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Abstract— We consider the problem of generating aconnected
robust identifying code of a graph, by which we mean a subgraph
with two properties: (i) it is connected, (ii) it is robust identifying,
in the sense that the (subgraph-) induced neighborhoods of any
two vertices differ by at least 2r + 1 vertices, where r is the
robustness parameter. This particular formulation builds upon a
rich literature on the identifying code problem but adds a prop-
erty that is important for some practical networking applic ations.
We concretely show that this modified problem is NP-complete
and provide an otherwise efficient algorithm for computing it
for an arbitrary graph. We demonstrate a connection between
the the sizes of certain connected identifying codes and error-
correcting code of a given distance. One consequence of thisis
that robustness leads to connectivity of identifying codes.

I. I NTRODUCTION

Although introduced only twelve years ago [1], identifying
codes have been linked to a number of deeply researched theo-
retical foundations, including super-imposed codes [2], cover-
ing codes [1, 3], locating-dominating sets [4], and tilings[5–
8]. They have also been generalized and used for detecting
faults or failures in multi-processor systems [1], RF-based
localization in harsh environments [9–11], and routing in
networks [12].

Within a number of these contexts, particularly those re-
lated to networking, it is important for the codewords of an
identifying code to be connected, meaning that it is possible
to transmit packets between codewords without going through
non-codewords. The reason for this additional requirementis
that codewords generally correspond to active or otherwise
privileged nodes in the network, and the use of non-codewords
for communication introduces inefficiencies (energy, commu-
nication, congestion, etc.), an important issue that has not
largely been considerd in previous works. As such, we con-
sider the problem of generating aconnectedrobust identifying
code (CRIC) for an arbitrary graph, whererobust identifying
codes [10] are variants that maintain identifiability even in the
presence of a limited number of topological distortions.

We produce bounds on the size of a CRIC, based on bounds
on the parameters of error-correcting codes. For increasing
robustness, these bounds converge to the size of the best robust
idenifying codes, meaning that robustness leads to connectivity
for these codes.

We begin in Section II with a review of the related literature.
In Section III we formally describe identifying codes, followed

by a brief review of existing algorithms for generating them.
We outline a proof that this new problem is NP-complete in
Section IV, and in Section V we propose an efficient approx-
imation algorithm for its solution. Finally, in Section VI we
apply coding-theoretic bounds to our algorithmic framework
in order to provide bounds on the sizes of the best connected
identifying codes.

II. RELATED WORK

There is extensive theoretical work on identifying codes in
the literature. In [13, 14] identifying codes are proved to be
NP-complete by reduction from the 3-satisfiability problem.

Karpovsky et al [1] provide information theoretic lower
bounds on the size of identifying codes over generic graphs
and some specific graph topologies like meshes. The works
in [2, 15–17] derive upper/lower bounds on size of the mini-
mum identifying codes, with some providing graph construc-
tions based on relating identifying codes to superimposed
codes. The work in [17] focuses on random graphs, providing
probabilistic conditions for existence together with bounds.

Many variants of identifying codes are defined and studied
in the literature: arobust identifying code [3, 10] is resilient
to changes in the underlying graph, a(1, l ≥ 0)-identifying
code [2, 15] uniquely identifies any subset of at mostl vertices,
a ρ radius identifying code [1] uniquely identifies every vertex
using the set of all codewords within distanceρ or less from
the vertex, and a dynamic identifying code [3] is a walk whose
vertices form an identifying code.

Identifying codes are also proposed for various applications.
The authors in [10] suggest application of identifying code
theory for indoor location detection. They introduce robust
identifying codes which are supposed to remain functional in
case of failure of a limited number of codewords. They also
present a heuristic which creates robust identifying codesfor
an arbitrary graph. The work in [12] uses the same technique
for indoor location detection, although the authors introduce
a more efficient algorithm for generation of robust identi-
fying codes. They also suggest an additional application of
identifying codes for efficient sensor labeling for data routing
in the underlying sensor network. Both references implicitly
assume that a sensor network can route location detection
data toward a sink, which is not satisfied in sensor networks
where only vertices corresponding to codewords are active.
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Since we will use the algorithms in [10, 12] for generating
an identifying code, we will review their techniques in more
detail in Section III-B.

