphG as a codeword.

1The non-emptiness constraint is not part of the original definition of
identifying codes, but it is important for our practical implementations,
especially our distributed algorithm in Section VI.

At each step of the algorithm, one codeword is considered
for deletion from the current code. If removing the codeword
results in an identifying code, then the algorithm proceeds;
otherwise, the codeword is reinserted into the code and the
algorithm proceeds to consider other codewords, along a pre-
determined sequence of vertices,σ, provided as a parameter.

By design, each iteration of the algorithm (including the
last iteration) ends with an identifying code of the graph.
Moreover, the algorithm performs one iteration for each vertex
in the graph and at each iteration, checks for uniqueness
of the identifying set of each node. Using an appropriately-
constrained sorting algorithm to test uniqueness, the running
time of the algorithm isO(|V |3 log |V |). This can be reduced
further to an expectedO(|V |2 log |V |) with the use of hash
functions.

Theorem 1 The codeC returned by ID-CODE is irreducible.

Proof: Assume, for sake of contradiction, thatC \ X
is an identifying code for some setX 6= ∅, X ⊂ C. Choose
any codewordx ∈ X and denote byi the iteration of the
ID-CODE algorithm in whichx is considered, resulting in the
codeCi ⊃ C. It must be that the setC′ def= Ci \ {x} is not
an identifying code, or else ID-CODE would have removedx
from C. Moreover,C′ ⊇ C \ {x} ⊇ C \ X. However, since
C \X is an identifying code, Lemma 1 implies thatC′ is an
identifying code as well, which completes the contradiction.

Theorem 1 shows that a code returned by the ID-CODE is
irreducible. The following theorem shows the converse, that
is, that every irreducible identifying code, including optimal
ones, can be generated by ID-CODE through an appropriate
choice of the input parameters. A proof can be found in [4].

Theorem 2 For every irreducible identifying codeC of a
given graphG = (V, E), there exists an input sequenceσ
such thatID-CODE(G,σ) returnsC.

The performance of the ID-CODE algorithm depends on
the sequence of vertices chosen. In [4], some simple heuris-
tic methods for effectively ordering the input sequence are
evaluated. For random graphs, it shown that the performance
of the algorithms is rather insensitive to the ordering of the
sequence, and randomly ordered sequences generally perform
well enough.

V. r-ROBUST CODE CONSTRUCTION

In the previous section we described techniques for con-
structing identifying codes with as few codewords as possible.
That framework inherently provides some amount of robust-
ness since a location may be covered by sensors located far
off, thereby creating spatial diversity. However, in practice,
the identifying set received by an observer might fluctuate
due to changes in communication conditions, and thus we
seek to guarantee that the scheme works even if the received
identifying set differs somewhat from the original one.

In this section we describe a novel generalization of iden-
tifying codes that achieves this goal by guaranteeing to be



5

robust in the face of fluctuations in observed identifying sets.
First, we formalize our definition of robustness, making use
⊕ to denote symmetric difference between two sets (i.e.,
A⊕B = (A \B) ∪ (B \A)).

Definition 1 An identifying codeC over a given graphG =
(V, E) is said to ber-robust if IC(u) ⊕ A 6= IC(v) ⊕ B, for
all u, v ∈ V , u 6= v and A,B ⊆ C with |A|, |B| ≤ r.

Simply stated, an identifying code isr-robust if addition or
deletion of up tor IDs in the identifying set of any vertex does
not change its identifying capability. Alternatively, we may
determine the robustness of codeC by finding the minimum
symmetric differencedmin(C) def= minu,v∈V |IC(u) ⊕ IC(v)|
between the identifying sets of any two of its vertices. We thus
have the following Theorem as a straightforward application
of the definitions.

Theorem 3 A codeC is r-robust iff dmin(C) ≥ 2r + 1.

Adding codewords to an identifying code can only increase its
minimum symmetric difference, as per the following lemma.

Lemma 2 For any two identifying codesC ⊆ D over the
same graphG, dmin(C) ≤ dmin(D).

