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Abstract— We consider the problem of generating aconnected by a brief review of existing algorithms for generating them
robust identifying code of a graph, by which we mean a subgraph \We outline a proof that this new problem is NP-complete in

with two properties: (i) it is connected, (ii) it is robust identifying, ; ; ; fficient approx-
in the sense that the (subgraph-) induced neighborhoods ofng _Sectt_lon I\I/, aqg |nfSe(_:tt|on \I/;l've pl;ngﬁe a_ln g i VFIJp
two vertices differ by at least 2r + 1 vertices, wherer is the imation algorithm for 1ts solution. Finally, In Section Viev

robustness parameter. This particular formulation builds upon a  apply coding-theoretic bounds to our algorithmic framewor
rich literature on the identifying code problem but adds a prop- in order to provide bounds on the sizes of the best connected
erty that is important for some practical networking applications.  jdentifying codes.

We concretely show that this modified problem is NP-complete

and provide an otherwise efficient algorithm for computing it II. RELATED WORK

for an arbitrary graph. We demonstrate a connection between . . . . L .
the the Sizes Of Certain Connected |dent|fy|ng Codes and - There IS extensive theoret'cal WOI’k on |dent|fy|ng COdeS n
correcting code of a given distance. One consequence of ths the literature. In [13, 14] identifying codes are proved ® b

that robustness leads to connectivity of identifying codes NP-complete by reduction from the 3-satisfiability problem
Karpovsky et al [1] provide information theoretic lower
bounds on the size of identifying codes over generic graphs
Although introduced only twelve years ago [1], identifyingand some specific graph topologies like meshes. The works
codes have been linked to a number of deeply researched thad2, 15-17] derive upper/lower bounds on size of the mini-
retical foundations, including super-imposed codes [@8}ec- mum identifying codes, with some providing graph construc-
ing codes [1, 3], locating-dominating sets [4], and tilifg§s tions based on relating identifying codes to superimposed
8]. They have also been generalized and used for detectowgles. The work in [17] focuses on random graphs, providing
faults or failures in multi-processor systems [1], RF-lshseprobabilistic conditions for existence together with bdsin
localization in harsh environments [9-11], and routing in Many variants of identifying codes are defined and studied
networks [12]. in the literature: arobust identifying code [3, 10] is resilient
Within a number of these contexts, particularly those rée changes in the underlying graph,(& > 0)-identifying
lated to networking, it is important for the codewords of anode [2, 15] uniquely identifies any subset of at nosdrtices,
identifying code to be connected, meaning that it is possité p radius identifying code [1] uniquely identifies every verte
to transmit packets between codewords without going tHrougsing the set of all codewords within distane®r less from
non-codewords. The reason for this additional requirengentthe vertex, and a dynamic identifying code [3] is a walk whose
that codewords generally correspond to active or otherwigertices form an identifying code.
privileged nodes in the network, and the use of non-codesvord Identifying codes are also proposed for various applicatio
for communication introduces inefficiencies (energy, cammThe authors in [10] suggest application of identifying code
nication, congestion, etc.), an important issue that has nbeory for indoor location detection. They introduce rdbus
largely been considerd in previous works. As such, we coiglentifying codes which are supposed to remain functional i
sider the problem of generatingcannectedobust identifying case of failure of a limited number of codewords. They also
code (CRIC) for an arbitrary graph, whembustidentifying present a heuristic which creates robust identifying cddes
codes [10] are variants that maintain identifiability everttie an arbitrary graph. The work in [12] uses the same technique
presence of a limited number of topological distortions.  for indoor location detection, although the authors intrcel
We produce bounds on the size of a CRIC, based on bouradsnore efficient algorithm for generation of robust identi-
on the parameters of error-correcting codes. For incrgasiiying codes. They also suggest an additional application of
robustness, these bounds converge to the size of the best roldentifying codes for efficient sensor labeling for datatiogl
idenifying codes, meaning that robustness leads to comitgct in the underlying sensor network. Both references impjicit
for these codes. assume that a sensor network can route location detection
We begin in Section Il with a review of the related literaturedata toward a sink, which is not satisfied in sensor networks
In Section 11l we formally describe identifying codes, falled where only vertices corresponding to codewords are active.