The work in [18] studies the problem of sensor placement
in a network which may be a water supply network or an air
ventilation system with potential contamination source(s) such
that the contamination source is identified under either of the
following constraints:

• sensor-constrained versionwhere the number of sensors
is fixed and the identification time has to be minimized,

• time-constrained versionwhere the identification time is
limited and the number of sensors has to be minimized.
The later version of this problem is shown to be a variant
of the identifying code problem [19].

Our work in [20] also introduced the concept of a connected
identifying code within its networking applications.

Identifying codes are also linked to superimposed codes [1,
2, 15–17], dominating sets [21], locating dominating sets [22],
the set cover [19, 23] and the test cover problem [19, 23] and
r-robust identifying codes are linked to error correcting codes
with minimum Hamming distance2r + 1 [10] and the setr-
multi-cover problem [23].

Of these, the locating dominating sets are closest in flavor to
identifying codes, and indeed Suomela [21] links identifying
codes and locating dominating sets to dominating sets and
shows that it is possible to approximate both problems within
a logarithmic factor, and that sub-logarithmic approximation
ratios are intractable.

There is also considerable work regarding generation of
dominating sets and connected dominating sets [24, 25], but
these results do not apply directly to connected identifying
codes, since not every dominating set is an identifying code. In
other words, the optimal identifying code generally has larger
cardinality than that of the optimal dominating set.

III. B ACKGROUND

In this section, first we formally describe identifying codes.
Then we briefly review two existing algorithms that we use
for generating connected identifying codes.

A. Definitions

Consider a graphG with a set of verticesV and a set
of edgesE such that every vertex inV is designated either
a codewordor a non-codeword, the set of codewords being
denotedI subseteqV . An identifying setfor vertex v ∈ V
is the set of all codewords that are within distance one from
v (this includes nodev itself and all of its neighbors). If the
identifying set for every vertex is unique and non empty, we
call I an identifying code. It is also the case that every super-
set ofI is an identifying code [10].

It is not difficult to verify that for the graph and codewords
shown in Figure 1, the identifying set for every vertex of the
graph is unique, i.e., the identifying set for vertexa is {a},
for vertex b is {a, c} and so on. The location of a target can
be identified at every region using a look up table that maps
identifying sets to vertex IDs.
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Fig. 1. An example building floor plan and connectivity graphof sensors
located at positions marked by circles. The filled circles represent codewords
of an identifying code for the sensor network connectivity graph. The dashed
lines show the boundaries of distinguishable regions basedon the radio range
of the active sensors.

An identifying code I over a given graphG(V, E) is
said to ber-robust if it remains an identifying code after
we arbitrarily add or remove up tor vertices in V to (or
from) every identifying set, i.e.SI(u)∆V1 6= SI(v)∆V2

for every u 6= v ∈ V and everyV1, V2 ⊂ V such that
|V1|, |V2| ≤ r, where operator∆ is the (set) symmetric
difference operator. Theminimum symmetric differenceof an
identifying codeI, dmin(I), is defined to be the minimum
symmetric difference between every pair of identifying sets,
i.e. dmin(I) = minu6=v∈V |SI(u)∆SI(v)|. It is shown in [10]
that an identifying codeI is r-robust if and only ifdmin(I) ≥
2r+1, and that every super-set of anr-robust identifying code
I is anr-robust identifying code.

B. Existing algorithms

Next, we briefly review two existing algorithms that have
polynomial complexity in terms of graph size and generate an
identifying code for an arbitrary graph if one exists [10, 12].
We refer the reader to the cited references for further details.

Algorithm ID-CODE introduced in [10] initially assigns all
verticesV in the input graph as codewords, and then checks,
one by one, whether each vertex can be removed from the code
without losing the identifying property. This greedy algorithm
produces anirreducible code, meaning that no codeword may
be removed from it while still keeping it an identifying code.
The algorithm can be trivially modified to yieldr-robust codes
by changing the greedy criterion accordingly.