As it turns out, a simple generalization of the greedy
criterion of ID-CODE, depicted in Fig. 2, produces anr-robust
code if it exists. As with ID-CODE, examining vertices in the
right order will necessarily produce the best possibler-robust
codes for the given graph.

By construction,C is anr-robust identifying code at every
iteration of the algorithm and the straightforward running time
is O(|V |4), though this can be reduced toO(|V |3) if there
are no memory restrictions. Moreover, the following theorem,
which is proven using Lemma 2 in a manner analogous
to Theorem 1, shows that the resultant code is irreducible,
meaning that the code is no longerr-robust if any codeword
is removed.

Theorem 4 The codeC returned by r-ID-CODE is irre-
ducible.

To decode location with anr-robust code, an observer must
be provided a lookup table with the identifying set of every
vertex in a given (uncorrupted) graph. Upon receiving an
identifying setS, the observer finds the pointp that minimizes
|IC(p)⊕S|. As long as no more thanr IDs are corrupted, the
observer is guaranteed to determine his/her location correctly.

VI. D ISTRIBUTED SOLUTIONS

It is often impractical to tie large sensor networks to a
central authority. Fortunately, the previous algorithms can be
distributed over network regions with a modest amount of
inter-node communication. In this section, we describe such
a distributed algorithm in successive stages. The algorithm
makes use of a model in which a sensor is placed at each
resolvable location. The goal of the algorithm is to determine
a small subset of these sensors that need to be active (and
transmitting), as part of an identifying code, so that other
sensors may be put into energy-saving mode.

r-ID-CODE(G, σ, r)
C = V
if dmin(C) ≤ 2r then EXIT
for each vertexx ∈ σ, taken in orderdo

D = C \ {x}
if dmin(D) ≤ 2r then C = C
elseC = D

return C

Fig. 2. Ther-ID-CODE algorithm for generatingr-robust identifying codes
for an arbitrary graph.

A. Iteration

Recall that the ID-CODE algorithm initially designates each
vertex in a given graph to be a codeword, and then iteratively
deletes safe codewords from the code as long as possible. The
key to distributing this algorithm among several processors
is the observation that, in most cases, determining whether a
codeword is safe to delete from the code can be done without
consulting the entire network. More specifically, a codeword
can be deleted if doing so will not make the identifying sets
of any two vertices equal. The following lemma shows that
vertices with equal identifying sets must be close to each other,
as long as identifying sets are constrained to be non-empty.
We note that the constraint of non-empty identifying sets is
critical to our distributed algorithm, as otherwise, one cannot
bound the search space from which codewords may be safely
deleted.

Lemma 3 Consider an identifying codeC for a graph G =
(V, E). If, after removing a codewordc ∈ C fromG, there exist
distinct verticesv andv′ with equal, non-empty identifying sets
in the new codeC′ = C\{c} (i.e., IC′(v) = IC′(v′) 6= ∅), then
v, v′ ∈ B(c, 3). More precisely, it must be thatv ∈ B(c, 1) and
v′ ∈ B(v, 2).

Proof: SinceC is an identifying code,IC(v) 6= IC(v′).
If both or neither ofIC(v) and IC(v′) contain c, we have
IC′(v) 6= IC′(v′), which is contradictory. Thus, exactly one
of v or v′ is a neighbor ofc. Moreover, since the identifying
sets ofv and v′ are presumed non-empty and identical after
removal ofc from the code, the vertices must share at least one
common neighbor (i.e., be of distance≤ 2 from each other),
so that the maximum distance fromc to these vertices is3.

Lemma 3 shows that determining whether or not to delete
a codewordc can be done by inspecting the identifying sets
of all neighbors inB(c, 3). Since these identifying sets are
determined by vertices inB(c, 4), this is the only portion of
the network that needs to be checked when deciding whether
or not to deletec from the code.

The iterative component of our algorithm thus proceeds as
follows. Each node is initialized to be a codeword. As per
Lemma 3, each codewordc checks for two conditions: (i) is
it the sole mutual difference between identifying setsIC(v)
andIC(v′), for any v that is an immediate neighbor ofc and
v′ of distance≤ 2 from v; or (ii) is it the lone element in



6

Algorithm 1 [Iteration] An outline of the iteration component
of our distributed algorithm.