I. INTRODUCTION



Since we will use the algorithms in [10,12] for generating
an identifying code, we will review their techniques in more
detail in Section IlI-B.

The work in [18] studies the problem of sensor placement
in a network which may be a water supply network or an air
ventilation system with potential contamination sourfs(sh
that the contamination source is identified under eithehef t
following constraints:

« sensor-constrained versiomhere the number of sensors
is fixed and the identification time has to be minimized,
« time-constrained versiowhere the identification time is h
limited and the number of sensors has to be minimized.
The lat.er ve_rs_lon of this problem is shown to be a Vanarll][g. 1. An example building floor plan and connectivity graphsensors
of the identifying code problem [19]. located at positions marked by circles. The filled circlgzresent codewords
Our work in [20] also introduced the concept of a connectean identifying code for the sensor network connectivitggh. The dashed
. e . S . L lines show the boundaries of distinguishable regions basetie radio range
|dent|fy!ng code within its networkmg apphc.atlons. of the active sensors.
Identifying codes are also linked to superimposed codes [1,
2,15-17], dominating sets [21], locating dominating s, _ o _ _
the set cover [19, 23] and the test cover problem [19, 23] andAn identifying code I over a given graphG(V, E) is
r-robust identifying codes are linked to error correctingle® said to ber-robust if it remains an identifying code after
with minimum Hamming distancer + 1 [10] and the set- We arbitrarily add or remove up to vertices inV" to (or
multi-cover problem [23]. from) every identifying set, i.e.S;(u)AVy # Sp(v)AV,
Of these, the locating dominating sets are closest in flavorfor every u # v € V and everyVi,V, C V such that
identifying codes, and indeed Suomela [21] links identifyi [V1|,[V2| < r, where operatorA is the (set) symmetric
codes and locating dominating sets to dominating sets a@ifference operator. Theninimum symmetric difference an
shows that it is possible to approximate both problems withidentifying codel, d,...(I), is defined to be the minimum
a logarithmic factor, and that sub-logarithmic approximat Symmetric difference between every pair of identifyingsset
ratios are intractable. ie. dmm_(l) = minu¢vev_|SJ(U)ASJ_(v)|- It is sh_own in [10]
There is also considerable work regarding generation @fat an identifying code is r-robust if and only ifd,,,,, (I) >
dominating sets and connected dominating sets [24, 25], Butt1, and that every super-set of ammobust identifying code
these results do not apply directly to connected identifyin/ is anr-robust identifying code.
codes, since not every dominating set is an identifying cbde
other words, the optimal identifying code generally hagédar
cardinality than that of the optimal dominating set.

B. Existing algorithms

Next, we briefly review two existing algorithms that have
polynomial complexity in terms of graph size and generate an

I1l. BACKGROUND identifying code for an arbitrary graph if one exists [10].12

In this section, first we formally describe identifying cede We refer the reader to the cited references for further IBetai

Then we briefly review two existing algorithms that we use Algorithm ID-CODE introduced in [10] initially assigns all

for generating connected identifying codes. verticesV in the input graph as codewords, and then checks,
o one by one, whether each vertex can be removed from the code
A. Definitions without losing the identifying property. This greedy aligom

Consider a graphG with a set of verticesl’ and a set produces ainirreducible code, meaning that no codeword may
of edgesFE such that every vertex if¥ is designated either be removed from it while still keeping it an identifying code
a codewordor a non-codewordthe set of codewords beingThe algorithm can be trivially modified to yieldrobust codes
denoted! subseteqV. An identifying setfor vertexv € V' by changing the greedy criterion accordingly.
is the set of all codewords that are within distance one from Algorithm rID, presented in [12] initially calculates the
v (this includes node itself and all of its neighbors). If the identifying set of every vertex, assuming that all vertices
identifying set for every vertex is unique and non empty, weodewords. It associates with every vertexin V the set
call I anidentifying codelt is also the case that every superef vertex pairs which it can identify, i.e., one vertex in the
set of [ is an identifying code [10]. pair is adjacent tov and the other is not. The algorithm