Algorithm rID, presented in [12] initially calculates the
identifying set of every vertex, assuming that all verticesare
codewords. It associates with every vertexv in V the set
of vertex pairs which it can identify, i.e., one vertex in the
pair is adjacent tov and the other is not. The algorithm
iteratively forms an identifying code by selecting the vertex
that identifies the most pairs. Using a similar approximation
to the set coverproblem [26], the authors in [12, 23] prove
that rID achieves a logarithmic approximation ratio upper
bounded byc1 ln |V | and lower bounded byc2 ln |V | for some
constantsc1 > c2 > 0. They also show that this bound is tight
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Fig. 2. GraphG with four vertices on top and constructed graphGt with
nine vertices. Vertexs connects verticesa′, b′, c′ andd′ in subgraphG′ and
verticesa′′, b′′, c′′ andd′′ in subgraphG′′ by edges that are shown dashed.

unlessNP ⊂ DTIME(nlg lg n). A robust version ofrID is
also presented in [12] using a reduction to the set multi-cover
problem [26].

IV. NP-COMPLETENESS

Theorem 4.1:Given any graphG and an integerk, the
decision problem of the existence of a connected identifying
code with cardinality at mostk in G, is NP-complete.

PROOF. Polynomial verification of a connected identifying
code solution over any given graphG is straightforward. The
rest of the proof is based on a reduction from the identifying
code problem, whose decision instance has been shown to be
NP-complete [13, 14].

Consider the problem of existence of an identifying codeI
with cardinality at mostk over any given graphG(V, E). We
construct a graphGt(Vt, Et) from G as follows:

• We construct two graphsG′(V ′, E′) andG′′(V ′′, E′′) as
direct copies ofG.

• We add a vertexs to Gt such thats connects all vertices
V ′ and all verticesV ′′.

Clearly the transformation fromG to Gt is polynomial and
takesO(4|V |+ 2|E|) time since|Vt| = 2|V |+ 1 and |Et| =
2|E| + 2|V |. Figure 2 demonstrates our construction for a
sample instance ofG.

A careful analysis, which has been omited for sake of
brevity, can show that there exists an identifying code with
cardinality at mostk in G if and only if there exists a
connected identifying code with cardinality at most2k + 1
in Gt.

�

V. A LGORITHM ConnectID

A. Model and notation

For our purposes, we assume an undirected connected graph
G(V,E) (or G in short). Theredundancy ratioof a connected
identifying codeIc and a subset identifying codeI ⊆ Ic is

defined asR = |Ic|/|I| ≥ 1, with equality meaning thatI is
connected.

A maximal component of connectivity(or a component in
short)C of I in graphG is a subset of codewords inI such that
the subgraph ofG induced by this subset is connected, and any
superset ofC is not connected. For the example of Figure 1,
we haveI = {a, c, d, f, g, h} with components of connectivity
C1 = {a}, C2 = {c}, C3 = {d} andC4 = {f, g, h}.

A plain pathbetween componentsC1 andC2 is an ordered
subset of non-codeword vertices inV that forms a path
connecting a vertexx1 ∈ C1 to a vertex x2 ∈ C2. By
distinction, apath may include codewords or non-codewords.
As an example, in Figure 1,{a, b, e, f} and {a, j, f} are the
only plain paths between componentsC1 and C4. The path
{a, j, f, e, d} is not a plain path betweenC1 andC3 because
f is a codeword.

The distance between a given pair of components, say
C1 and C2, denoteddist(C1, C2), is defined to be the
number of edges on the shortest plain path betweenC1

and C2. If there is no plain path betweenC1 and C2,
then dist(C1, C2) = ∞. As an example, in Figure 1,
dist(C1, C2) = 2, dist(C1, C3) = 3 anddist(C1, C4) = 2.

B. Algorithm description

We present algorithmConnectID in the format of a function
which receives the set of codewords of an identifying code
I for a given graphG and returns the set of codewords of
a connected identifying codeIc. First, we present algorithm
ConnectID informally:

In the initialization phase, functionConnectID(G, I) parti-
tions the identifying codeI into a set ofN distinct components
of connectivity{C1, C2, ..., CN} where1 ≤ N ≤ |I|. Note
that our standing assumption that G is connected implies that
every pair of components is connected by some path inG.