• initialize our identifying codeC = V
• initialize ζ(v) = B(v, 4) for eachv ∈ V ; this variable will
hold the value ofB(v, 4) ∩ C
• mark each vertexv ∈ V asunresolved
• the sensor at each vertexc ∈ V repeats the following steps
until it is resolved:

1. if IC(v)⊕ IC(v′) = {c} or IC(v) = {c}
for any v ∈ B(c, 1) andv′ ∈ B(v, 2) then
resolvec to be a codeword

else if index (c) ≤ index (c′) for all c′ ∈ ζ(c) then
resolvec to be a non-codeword and update identifying
sets

2. if c is now resolvedthen
broadcast its message to allv′ ∈ B(c, 4).

3. if c receives a broadcast message from a resolved
nodev then ζ(c) = ζ(c) \ {v}

a neighbor’s identifying set. If any of the above two cases is
true, c must be kept in the code, in the first case to preventv
and v′ from ending up with the same identifying set, and in
the second case to avoid an empty identifying set forc or its
neighbor.

If neither of the above two conditions are true, thenc may be
removed from the code because every set of mutual differences
containing c also contains at least one other codeword. In
order to avoid concurrency issues in which more than one
codewords in the same set of mutual differences are deleted
simultaneously leaving the set empty, we only dropc if it is
has the lowest index among all codewords in its neighborhood
ball of radius4, where indexing is determined by an arbitrary
injective functionindex : V −→ Z.

Theorem 5 Algorithm 1 produces an irreducible identifying
codeC ⊆ V , if one exists, on a finite graphG.

Proof: Since the graph size is assumed finite, a lowest-
indexed unresolved vertex exists, which will always be re-
solved in step 1 of the algorithm. Thus, if there areN
vertices in the graph, the algorithm terminates after at most
N iterations. Moreover, Lemma 3 assures that the algorithm
examines every potential identifying set conflict before remov-
ing a codeword, thereby assuring that if the original graph is
identifiable, then the resultingC will be an identifying code.
In addition, each vertex that is resolved to be a codeword
is either the sole (mutual) difference between some pair of
identifying sets or the only codeword in the identifying set of
some vertex; meaning that deletion of the vertex will result in
a non-identifying code. This proves the irreducibility ofC.

B. Precomputation

In the worst case, Algorithm 1 resolves only one vertex
in the whole graph per iteration, which may be decidedly
inefficient. A simple optimization involves checking, for each

codeword c, those identifying set mutual differences that
contain c. If every mutual difference that containsc also
contains at least one other element with a greater index,
then it is safe to removec. Clearly, the nodes that are left
unresolved still form an identifying code if the original graph
is identifiable.

C. Neighborhood curbing

The initial contents ofζ(v) in Algorithm 1 are often larger
than what is actually necessary. In fact, not all vertices in
B(c, 4) need to be examined when deciding to removec
from an identifying code, but rather only those vertices that
cannot be simultaneously removed withc. Lemma 3 shows
that removal of a codeword can only affect identifying sets of
vertices inIC(v) ⊕ IC(v′), for v ∈ B(c, 1) and v′ ∈ B(v, 2).
Adding the constraint that identifying sets must be non-empty,
we see that the set of vertices that need to be examined before
deleting a codeword is

ζ(c) = {x ∈ V |x ∈ IC(v)⊕ IC(v′) or x ∈ IC(v)
∀ v ∈ B(c, 1), v′ ∈ B(v, 2)}. (1)

This set of vertices can be significantly smaller thanB(c, 4)
and can significantly reduce the number of iterations of
Algorithm 1 by permitting simultaneous codeword removals.

D. Robustness

Recall from Theorem 3 that an identifying code isr-robust
iff minu,v∈V |IC(u) ⊕ IC(v)| ≥ 2r + 1. We can thus make
Algorithm 1 producer-robust codes by having it keep a
codewordc not only when it is the sole mutual difference, but,
rather, when it is included in some set of mutual differences
of size2r + 1.