It is not difficult to verify that for the graph and codewordsteratively forms an identifying code by selecting the eart
shown in Figure 1, the identifying set for every vertex of théhat identifies the most pairs. Using a similar approxinratio
graph is unique, i.e., the identifying set for vertexs {a}, to the set coverproblem [26], the authors in [12, 23] prove
for vertexb is {a,c} and so on. The location of a target carthat rID achieves a logarithmic approximation ratio upper
be identified at every region using a look up table that mapsunded by In |V| and lower bounded by, In |V'| for some
identifying sets to vertex IDs. constants:; > ¢y > 0. They also show that this bound is tight



a b d defined asRk = |I.|/|I] > 1, with equality meaning thaf is

connected.
A maximal component of connectivifgr a component in
c short)C' of I in graphG is a subset of codewords Insuch that

the subgraph of7 induced by this subset is connected, and any
superset o’ is not connected. For the example of Figure 1,
we havel = {a,c,d, f, g, h} with components of connectivity
Cy ={a}, Cy ={c}, C3={d} andCy = {f,g,h}.

A plain pathbetween components; andC, is an ordered
subset of non-codeword vertices Wi that forms a path
connecting a vertexr; € C; to a vertexaxy € Cs. By
distinction, apath may include codewords or non-codewords.
As an example, in Figure Xa,b,e, f} and{a,j, f} are the
only plain paths between componertis and Cy. The path
Fig. 2.  GraphG with four vertices on top and constructed graph with {a i, f,e d} is not a plain path betweefi; and C5 because
nine vertices. Vertex connects vertices’, b/, ¢’ andd’ in subgraph’ and [ 7d d
verticesa’’, b/, ¢’ andd’’ in subgraphG’’ by edges that are shown dashed.f IS a CO_ eword. ) )

The distance between a given pair of components, say
Cy and C,, denoteddist(Cy,Cy), is defined to be the

unlessN P ¢ DTIME(n'¢'8™). A robust version ofrID is humber of edges on the shortest plain path betwéegn

also presented in [12] using a reduction to the set multecovand Co. If there is no plain path between’; and Cs,
problem [26]. then dist(C:,C3) = oo. As an example, in Figure 1,
dist(Cl, Cg) =2, dist(C’l, 03) =3 anddist(C’l, 04) = 2.

IV. NP-COMPLETENESS

Theorem 4.1:Given any graphG and an integerk, the B- Algorithm description

decision problem of the existence of a connected idendfyin we present algorithrionnectID in the format of a function
code with cardinality at most in G, is NP-complete. which receives the set of codewords of an identifying code
gI for a given graphG and returns the set of codewords of

ProOF. Polynomial verification of a connected identifyin _ o : .
a connected identifying codé.. First, we present algorithm

code solution over any given gragh is straightforward. The . _
rest of the proof is based on a reduction from the identifying®?2ectID informally:

code problem, whose decision instance has been shown to bl the initialization phase, functiofonnectID(C, I) parti-
NP-complete [13, 14]. tions the identifying codé into a set of NV distinct components

of connectivity {C1,Cs,...,Cn} wherel < N < |I]. Note
that our standing assumption that G is connected impligs tha
every pair of components is connected by some patfi.in

We defineC' to be a set that stores the growing connected
identifying code, initialized to the set of codewords in mfe
the components, say,. We shall useC' to denote the set of
all components whose codewords a@ yet includedn C,
meaning thatC' can be initialized to{Cy, ..., Cn }.

At every iteration, we first update the distantist(C, C;)

Consider the problem of existence of an identifying cdde
with cardinality at mos& over any given grapld/(V, E). We
construct a graplds; (V;, E;) from G as follows:

« We construct two graph&’(V’, E') andG” (V" , E") as

direct copies ofG.

o We add a vertex to GG; such thats connects all vertices

V" and all vertices/”.