We defineC to be a set that stores the growing connected
identifying code, initialized to the set of codewords in oneof
the components, sayC1. We shall useĈ to denote the set of
all components whose codewords arenot yet includedin C,
meaning thatĈ can be initialized to{C2, ..., CN}.

At every iteration, we first update the distancedist(C, Cj)

betweenC and every componentCj in Ĉ. Then, we ex-
tract from Ĉ the componentC∗ with minimum dist(C, C∗)
(breaking ties arbitrarily). We assign as codewords all vertices
on the shortest plain path connectingC and C∗ denoted
path∗(C, C∗), and unite the codewords inC and C∗ and
path∗(C, C∗) into C. After this step, we examine if there
are any other components in̂C which become connected toC
via the newly selected codewords onpath∗(C, C∗). We define
Γ ⊆ Ĉ to be the set of such components. IfΓ is non-empty,
we uniteC with the components inΓ and extract them from
Ĉ. The iteration above is repeated until̂C becomes empty
and the function returns returns the connected identifyingcode
Ic = C ⊇ I.

More formally: Algorithm ConnectID(G, I):
Initialization:
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Fig. 3. Progress ofConnectID(G, I). The filled circles represent codewords
of an identifying codeI for the illustrated graphG (a) initially, I is partitioned
to componentsC1 = {a}, C2 = {c}, C3 = {d} andC4 = {f, g, h}. We
setC = {a} and bC = {C2, C3, C4} (b) C = {a, b, c} and bC = {C3, C4}
(c) C = {a, b, c, d, e, f, g, h} and bC = {}.

1) PartitionI into a unique set of components of connec-
tivity {C1, C2, ..., CN} where1 ≤ N ≤ |I|.

2) SetĈ ← {C2, ..., CN}.
3) SetC ← C1.

Iteration:

7) While Ĉ is not empty,
8) Updatedist(C, Cj) andpath(C, Cj) for every

Cj ∈ Ĉ and setC∗ ← arg min
Cj∈ bC

dist(C, Cj).

9) Extract componentC∗ from Ĉ.
10) SetC ← C ∪ C∗ ∪ path∗(C, C∗).
11) Find the setΓ ⊆ Ĉ of components that are connected

to C.
12) If Γ is not empty,
13) For every componentCj ∈ Γ,
14) ExtractCj from Ĉ.
15) SetC ← C ∪ Cj .
16) ReturnIc ← C.

Example.Figure 3 shows the progress ofConnectID(G, I)
for the same graph and the same input identifying code as
shown in Figure 1. In this example, we initialize the algorithm

having components

C1 = {a}

C2 = {c}

C3 = {d}

C4 = {f, g, h},

This way C = C1 and Ĉ = {C2, C3, C4} as shown in
Figure 3(a). At first iteration, after we calculate the distance
betweenC and all components in̂C at line 8, giving:

dist(C, C2) = 2

dist(C, C3) = 3

dist(C, C4) = 2.

At line 9, we extract one component with minimumdist
from Ĉ, which may beC2 or C4 (we arbitrarily chooseC2).
Then, we uniteC and C2 and vertexb at line 10. Hence,
C = {a, b, c} as illustrated in figure 3(b). There are no
components inĈ that are connected toC at this stage, i.e.
Γ = {}, and we return back to line 7. We update distances
and paths again:dist(C, C3) = 2 anddist(C, C4) = 2. We
extract the component with minimumdist, which may be
C3 or C4 (we chooseC3). We uniteC and C3 and vertex
e and obtainC = {a, b, c, d, e}. Then, we examine the only
component remaining in̂C which is C4 to see if it is now
connected toC. We getΓ = C4 and we uniteC andC4 at line
15. Finally, in figure 3(c) we haveC = {a, b, c, d, e, f, g, h}
which is the connected identifying codeIc output by the
algorithm.

Algorithm ConnectID resembles the Prim’s algorithm for
constructing the minimum spanning tree of a graph [27], but
has some fundamental differences in the manner in which it
grows the connected code and how it handles the connected
components.

C. Performance analysis

The correct functioning ofConnectID is based upon two
fundamental properties of identifying codes.

Lemma 5.1:Consider any identifying codeI that is par-
titioned into a set of components of connectivityP =
{C1, ..., C|P |} over graphG. If |P | > 1, then every component
Ci ∈ P is at most three hops away fromsome other
componentCj ∈ P .