E. Complete algorithm

We now present the complete, distributed algorithm for gen-
erating robust identifying codes. The pseudo-code presented is
based on the previous subsections, but incorporates technical
details and reorganizations that were previously left out for the
sake of clarity. We denote the collection of mutual differences
between the identifying sets near vertexv by

Sv = {IC(v)⊕ IC(v′) | v′ ∈ B(v, 2), v′ 6= v}.
In addition, the following quantity gathers all the sets that must
be monitored by vertexv during the iterations of the algorithm

S∗v =


 ⋃

v′∈B(v,1)

Sv′


 ∪


 ⋃

v′∈B(v,1)

{IC(v′)}

 .

Finally, for each vertexv ∈ V , the setζ(v) is initialized by
gathering the elements ofS∗v (i.e., ζ(v) =

⋃
s∈S∗v

s). This set
is then updated as vertices resolve themselves.

Notice that the only communication in Algorithm 2 involves
the exchange of local neighborhood information in the initial-
ization stage and local communication of vertex status in the
iteration stage. In addition, each vertex performs the algorithm
asynchronously; in other words, no processing coordination is
required between vertices in this implementation.



7

Algorithm 2 Our complete distributed algorithm:
DISTRIBUTED r-ID-CODE
Given an integerr and a graphG = (V,E) whose vertices
are indexed by a functionindex (·), the following distributed
algorithm produces anr-robust identifying codeC.

Each vertexv ∈ V performs the following steps concurrently:
Initialization
• set the current identifying codeC = V .
• mark v unresolved.
• determine the two-hop ballB(v, 2) and collectIC(v′) for all
v′ ∈ B(v, 2).
• computeSv and collectSv′ for all v′ ∈ B(v, 1).
• computeS∗v and setζ(v) =

⋃
s∈S∗v

s

Precomputation
if |s| = 2r + 1 for any s such thatv ∈ s ∈ S∗v then

resolvev to be a codeword
else if for eachs such thatv ∈ s ∈ S∗v , there exists

v′ ∈ s with index (v) < index (v′) then
resolvev to be a non-codeword

else keepv unresolved
Iteration

repeat until v is resolved:
for each update received from nodev′ do

ζ(v) = ζ(v) \ {v′}
if v′ is resolved as a non-codewordthen

deletev′ from each set inS∗v that containsv′

if |s| = 2r + 1 for any s such thatv ∈ s ∈ S∗v then
resolvev to be a codeword

else if index (v) ≤ index (v′) for all v′ ∈ ζ(v) then
resolvev to be a non-codeword

Update
• oncev is resolved:

• communicatev’s status (codeword or non-codeword)
to all v′ ∈ B(v, 4)

• the algorithm exits operation forv

VII. PERFORMANCE EVALUATION

In this section we evaluate the performance of our algo-
rithms by applying them to random graphs.
Set-up: We use random, connected and distinguishable graphs
with average degreēd, where d̄ is a parameter. The graphs
are generated by joining every two vertices with probability
p = d̄

(|V |−1) , and discarding disconnected or indistinguishable
graphs. For every value of̄d, results are obtained by averaging
over 100 different graphs. Nodes are indexed randomly and,
for the case of the centralized algorithm, visited in a random
order. The graphs used in this simulation model an area com-
parable to the range of wireless transmitter with a large number
of obstacles so that any two vertices might get connected.

The simulation results are obtained by varying the graph
parameters̄d and |V | and the desired degree of robustnessr.
The main metric of interest is the size of the resultant identi-
fying code. For the distributed algorithm, we also compute the
number of rounds (iterations) for the algorithm to converge.
Varying the average degree: Figure 3 shows the average size

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Average degree

S
iz

e 
of

 r
es

ul
ta

nt
 c

od
e 

DISTRIBUTED ID−CODE 
algorithm 

Centralized ID−CODE
algorithm 

Precomputation only 

Lower bound 

Fig. 3. Sizes of the identifying codes produced by the centralized ID-CODE
and DISTRIBUTED ID-CODE algorithms for random graphs of 128 nodes
and varying average degreēd.

|V|321
...