Clearly the transformation frond’ to G, is polynomial and
takesO(4|V'] + 2|E|) time since|V| = 2|V| + 1 and | E;| = betweenC' and every component’; in C. Then, we ex-

2|E| + 2|V|]. Figure 2 demonstrates our construction for Bact fromC the componenC* with minimum dist(C, C*)

sample instance OG.‘ . . ?reaking ties arbitrarily). We assign as codewords allives
A.careful analysis, which hqs been. omlj[ec.i for sake ,ég'n the shortest plain path connectiig and C* denoted
brev!ty, can show thaF therg exists an |<jent|fy|ng nge W'tpath*(C’, C*), and unite the codewords i6¢' and C* and
cardinality at m_os_tk in G if _and on_Iy '_f there exists a path*(C,C*) into C. After this step, we examine if there
connected identifying code with cardinality at mast + 1 are any other components@ﬁwhich become connected &

in Gy. via the newly selected codewords path*(C, C*). We define
H I' C C to be the set of such componentsIlfis non-empty,
V. ALGORITHM ConnectID we uniteC' with the components if" and extract them from
. C. The iteration above is repeated until becomes empty

A. Model and notation and the function returns returns the connected identifgimde

For our purposes, we assume an undirected connected grapk C D I.
G(V,E) (or G in short). Theredundancy ratiof a connected  More formally: Algorithm ConnectID(G, I):
identifying codel. and a subset identifying code C I, is Initialization:



having components

C1 = {a}
Cy = {c}
C3 = {d}
Cy={f,g,h},

This way ¢ = (7 and c {C5,C5,C4} as shown in
Figure 3(a). At first iteration, after we calculate the dist@
betweenC' and all components i’ at line 8, giving:

dist(C,Cs) =2

dist(C,C5) =3

dist(C,Cy) = 2.

At line 9, we extract one component with minimudist
from C, which may beCs or Cy (we arbitrarily choose&’s).
Then, we uniteC and Cy and vertexb at line 10. Hence,

C = {a,b,c} as illustrated in figure 3(b). There are no
components inC' that are connected t6’ at this stage, i.e.

I' = {}, and we return back to line 7. We update distances
and paths againdist(C,C3) = 2 anddist(C,Cy) = 2. We
extract the component with minimurist, which may be

Cs or Cy (we chooseCs3). We uniteC' and C5 and vertex

Fig. 3. Progress afonnectID(G, I). The filled circles represent codewordse and obtainC' = {a,b, ¢, d, e}. Then, we examine the only

of an identifying codd for the illustrated graplé= (a) initially, I is partitioned
to components”; = {a}, C2 = {c}, C3 = {d} andC4s = {f, g, h}. We
setC = {a} andC = {C2,C5,Cy} (b) C = {a,b,c} andC = {C3,C4}
(C) C= {avbvcvdvevagvh} andC = {}

1) Partition! into a unique set of components of conne
tivityA{Cl,CQ, ..,Cn} wherel < N <|I].

2) SetC « {CQ, ey CN}

3) SetC «— (.

Iteration:

7) While C is not empty,

8) Updatedist(C,C;) andpath(C, C;) for every
C; e C and setC* «— argming s dist(C, C)).
9)  Extract component™ from C.
10)  SetC « C'UC* Upath*(C,C").
11)  Find the set’ C C of components that are connectegjln
to C.
12) If T is not empty,
13) For every componerd; € I,
14) ExtractC; from C.
15) SetC — C'UC;.

16) Returnl, < C.

Example. Figure 3 shows the progress @nnectID(G,I)
for the same graph and the same input identifying code
shown in Figure 1. In this example, we initialize the aldumit

component remaining i’ which is C, to see if it is now
connected ta@'. We getl’ = C, and we uniteC' andCy at line
15. Finally, in figure 3(c) we hav€' = {a,b,c,d,e, f,g,h}
which is the connected identifying codg output by the
algorithm.

Algorithm ConnectID resembles the Prim’s algorithm for
constructing the minimum spanning tree of a graph [27], but

Cﬁas some fundamental differences in the manner in which it

grows the connected code and how it handles the connected
components.

C. Performance analysis

The correct functioning ofonnectID is based upon two
fundamental properties of identifying codes.