Lemma 5.2:If vertex v is adjacent to componentCi ∈ P
and |Ci| = 1, then v is necessarily adjacent tosome other
componentCj ∈ P .

As a straightforward corollary,
Corollary 5.3: If |P | > 1, then every componentCi ∈ P

with |Ci| = 1 is at most two hops away from some component
Cj ∈ P with j 6= i.

Lemmae 5.1 and 5.2 hold for every identifying codeI
over graphG, and specifically right after the initialization of
algorithm ConnectID. Since at every iteration, we add one
or more codewords and do not remove any codeword, the set
of codewords inC and in every component of̂C forms an
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identifying code. Hence, Lemmas 5.1 and 5.2 invariably hold
after every iteration.

The overall analysis of our algorithm is summarized in the
following theorem, which is based on Lemmae 5.1 and 5.2.

Theorem 5.4:Given an identifying codeI on graphG and
Ic = ConnectID(G, I), then

i) Ic is a connected identifying code.
ii) Ic ⊃ I
iii) |Ic| ≤ 2|I| − 1, where− denotes set difference. This

bound is tight.
We omit most of the proof of the theorem for sake of brevity,

but the tightness of its bound iii follows from consideration
of a ring topology with2k vertices, for a positive integerk.
The optimal identifying code for such a graph consists ofk
maximally separated vertices (i.e. every other vertex is inthe
code), whereas the connected identifying code for this graph
must necessarily contain all but one vertex (i.e.2k−1 in total).

Corollary 5.5: For Ic = ConnectID(G, I), the redundancy
ratio

R = |Ic|/|I| ≤ 2.
If the input identifying codeI to ConnectID(G, I) is an

identifying code achieved by the algorithm in [12], then we
have |I| ≤ c |I∗| ln |V | wherec > 0 is a constant,I∗ is the
identifying code with minimum cardinality for graphG and
|V | is the number of vertices in graphG. We defineI∗c to be
the connected identifying code with minimum cardinality in
graphG. Since|I∗c | ≥ |I

∗|, we have the following corollary.
The following corollary follows from applyingConnectID

to the the identifying code produced by the algorithm in [12],
and carrying over its approximation guarantee.

Corollary 5.6: For an optimal connected codeI∗c and an
identifying codeI≈ produced by [12]:

ConnectID(G, I≈)

I∗c
≤ k |I∗c | ln |V |,

for a constantk > 0.

VI. B OUNDS

The properties ofConnectID ensure that it produces a
connectedrobustcode if it is given a robust code as an input.
In this section, we combine the results of the algorithm with
well-known coding theoretic bounds to derive bounds on the
sizes of connected robust identifying codes. We show that
as robustness increases, the resulting codes are increasingly
connected.

Recall our notation that anr-robust identifying codeI over
graphG can be partitioned into connected componentsP =
{C1, ...C|P |}. We defineSmin(I) (or just Sminin context) to
be the minimum non-unitary size of a connected component:

Smin(I) = min
j s.t. |Cj |>1

|Cj |.

Our upper bound on the cardinality ofIc depends onSmin,
for which we shall provide bounds later in this section.

Theorem 6.1:The connected identifying codeIc =
ConnectID(G, I) produced by our algorithm from anr-robust

identifying codeI satisfies

|Ic| ≤ (1 +
2

Smin

) |I| −
2

Smin

.

The proof of the theorem is based on the following lemma.
Lemma 6.2:Given anr ≥ 1-robust identifying codeI with

connected componentsP = {C1, ..., C|P |}, there may be at
most one componentCi with cardinality one.

PROOF. [Theorem 6.1] IfI is already connected, the bound
follows trivially. Otherwise, there are at least two components,
so thatĈ andC in the ConnectID algorithm are initially not
empty and, per Lemma 6.2, there is at most one component
with cardinality one.

Three scenarios are possible:
(i) ComponentC is initialized to the only component with

cardinality one. In this case, every component in̂C has
cardinality at leastSminand there are|I| − 1 codewords not
in C. Hence,Ĉ contains at most(|I| − 1)/Smin components
initially. Using a similar reasoning in Theorem 5.4 based on
Lemma 5.1,ConnectID adds at most two codewords per every
component that is initially inĈ, and the bound follows.