Fig. 4. An example of a worst case topology for the distributed algorithm.
In this case,Θ(|V |) rounds are needed for convergence.

of the resultant code returned by the centralized and distributed
versions of the ID-CODE algorithm for graphs with|V | = 128
(similar performance were observed for graphs with16, 32
and64 vertices). The bottom curve in the figure is a modified
version of a lower bound provided in [3, Theorem 1(3)].

From the figure, we observe that the performance of
the ID-CODE algorithm is close to the lower bound and
hence to the optimal solution. Furthermore, the distributed
version of the algorithm produces codes that are empirically
as good as those produced by the centralized one. We note
that the precomputation phase of the distributed algorithm is
responsible for most of the quality of the computed identifying
code.

For the same parameters, Fig. 5 shows that the distributed
algorithm does a pretty good job of parallelizing the identify-
ing code construction over the various vertices of the graph.
In particular, the figure shows the importance of both the
precomputation and neighborhood curbing for reducing the
number of iterations. Overall, for the various connectivity
graphs simulated, only about ten iterations in the algorithm
were needed at any vertex to produce the desired code.

We note, however, that in the worst case, the distributed
algorithm may takeΘ(|V |) rounds to converge, as shown by
Fig. 4. In that example, vertices are indexed in increasing order
along a ring, so that precomputation resolves only nodes1 and
2. Thereafter, each iteration results in at most8 unresolved
node being resolved, corresponding to a4-hop neighborhood
around resolved nodes. As such, at least|V |

8 iterations are
needed for full resolution of the ring vertices; this is the
asymptotic worst case because the iterative algorithm must,
by design, resolve at least one node per iteration. We thus
see the necessity of the iteration phase, since precomputation
alone may be ineffective in reducing the code size.
Varying the graph size: Figure 6 shows simulation results



8

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Average degree

# 
of

 it
er

at
io

ns

Precomputation 
and Iteration 

Iteration only 

Precomputation, Iteration 
and Neighborhood curbing 

Fig. 5. The number of iterations needed to produce an identifying code for
various stages of the distributed algorithm.

0 200 400 600 800 1000
0

0.2

0.4

0.6

Number of nodes

N
or

m
al

iz
ed

 s
iz

e 
of

 r
es

ul
ta

nt
 c

od
e

Fig. 6. Scalability of the resultant identifying codeC. The normalized size
|C|/|V | is plotted against the number of vertices|V | in the graph.

of the centralized ID-CODE algorithm for graphs of average
degreed̄ = |V |/2 and number of vertices|V | varying from10
to 1000. The figure clearly shows that the ratio of codewords
to graph vertices decreases as the number of vertices increases.
Thus, large graphs require relatively few transmitters for
location detection. This shows that our approach scales well
and is especially useful for graphs with large number of
vertices. Note that in simple proximity-based systems, where
each position is covered by a single sensor, the ratio|C|/|V |
is always1.
Varying the robustness: We applied the centralized
r-ID-CODE to graphs of|V | = 128 vertices and varying
average degreēd with the results shown in Fig. 7. As expected,
the code-size increases with increasingr so that there is a clear
trade-off between the robustness of a code and the number of
transmitting vertices that are required.

The general behavior ofr-robust codes is similar to that of
standard identifying codes. Minimum size is achieved if the
average degree is about|V |/2, but the size of the resultant
code is not too sensitive to the average degree. We see that
for a large range of degree values around|V |/2, the code-
size is close to the one obtained for̄d = |V |/2. However,
the sensitivity increases as the robustness requirements are
increased.

Further results on the performance of our algorithms on
other types of graphs (e.g. graphs generated using Waxman

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Average degree

S
iz

e 
of

 r
es

ul
ta

nt
 c

od
e

r = 9 

r = 4 

r = 0 

Fig. 7. Behavior ofr-robust codes with128 vertices.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Threshold

E
m

pi
ric

al
 P

ro
ba

bi
lit

y 
of

 E
rr

or

Fig. 8. Empirical probability of error in determining location, as a function
of the connectivity thresholdθ

model) are reported in [20].

VIII. E XPERIMENTAL PROOF-OF-CONCEPT

A. Set-up

We have developed a basic experimental testbed to verify
our location detection scheme. The testbed is located on the
4th floor of the Photonics Building at Boston University and
is depicted in Fig. 11. The white circles represent 10 discrete
positions selected on the floor.