Lemma 5.1:Consider any identifying codé that is par-
titioned into a set of components of connectivily =
{C1,...,C|p|} over graphG. If |P| > 1, then every component
C; € P is at most three hops away fromome other
componeniC; € P.

Lemma 5.2:If vertex v is adjacent to componert; € P
d|C;] = 1, thenv is necessarily adjacent tsome other
component’; € P.

As a straightforward corollary,

Corollary 5.3: If |P| > 1, then every componer®; € P
with |C;| = 1 is at most two hops away from some component
Cj EPWIth]#Z

Lemmae 5.1 and 5.2 hold for every identifying code
over graphG, and specifically right after the initialization of
algorithm ConnectID. Since at every iteration, we add one
asmore codewords and do not remove any codeword, the set
of codewords inC' and in every component af’ forms an



identifying code. Hence, Lemmas 5.1 and 5.2 invariably holdentifying code! satisfies

after every iteration. 9 9
The overall analysis of our algorithm is summarized in the L] < (1+ . ) [ = .

following theorem, which is based on Lemmae 5.1 and 5.2. The proof of the theorem'iS based on the following lemma.
Theorem 5.4:Given an identifying cod€ on graphG and Lemma 6.2:Given anr > 1-robust identifying codd with

I. = ConnectID(G, I), then connected component8 = {C1,...,Cp}, there may be at
i) I, is a connected identifying code. most one componert; with cardinality one.
iy I.o1 . ~ PROOF. [Theorem 6.1] If] is already connected, the bound
iii) || < 2|I| — 1, where— denotes set difference. Thisfo|lows trivially. Otherwise, there are at least two compots,
bound is tight. so thatC andC' in the ConnectID algorithm are initially not

but the tightness of its bound iii follows from consideratio \yith cardinality one.

of a ring topology with2k vertices, for a positive integek. Three scenarios are possible:

The optimal identifying code for such a graph consistscof (i) ComponentC is initialized to the only component with
maXima”y Separated vertices (le every other vertex ithe Cardina"ty one. In this case, every Component |6’\ has
code), whereas the connected identifying code for thisfgrapardinality at leastS;j,and there arél| — 1 codewords not
must necessarily contain all but one vertex @1 intotal). i3 ' Hence,C contains at most|I| — 1)/ Sy, components

Corollary 5.5: For I, = ConnectID(G, I), the redundancy jnjtially. Using a similar reasoning in Theorem 5.4 based on
ratio Lemma 5.1ConnectID adds at most two codewords per every

R=|L|/|I] <2. component that is initially irC, and the bound follows.

If the input identifying codel to ConnectID(G,I) is an (ji) There is a component with cardinality onedhat initial-
identifying code achieved by the algorithm in [12], then wgzation.In this case, there are at mo#t— Sy, codewords not
have|I| < ¢ [I*|In|V] wherec > 0 is a constant/* is the in ¢ initially. We add at most one codeword for the component
identifying code with minimum cardinality for grap& and \yjth cardinality one inC' based on Lemma 5.2. There are at
|[V| is the number of vertices in graghl. We definel* to be most (/7| — Smin — 1)/Smin other components i) initially.
the connected identifying code with minimum cardinality inrherefore, we add at mo8(|7| — Sppin— 1)/Smin codewords
graphG. Since|I| > |I*|, we have the following corollary. pjus one codewords for the component with cardinality one to

The following corollary follows from applyin@onnectID 7| |eading to the desired bound.

to the the identifying code produced by the algorithm in [12] (i) There is no component with cardinality orle.this case,

and carrying over its approximation guarantee. there are at mostZ|—Spin)/Smin COMponents it initially,
Corollary 5.6: For an optimal connected cod¢ and an and we add at most two codewords per every component in
identifying code!l~, produced by [12]: C leading to the bound.
ConnectID(G, I) <k |||V, - N -D
I* The valueSyy,, is lower bounded by the minimum size of
for a constant: > 0. an r-robust identifying code with more than one codeword,
which, in turn, is related to the size of a minimum error-
V1. BOUNDS correcting code, as expressed in the following lemma. Recal

that the characteristic vector of a set is the binary vecturse

The properties ofConnectID ensure that it produces a o . . . .
connectedobustcode if it is given a robust code as an inputl_'th bitis 1 if and only if thei-th element of a given universe

