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Abstract—Recent deregulation initiatives enable cellular
providers to sell excess spectrum for secondary usage. In this
paper, we investigate the problem of optimal spot pricing of
spectrum by a provider in the presence of both non-elastic
primary users, with long-term commitments, and opportunistic,
elastic secondary users. We first show that optimal pricing can
be formulated as an infinite horizon average reward problem
and solved using stochastic dynamic programming. Next, we
investigate the design of efficient single pricing policies. We
provide numerical and analytical evidences that static pricing
policies do not perform well in such settings (in sharp contrast
to settings where all the users are elastic). On the other hand, we
prove that deterministic threshold pricing achieves optimal profit
amongst all single-price policies and performs close to global
optimal pricing. We characterize the profit regions of static and
threshold pricing, as a function of the arrival rate of primary
users. Under certain reasonable assumptions on the demand
function, we show that the profit region of threshold pricing can
be far larger than that of static pricing. Moreover, we also show
that these profit regions critically depend on the support of the
demand function rather than specific form of it. We prove that
the profit function of threshold pricing is unimodal in price and
determine a restricted interval in which the optimal threshold
lies. These two properties enable very efficient computation of
the optimal threshold policy that is far faster than that of the
global optimal policy.

I. INTRODUCTION

A major global effort is underway to deregulate wireless
spectrum and achieve much better utilization of this scarce
resource. The Secondary Markets Initiative [1] of the Federal
Communications Commission (FCC), is one of the major steps
towards achieving this goal. It permits leasing of spectrum
licenses subject to approval by FCC. Similar regulatory efforts
are also underway in the EU [2].

Consequences of the secondary markets initiative can al-
ready be felt with the emergence of secondary cellular
providers, commonly called Mobile Virtual Network Oper-
ators (MVNOs) [3]. MVNOs buy spectrum and (possibly
also infrastructure) from primary providers, referred to as
Mobile Network Operators (MNOs). MVNOs add the value of
better penetrating certain markets and offering differentiated
products. A notable example of successful MVNO endeavor
in the US is Virgin Mobile who has teamed up with Sprint
Nextel as its MNO and recently reached a subscriber basis of
over 4 millions customers [4].
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In this paper, we are interested in investigating how a
provider, such as an MNO, should optimally price its excess
spectrum to secondary users (SUs), such as MVNOs. On the
one hand, a provider must ensure that the quality of service
(QoS) of its primary users (PUs), who typically have long-
term contracts, is not significantly affected by the admission
of SUs. This is because the presence of SUs may increase the
blocking of PU calls and hence lead to a punishment in the
form of loss of business due to poor service. On the other
hand, the provider is interested in maximizing its profit from
the admission of SUs.

Given that the amount of excess spectrum is likely to
fluctuate over time due to the inherent randomness in the PU
traffic, spot pricing, based on real-time channel occupancy,
emerges as the solution of choice. While spot and congestion-
based pricing have been extensively studied in the literature
(Cf. Section II), the typical model assumed in previous work
differs significantly from the setting considered herein. Chiefly,
most previous work assumes that the demand functions of
all the users are elastic to price, i.e., all the arrival rates
can be regulated with price. In contrast, in our setting, only
the demand function of the SUs is elastic to price, but the
arrival rate of PUs is not. As we will show, this difference is
salient enough to result in fundamentally different structures
for optimal (or near-optimal) pricing strategies.

Our first contribution in this paper is to formalize the profit
maximization problem of a cellular provider in the presence
of both PUs and SUs. Based on certain reasonable statistical
assumptions, we show that optimal pricing can be formulated
as an infinite horizon average reward problem and solved using
stochastic dynamic programming.

Our second contribution is to investigate the design of
efficient single pricing policies, i.e., policies where a provider
can either admit a SU and charge a fixed price or reject a
SU. These policies have the major advantage of making the
cost of spectrum much more predictable to SUs. We first show
that static pricing, which always applies the same admission
price to SUs independently of the channel occupancy, may
perform very poorly. This result stands in sharp contrast to
the case where all the users are elastic to price. On the
other hand, we provide numerical evidence that threshold
pricing, which applies a fixed admission price to SUs when the
channel occupancy is below some threshold T and rejects them
otherwise, performs very close to optimal. Further, we prove



that among all the possible single-price admission policies
(including randomized), threshold pricing is the optimal one.