Five laptop computers running Red Hat Linux 8.0 are used
in the experiments; four of them as transmitters and the fifth
one as the receiver. The laptops are equipped with IEEE
802.11b standard compliant Cisco Aironet 350 series cards,
operating at the 2.4 GHz band. Each transmitter sends 40
packets per second at a date rate of 5.5 Mb/s and transmission
power of 100 mW. Each packet is 1000 bytes long and includes
a field with the transmitter’s ID.

B. Connectivity Model and Graph

In order to determine whether two points are connected,
we employ a simple thresholding scheme. Specifically, each
transmitter transmits 40 packets per second and two points
are considered connected if the number of packets received
during a sample interval exceeds a certain thresholdθ. In
our experiments, the sampling interval was set to 1 sec.



9

5 9 7

4

8

6 ID(9) = {0,1,2,3}

ID(7) = {1,2}
ID(6) = {1,3}
ID(5) = {0.3}
ID(4) = {0,2}
ID(3) = {3}

ID(1) = {1}
ID(0) = {0}

0 2

13

ID(2) = {2}

ID(8) = {0,1,2}

Fig. 9. The connectivity graph of the testbed and its identifying code. The
shaded circles denote the codewords (transmitters).

Performance of the system – and the underlying connectivity
graph – is dependent onθ. Fig. 8 shows the empirically
observed probability of error in location determination as a
function of θ. Based on this figure we choseθ = 15 for our
experiments [20], meaning that two nodes are connected if the
receiver receives at least15 packets out of the40 sent by the
sender.

We note that there exist more sophisticated decision-
theoretic approaches, for instance, based on maximum like-
lihood or Euclidean distance criteria, in order to transform an
observed packet vector into a binary codeword [20]. However,
these methods may be impractical in dynamic environments as
they involve extensive collection and distribution ofa-priori
data.

The resultant connectivity graph for the testbed is shown in
Fig. 9. The solution produced by the ID-CODE algorithm re-
sults in a placement of the transmitters at positions(0, 1, 2, 3)
(correspondingly identified in Fig 11 by circles with a cross
in them). The identifying sets for each position is shown in
Fig. 9.

C. Data Collection

Our system was evaluated as follows. The floor plan was
divided into a grid, where each grid location represents a
10 × 10 sq. ft. area. At each grid location, the packet arrival
rate from all transmitters was recorded as a vector of the form
(n0, n1, n2, n3), whereni represents the number of packets
received from transmitteri during a 1 second sample interval.
While performing the experiments, we observed that the
packet arrival rate varies with the orientation of the receiver’s
antenna. Thus, we collected60× 4 samples at each location,
namely 60 samples per antenna’s orientation (North, East,
South, West).

D. Experimental Results

The resolution achieved using our location detection system
is depicted in the contour map shown in Fig. 11. Resolution
is defined as the (Euclidean) distance between the location
resolved by the system and the actual user’s location. In the
figure, the resolution varies from 0 ft. to 70 ft. A darker shade

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Resolution (x 10 feet)

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Proposed system 

Proximity−based system 

Fig. 10. Cumulative distribution function of the resolution achieved in two
location detection systems.

corresponds to a higher resolution. The confidence level is
90%, i.e., at each position, at least 90% of the samples achieve
the shown resolution. Although our system consists of only
four transmitters, we observe that it achieves a reasonable
resolution, most of the time within 50 ft. As expected, the
resolution becomes coarser in areas that are distant from any
of the discrete points.

As a basis of comparison, we also evaluate the resolu-
tion obtained with a simple proximity-based scheme. In this
scheme, a user resolves its location to be that of its “closest”
transmitter, that is, the transmitter from which it correctly
receives the largest number of packets. Fig. 10 shows the
cumulative distribution function (CDF) of the resolution for
our proposed system and the proximity-based system. We
observe that a larger number of positions are within a given
error distance in our system than in the proximity-based
system. This non-negligible gain in resolution is achieved
through the sole use of identifying code techniques, and, thus,
illustrates how judicious use of coding-theoretic approaches
can contribute to improving the performance of location-
detection systems.