In this section, we combine the results of the algorithm Witﬂnl_thIS caSGe 3t_r|]_ﬁ sethof vetrtlgetz?‘ n thf grap?)trl]s n dthet_se_zt.
well-known coding theoretic bounds to derive bounds on the emma 6.3:The characteristic vectors of the identifying

sizes of connected robust identifying codes. We show th%‘?ts OI. anr—rodbusftlldenttlfylr_]rgh codel formd a blnatryr—error i
as robustness increases, the resulting codes are inagbasi orrecting code of lengtf¥|. The reverse does not necessarily

Id.
connected. 0'd. . . :
Recall our notation that arrrobust identifying codd over With the aid of Lemma_ 6.3, we can forrr_1 a relationship
. : betweensS,,i, and the coding-theoretic functioA(n,d) de-
graphG can be partitioned into connected componeRts- notin themrwaximal size of a (binary) code of Ier; rand
{C1,...Cip }. We defineSyin(l) (or just Spyinin context) to 9 y gt

1 . i inimum distanced. This leads us to our theorem linking
be the minimum non-unitary size of a connected component. . o )
bounds on connected identifying codes and error-cormgctin

SminI) = min |C}]. codes.
i S.L.1G51>1 Theorem 6.4:Given the upper bound (n, d) on the max-
Our upper bound on the cardinality 6f depends oy, imum size A(n,d) of binary code of lengthn and (odd)
for which we shall provide bounds later in this section. minimum distancel, andany 4-*-robust identifying codd:

Theorem 6.1:The connected identifying codel, =

; > i < .
ConnectID(G, I) produced by our algorithm from anrobust Smin(l) = ar%ﬂm(q < flg.d)



PrRoOOF. The proof is based on the following relation betweeRROOF. °

identifying codes and error correcting codes. For any givenWe relate this analysis te-error correcting codes as before.
r > 0-robust identifying codel with n codewords over an For robustness = 1, S, IS at least six because no binary
arbitrary graph, we know from [10] thaid,;,(I) > 2r+1, code construction with length = 5 exists that achieves at
meaning that the characteristic vectors of at leaistentifying least five identifying setswith minimum Hamming distance
sets are at Hamming distande= 2r + 1 from one another. In d = 3, i.e., A(5,3) < 5 [28]. For code lengtm = 6, we
other words, an--robust identifying code with: codewords have A(6,3) > 6. For example the lexicode [28,31] ha&s
over any given graplG existsonly if an r-error correcting identifying sets. This implies,,,;,, > 6 for r = 1.
code exists with lengthn and A(n,d = 2r + 1) > n For a lower bound oy (for » > 1), let us assume, for
codewords. sake of argument, that it is impossible to prodycdifferent
Let gmin = argming,. (¢ < f(g,d)). If gmin = 2, then identifying sets at distances + 1 from one another using
Smin = 4min trivially since S is an integer strictly larger codewords, i.e.A(q,2r + 1) < ¢. This implies that in every
than 1. Otherwise, fog,,,;, > 2, it must be, by definition, that collection of ¢ identifying sets built byy codewords, there is
q > f(q,d) > A(q,d) for everyq’ such thatl < ¢’ < gmin. at least a pair of identifying sets with Hamming distancetof a
In other words, for thesg’ there does not exist a-error most2r. For every additional codeword we can increase the
correcting code of lengtly’ with ¢’ codewords, and, by the Hamming distance between every pair of identifying setstby a
above logic, there does not exist amobust identifying code most one. Therefore, in every collection @fidentifying sets
with ¢’ codewords (over a graph witji vertices). This means built by ¢ +2 codewords, there is at least a pair of identifying
that Spyin > ¢ for all 1 < ¢’ < gpin, Or, more succinctly, sets with Hamming distance of at maat + 2, i.e., A(q +
Smin = 9min» Proving the theorem. O 2,2r+3) < ¢ < ¢+ 2. Hence, it isnecessaryto add at
%ast two codewords for every additional degree of robsstne

tifying codes and error-correcting codes, we can now lin he lemma fO_HOWS by induction starting Witimp, > 6 for