Our third contribution is to characterize the profit regions of
static pricing and threshold pricing. Our goal is to determine
the maximum arrival rate of PUs, at which it is still possible
to achieve profit from the admission of SUs. We characterize
the profit region of static pricing and provide a lower bound
(presumably tight) on the profit region of threshold pricing.
We show that the profit region of threshold pricing is larger
than that of static pricing. Through numerical example, we
show that the difference can be quite large (e.g., three times
larger). An interesting observation is that both the profit region
of static pricing and the bound on threshold pricing depend
only on the support of the demand function of the SUs, but
not on its specific form. This result applies to quite general
demand functions.

Our last contribution is to devise an efficient computational
procedure to calculate the optimal threshold and price for
threshold pricing. In particular, we prove that, for any given
threshold T , the profit function is unimodal in price. This en-
ables us to resort to well-known logarithmic search procedures
to compute the optimal price. Moreover, we show that the
optimal threshold is a non-decreasing function of price. By
using this property, we are able to reduce the search interval
for the optimal threshold, thus speeding up calculation of the
optimal threshold policy. We also provide numerical results
which show that the optimal threshold policy can be computed
considerably faster than the global optimal policy.

The rest of the paper is organized as follows. In Section
II, we survey related work. Our model and notation are
introduced in Section III. In Section IV, we show how to derive
the optimal pricing policy and present some characteristics
of the optimal prices. In Section V, we investigate single-
price policies, prove the optimality of threshold pricing, and
characterize the profit regions of static and threshold pricing.
In Section V, we also prove unimodality of profit function
of threshold pricing. Then, in Section VI, we develop an
efficient method to compute the optimal price and threshold
for threshold pricing. We conclude the paper in Section VII.

II. RELATED WORK

The problem we consider of this paper is related to two
well studied areas in communication networks, namely, pricing
and call admission control. As such, we restrict our literature
review to those papers that are the most relevant. A survey
of other work related to pricing in cellular networks can be
found in [5].

In [6], Paschalidis and Tsitsiklis investigate dynamic,
congestion-based pricing of network resources. Their model
assumes that all the users are elastic to price. They show
that static pricing achieve good performance in general and
can even be optimal in some asymptotic traffic regimes.
This result was extended in [7] and [8], in the context of
large network asymptotics. In [9], Ziya et. al. show that the
optimal static price is unique. In [10], static spectrum pricing

strategies capturing the effects of network-wide interferences
are developed.

Threshold admission control policies have been extensively
studied. Refs. [11, 12] provide useful insights into the proper-
ties of such policies. The optimality of threshold pricing for
certain optimization problem is proved in [13, 14]. None of
these papers integrate pricing into their formulations.

Refs. [15–17] integrate pricing with admission control in
cellular networks. Ref. [15] considers time-of-day pricing
methods. In our work, we consider pricing strategies that
operate at much shorter time-scales, based on real-time in-
formation. Ref. [16] develops and evaluates “charge-by-time”
pricing algorithms, while in our work we consider charg-
ing per admission. Ref. [17] develops a stochastic dynamic
programming formulation that incorporates retrials. Our main
contribution with respect to this previous body of work is to
go beyond numerical optimizations and attempt to prove gen-
eral structural properties, applicable to very general demand
functions.

Ref. [18] analyzes a model similar to ours within the
context of a generic rental management optimization problem.
This work considers two type of customers, namely walk-
in and contract users. Walk-in users are priced according to
congestion level of the system, similar to dynamic pricing of
SUs in our model. Contract users, on the other hand, have
fixed prices and arrival rates which are analogous to our
PUs. Different than our work, [18] focuses on determining
structures of the optimal policy rather than providing a simple,
near-optimal alternative as done here.

III. NETWORK MODEL

In this section, we introduce our network model and notation
(additional notation specific to static and threshold pricing will
be provided in Section V). We consider a cellular network
where each cell provides access to C channels. In each cell,
calls from PUs arrive according to a Poisson process with fixed
rate λp > 0. A punishment in the amount of K monetary
units is imposed if all the channels are busy and a PU call
is blocked. SUs call arrivals also form a Poisson process
that is independent of the PUs call arrivals process and its
rate is modulated by the price charged by the provider. We
thus assume that there is a demand function λs(u) which
determines the arrival rate of SU calls, where u is the applied
price. The price is a function of the state of the system, i.e.,
a SU pays a price un for its call, if there are n busy channels
in the cell, where 0 ≤ n < C.