IX. CONCLUSION

Robust location detection is an integral capability of a vari-
ety of wireless sensor network applications. In this paper, we
have proposed a new framework for providing robust location
detection in these systems and other harsh environments, based
on the theory of identifying codes. Our approach involves
overlapping sensor coverage so that each position on a floor
is covered by a unique, and hence identifying, set of sensors.

We have proposed a polynomial-time algorithm, ID-CODE,
for determining sensor placement by generating a corre-
sponding irreducible identifying code. Since sensors may get
destroyed and the connectivity between different positions
may vary in dynamic environments, we have also introduced
the new concept ofr-robust identifying codes. These codes
can tolerate up tor errors during the collection of ID
packets, at any given position, while still providing accu-
rate location information. We have thus provided a more
generalized algorithm, known asr-ID-CODE, for generating
irreducibler-robust identifying codes in polynomial time.



10

0

1

2

3

108
  ft. 

250 ft. 

20 ft. x 

Fig. 11. Resolution (0-70 feet) of the proposed system with a 90% confidence level. Circles with crosses are transmitters; plain circles are locatable points.

The performance of our algorithms has been evaluated
through extensive simulations on random graphs of varying
sizes and varying average degrees. We have found that, for
a wide range of parameters, the solution provided by our
algorithms is close to a known theoretical lower bound and
hence close to the optimal solution. We have also shown
how the ID-CODE andr-ID-CODE algorithms can be run
in a fully distributed fashion. The key property of these
algorithms is that a sensor can determine its status by limiting
its communication to nodes that are within a ball of bounded
radius around it. Through simulations, we have shown that
the distributed algorithms converge fairly quickly to solutions
that are comparable to those produced by their centralized
counterparts.

Finally, we have provided preliminary experimental evi-
dence of the feasibility of our approach. We have built a small
testbed, based on four wireless transmitters, and showed how
to determine a connectivity graph and identifying code for
it. Although the main targeted application of our identifying
code methodology is in augmenting the robustness of current
location detection systems, our experiments have shown that
it may also be helpful in increasing their resolution. As part
of our future work, we plan to extend our testbed to dozens of
Berkeley mote sensors [21] to empirically examine tradeoffs
between robustness and resolution.

ACKNOWLEDGMENT

The authors would like to thank Dr.’s M. Karpovsky and
L.B. Levitin for introducing them to identifying codes, F.
De Pellegrini for fruitful discussions while developing the
ID-CODE algorithm, and C. Malladi for experiments on the
testbed.

REFERENCES

[1] J.M. Kahn, R.H. Katz, and K. S. J. Pister, “Next century challenges:
mobile networking for ‘smart dust’,” inACM MOBICOM, Seattle, WA,
United States, 1999.

[2] D. Estrin, D. Culler, and K. Pister G. Sukhatme, “Connecting the
physical world with pervasive networks,”IEEE Pervasive Computing,
vol. 1, no. 1, pp. 59–69, Jan.-March 2002.

[3] M.G. Karpovsky, K. Chakrabarty, and L.B. Levitin, “A new class of
codes for identification of vertices in graphs,”IEEE Trans. on Info.
Theory, vol. 44, no. 2, pp. 599–611, March 1998.

[4] S. Ray, R. Ungrangsi, F. De Pellegrini, A. Trachtenberg, and D. Starobin-
ski, “Robust location detection in emergency sensor networks,”IEEE
INFOCOM, April 2003.

[5] I. Charon, O. Hudry, and A. Lobstein, “Minimizing the size of
an identifying or locating-dominating code in a graph is NP-hard,”
Theoretical Computer Science, vol. 290, no. 3, pp. 2109–2120.

[6] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins,Global Posi-
tioning System: Theory and Practice, Springer-Verlag, 4 edition, 1997.

[7] R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The active badge
location system,” ACM Trans. on Info. Systems, vol. 10, no. 1, pp.
91–102, Jan. 1992.

[8] S. Long, R. Kooper, G.D. Abowd, and C.G. Atkeson, “Rapid prototyping
of mobile context-aware applications: The Cyberguide case study,” in
ACM MOBICOM, July 1996.