(ii) There is a component with cardinality one in̂C at initial-
ization.In this case, there are at most|I|−Smin codewords not
in C initially. We add at most one codeword for the component
with cardinality one inĈ based on Lemma 5.2. There are at
most(|I| − Smin− 1)/Smin other components in̂C initially.
Therefore, we add at most2(|I|−Smin−1)/Smin codewords
plus one codewords for the component with cardinality one to
|I|, leading to the desired bound.

(iii) There is no component with cardinality one.In this case,
there are at most(|I|−Smin)/Smin components in̂C initially,
and we add at most two codewords per every component in
Ĉ leading to the bound.

�

The valueSmin is lower bounded by the minimum size of
an r-robust identifying code with more than one codeword,
which, in turn, is related to the size of a minimum error-
correcting code, as expressed in the following lemma. Recall
that the characteristic vector of a set is the binary vector whose
i-th bit is 1 if and only if thei-th element of a given universe
(in this case, the set of vertices in the graph) is in the set.

Lemma 6.3:The characteristic vectors of the identifying
sets of anr-robust identifying codeI form a binaryr-error
correcting code of length|I|. The reverse does not necessarily
hold.

With the aid of Lemma 6.3, we can form a relationship
betweenSmin and the coding-theoretic functionA(n, d) de-
noting the maximal size of a (binary) code of lengthn and
minimum distanced. This leads us to our theorem linking
bounds on connected identifying codes and error-correcting
codes.

Theorem 6.4:Given the upper boundf(n, d) on the max-
imum size A(n, d) of binary code of lengthn and (odd)
minimum distanced, andany d−1

2 -robust identifying codeI:

Smin(I) ≥ arg min
q>1

(q ≤ f(q, d)).
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PROOF. The proof is based on the following relation between
identifying codes and error correcting codes. For any given
r ≥ 0-robust identifying codeI with n codewords over an
arbitrary graphG, we know from [10] thatdmin(I) ≥ 2r +1,
meaning that the characteristic vectors of at leastn identifying
sets are at Hamming distanced = 2r+1 from one another. In
other words, anr-robust identifying code withn codewords
over any given graphG exists only if an r-error correcting
code exists with lengthn and A(n, d = 2r + 1) ≥ n
codewords.

Let qmin = arg minq>1(q ≤ f(q, d)). If qmin = 2, then
Smin ≥ qmin trivially since Smin is an integer strictly larger
than 1. Otherwise, forqmin > 2, it must be, by definition, that
q′ > f(q′, d) ≥ A(q′, d) for everyq′ such that1 < q′ < qmin.
In other words, for theseq′ there does not exist ar-error
correcting code of lengthq′ with q′ codewords, and, by the
above logic, there does not exist anr-robust identifying code
with q′ codewords (over a graph withq′ vertices). This means
that Smin > q′ for all 1 < q′ < qmin, or, more succinctly,
Smin ≥ qmin, proving the theorem. �

Having established a connection between connected iden-
tifying codes and error-correcting codes, we can now link
Theorem 6.4 with Theorem 6.1 with the well-known bounds
on A(n, d) from the coding theory literature.

The following bound is based on the Singleton bound [28]
that A(n, d) ≤ 2n−d+1

Corollary 6.5:

Smin ≥ −
W−1(−2−2r ln 2)

ln 2
≈ d− 1 + log2(d− 1),

where W−1(·) is the negative branch of the Lambert W
function [29].

PROOF. By the Singleton bound applied to Theorem 6.4,

Smin ≥ arg min
q>1

(
q ≤ 2q−2r

)
.

Minimizing the right hand side is equivalent to minimizing
(for q > 1):

q2−q ≤ 2−2r

(−q ln 2)e(−q ln 2) ≥ −2−2r ln 2.

Since−q ln 2 ≤ −1, the solution involves the negative branch
of the Lambert W function, giving

(−q ln 2) ≤W−1(−2−2r ln 2)

q ≥ −
W−1(−2−2r ln 2)

ln 2
.