Theorem 6.4 with Theorem 6.1 with the well-known bound$ ~ ! and "?‘dd'”g two codewords to the lower bound for every

on A(n,d) from the coding theory literature. increment in robustness. -
The following bound is based on the Singleton bound [28] Combining Theorem 6.1 with Lemma 6.6 we have the

Having established a connection between connected id

that A(n, d) < 2n—d+! following simple bound on the size of a connected code
Corollary 6.5: generated by our algorithm.
Theorem 6.7:Given anr > 1-robust identifying codd,

—2r
Sminz—wxd—l-l-logﬂd—l), 1 1
In2 |ConnectID(G,I)| < (14 ——) |I| - ——.
where W_, () is the negative branch of the Lambert W Tapjes | and Il summarize the ibwer boundg—@min and
function [29]. the corresponding upper bounds on the redundancy Rafar
PROOF. By the Singleton bound applied to Theorem 6.4, @ few values of robustnessbased on the best codes known
in Appendix A of [28], Lemma 6.6, the Singleton bound and

3 —2r
Smin = arg min (¢<277). the Hamming bound.
Minimizing the right hand side is equivalent to minimizing TABLE |
(fOI’ q> 1): LOWER BOUND ONSp N AND UPPER BOUND ON REDUNDANCY RATIOR
B —or OF CONNECTED IDENTIFYING CODEI. VS. ROBUSTNESSr FOR BEST
q2 1<2 CODES KNOWN AND FROMLEMMA 6.6.
(—qIn2)e=1m2) > _9=2" | 9,
best codes known Lemma 6.6
Since—¢In2 < —1, the solution involves the negative branch , Smin | Redundancy ratiq Sy, | Redundancy ratig
of the Lambert W function, giving 1 6 4/3 6 4/3
o 2 10 6/5 8 5/4
—qIn2) < W_1(=27%"In2
(Faln2) SW-1(=2""In2) 3| 14 8/7 10 6/5
g> Va2 "n2) 4| 18 10/9 12 7/6

In2

Using the three most significant terms of a series expansionpe observe that with increase of Smin increases and
for W_,[30], namelyW_,(z) ~ In(—z) — In(~In(—=2)) + the upper bound of/.| becomes closer t¢/|. This implies

% the theorem is proved. Ll for larger robustness, I tends to be more connected and

One can similarly apply other coding-theoretic uppef® usually require fewer additipnal codewords to make it
bounds, such as the Hamming bound [28] to get differefpnnected. Furthermore, according to corollary 6.7 fogdar
lower bounds forSpin. Using some best known codes, wevalues of robustness || tends tol/|.

can get a gOOd result with simpler exposition. 1These are calleccodewordsin the context of coding theory, but we
Lemma 6.6:Sppin(1) > d + 3. maintain the identifying set terminology for sake of cotesigy.



TABLE Il
[12]
LOWER BOUND ONS) iy AND UPPER BOUND ON REDUNDANCY RATIOR

OF CONNECTED IDENTIFYING CODEI. VS. ROBUSTNESSr USING THE

SINGLETON BOUND AND THE HAMMING BOUND.

[13]
Singleton bound Hamming bound
7 | Smin | Redundancy ratiq Smin | Redundancy ratig
1] 4 3/2 5 7/5 (14]
2| 7 9/7 9 11/9
3] 10 6/5 12 7/6 [15]
4| 12 7/6 15 17/15

[16]

VII. CONCLUSION (17]

In this work we have developed an approach for generati e
connected robust identifying codes from a given robusttiden
fying code for a graph. This problem has practical signifiean
in the application of identifying codes to networking prefvis,
such as routing, but it also provides connections with the
wealth of coding theory literature. Most notably, we showho
to use coding-theoretic bounds to provide bounds on coadect
codes, with the interesting realization that increasingusd- [21]
ness leads to increasing connectivity.

[19]
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