[9] R. Azuma, “Tracking requirements for augmented reality,”Communi-
cation of the ACM, vol. 36, no. 7, pp. 50–51, July 1993.

[10] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, “The
anatomy of a context-aware application,” inACM MOBICOM, Aug.
1999.

[11] N.B. Priyantha, A. Chakraborty, and H. Balakrishnan, “The cricket
location-support system,” inACM MOBICOM, Boston, MA, 2000.

[12] P. Bahl and V.N. Padmanabhan, “RADAR: An in-building RF-based
user location and tracking system,” inIEEE INFOCOM, Tel Aviv, Israel,
2000.

[13] J. Hightower, G. Borriello, and R. Want, “SpotON: An indoor 3D
location sensing technology based on RF signal strength,” Tech. Rep.
#2000-02-02, University of Washington, Feb. 2000.

[14] P. Castro, P. Chiu, T. Kremenek, and R.R. Muntz, “A probabilistic
room location service for wireless networked environments,” inACM
UbiComp, Atlanta, GA, 2001.

[15] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less low cost outdoor
localization for very small devices,” Tech. Rep. 00-729, University of
Southern California/Information Sciences Inst., April 2000.

[16] I. Charon, O. Hudry, and A. Lobstein, “Identifying codes with small
radius in some infinite regular graphs,”The Electronic Journal of
Combinat., vol. 9, 2002.

[17] K. Chakrabarty, S.S. Iyengar, H. Qi, and E. Cho, “Grid coverage for
surveillance and target location in distributed sensor networks,”IEEE
Trans. on Computers, vol. 51, no. 12, pp. 1448–1453, Dec. 2002.

[18] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M.B. Srivastava,
“Coverage problems in wireless ad-hoc sensor networks,” inIEEE
INFOCOM, April 2001.

[19] S. Meguerdichian, S. Slijepcevic, V. Karayan, and M. Potkonjak, “Lo-
calized algorithms in wireless ad-hoc networks: Location discovery and
sensor exposure,” inACM MOBICOM. Oct. 2001, pp. 106–116, ACM.

[20] R. Ungrangsi, “Location detection in emergency sensor networks using
robust identifying codes,” M.S. thesis, Boston University, 2003.

[21] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for network sensors,” inACM ASPLOS,
Nov. 2000.



11

Saikat Ray received B.Tech degree from Indian
Institute of Technology, Guwahati, India and M.S.
degree from Boston University, in 2000 and 2002
respectively. Currently, he is working towards his
PhD degree in Electrical and Computer Engineer-
ing, also at Boston University. He was a summer
intern at Microsoft Research, Cambridge and Fujitsu
Networking Inc. in 2003 and 2001 respectively. His
research interest centers around wireless networking.

David Starobinski received his Ph.D. degree from
the Technion-Israel Institute of Technology, in 1999.
In 1999-2000 he was a post-doctoral fellow at the
University of California, Berkley. Currently, he is
an Assistant Professor at Boston University. He is a
recipient of the NSF CAREER award and has been
on the Program Committee of IEEE Infocom. His
research interests are in networks performance eval-
uation, traffic engineering, and wireless networking..

Ari Trachtenberg received his Ph.D. and M.S.
degrees in Computer Science from the University of
Illinois at Urbana/Champaign, in 2000 and 1996, re-
spectively, and his S.B. from MIT in 1994. Currently,
he is an Assistant Professor at Boston University.
His research interests include the application of
coding theory to networks, data synchronization and
location detection. He was the recipient of Mavis
Memorial Fund Scholarship in 1999, the David J.
Kuck Outstanding Thesis award in 2000, and the
NSF CAREER award in 2002.

Rachanee Ungrangsi received her B.Eng. from
Prince of Songkhla University, Thailand in 2000,
and the M.S. degree from Boston University in
2003, both in Computer Engineering. She is now
an instructor with the Computer Science program
at Shinawatra University, Thailand. Her research
interests include ubiquitous computing, sensor net-
works and wireless networks. Her current focus is
on experimenting with different ways of gathering
and using contextual information.