Using the three most significant terms of a series expansion
for W−1[30], namelyW−1(z) ≈ ln(−z) − ln(−ln(−z)) +
ln(−ln(−z))

ln(−z) the theorem is proved. �

One can similarly apply other coding-theoretic upper
bounds, such as the Hamming bound [28] to get different
lower bounds forSmin. Using some best known codes, we
can get a good result with simpler exposition.

Lemma 6.6:Smin(I) ≥ d + 3.

PROOF.
We relate this analysis tor-error correcting codes as before.

For robustnessr = 1, Smin is at least six because no binary
code construction with lengthn = 5 exists that achieves at
least five identifying sets1 with minimum Hamming distance
d = 3, i.e., A(5, 3) < 5 [28]. For code lengthn = 6, we
have A(6, 3) ≥ 6. For example the lexicode [28, 31] has8
identifying sets. This impliesSmin ≥ 6 for r = 1.

For a lower bound onSmin (for r > 1), let us assume, for
sake of argument, that it is impossible to produceq different
identifying sets at distances2r + 1 from one another usingq
codewords, i.e.,A(q, 2r + 1) < q. This implies that in every
collection ofq identifying sets built byq codewords, there is
at least a pair of identifying sets with Hamming distance of at
most 2r. For every additional codeword we can increase the
Hamming distance between every pair of identifying sets by at
most one. Therefore, in every collection ofq identifying sets
built by q +2 codewords, there is at least a pair of identifying
sets with Hamming distance of at most2r + 2, i.e., A(q +
2, 2r + 3) < q < q + 2. Hence, it isnecessaryto add at
least two codewords for every additional degree of robustness.
The lemma follows by induction starting withSmin ≥ 6 for
r = 1 and adding two codewords to the lower bound for every
increment in robustness. �

Combining Theorem 6.1 with Lemma 6.6 we have the
following simple bound on the size of a connected code
generated by our algorithm.

Theorem 6.7:Given anr ≥ 1-robust identifying codeI,

|ConnectID(G, I)| ≤ (1 +
1

r + 2
) |I| −

1

r + 2
.

Tables I and II summarize the lower bounds onSmin and
the corresponding upper bounds on the redundancy ratioR for
a few values of robustnessr based on the best codes known
in Appendix A of [28], Lemma 6.6, the Singleton bound and
the Hamming bound.

TABLE I

LOWER BOUND ONSMIN AND UPPER BOUND ON REDUNDANCY RATIOR

OF CONNECTED IDENTIFYING CODEIc VS. ROBUSTNESSr FOR BEST

CODES KNOWN AND FROMLEMMA 6.6.

best codes known Lemma 6.6
r Smin Redundancy ratio Smin Redundancy ratio
1 6 4/3 6 4/3
2 10 6/5 8 5/4
3 14 8/7 10 6/5
4 18 10/9 12 7/6

We observe that with increase ofr, Smin increases and
the upper bound on|Ic| becomes closer to|I|. This implies
for larger robustnessr, I tends to be more connected and
we usually require fewer additional codewords to make it
connected. Furthermore, according to corollary 6.7 for large
values of robustnessr, |Ic| tends to|I|.

1These are calledcodewordsin the context of coding theory, but we
maintain the identifying set terminology for sake of consistency.



7TABLE II

LOWER BOUND ONSMIN AND UPPER BOUND ON REDUNDANCY RATIOR

OF CONNECTED IDENTIFYING CODEIc VS. ROBUSTNESSr USING THE

SINGLETON BOUND AND THE HAMMING BOUND .

Singleton bound Hamming bound
r Smin Redundancy ratio Smin Redundancy ratio
1 4 3/2 5 7/5
2 7 9/7 9 11/9
3 10 6/5 12 7/6
4 12 7/6 15 17/15

VII. C ONCLUSION

In this work we have developed an approach for generating
connected robust identifying codes from a given robust identi-
fying code for a graph. This problem has practical significance
in the application of identifying codes to networking problems,
such as routing, but it also provides connections with the
wealth of coding theory literature. Most notably, we show how
to use coding-theoretic bounds to provide bounds on connected
codes, with the interesting realization that increasing robust-
ness leads to increasing connectivity.
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