For both PUs and SUs, call holding times are exponentially
distributed with rate µ, independently of any other events.
Without loss of generality, we will assume µ = 1, i.e., the
mean call holding time is one unit of time.

The goal of the provider is to maximize the average profit
per unit of time gained from accepting SUs. This quantity is
denoted by R. We are interested in finding a pricing policy
that satisfies this goal. A pricing policy is a rule that dictates
which price should be advertised by the provider at any given
point of time.



Under the above assumptions, the system behavior follows
the dynamics of a continuous-time birth-death Markov pro-
cess, and explicit expression for the average profit R can be
provided as follows. First, let πn be the steady-state probability
of finding the system in state n, i.e., there are n busy channels.
Next, let λn = λs(un)+λp denote the total call arrival rate in
state n and Λ = (λ0, λ1, ..., λC−1) denote the vector of arrival
rates. Then, the probability of finding the system in state n,
denoted by πn(Λ), can be explicitly written as follows:

πn(Λ) =
λ0λ1λ2...λn−1

n!

1 + λ0
1! + λ0λ1

2! + . . . + λ0λ1λ2...λC−1
C!

. (1)

Due to the PASTA (Poisson Arrivals See Time Averages)
property, the probability that a PU is blocked is πC(Λ). Thus,
the average profit is

R =
∑C−1

n=0 πn(Λ)λs(un)un − (πC(Λ)−E(λp, C))λpK, (2)

where E(λp, C) is the blocking probability of PUs in the
absence of SU arrivals. This quantity corresponds to the well-
known Erlang-B formula

E(λp, C) =
λC

p

C!∑C
n=0

λn
p

n!

. (3)

The first term in Eq. (2) represents the sum of the average
revenues collected from SUs in each state. The second term
is the average punishment due to accepted SUs. Note that,
πC(Λ)−E(λp, C) corresponds to increase in blocking prob-
ability of PUs due to accepted SUs. E(λp, C) acts as the
normalization term to ensure that the profit is zero when all
SUs are rejected.

In the sequel, we impose the following natural assumptions
on the demand functions. These assumptions are required to
guarantee the existence of a stationary optimal pricing policy
and prove some of our structural results.

Assumption 3.1: There exists a price umax for which
λs(umax) = 0. Moreover, λs(u) is a strictly decreasing,
differentiable function in u over the interval [0, umax] and
λs(0) is finite.

IV. DERIVATION OF THE OPTIMAL PRICING POLICY

In this section, we derive the optimal pricing policy and
present properties characterizing the optimal prices.

A. Stochastic Dynamic Programming Formulation

The maximization of the profit function in Eq. (2) is a com-
plex multi-dimensional optimization problem and becomes
quickly intractable as C grows. One approach to alleviate this
problem is to formulate it as an average reward stochastic
dynamic programming (DP) problem [19, 20]. Specifically,
the optimal prices u∗

n and optimal profit R∗ corresponding
to the optimal policy can be computed using the so-called
Bellman’s equations since all the states in the Markov chain
are recurrent (see Proposition 7.4.1 in [20]).

Fig. 1. Uniformized Markov Chain

Bellman’s equations are usually formulated for discrete-time
Markov chains. In our case, the Markov chain is continuous,
but it can be discretized using a procedure called uniformiza-
tion, where the transition rates out of each state are normalized
by the maximum possible transition rate v, which in our case
is given by the following expression:

v = λs(0) + λp + C. (4)

The uniformized Markov chain with corresponding transition
rates is shown in Fig. (1).

Bellman’s equations are generally guaranteed to return the
optimal solution only for finite action (control) space U, where
U represents the set of all possible prices advertised by the
provider. Hence, prices must be discretized. We denote the
discretization step with ∆u. The cardinality of the action space
is thus |U| = umax/∆u. The resulting loss in profit due to
discretization of price is bounded by λ(0)∆u, which can be
made arbitrarily small at the expense of higher computational
complexity (in Section VI, we describe an efficient computa-
tional procedure, applicable to threshold pricing, that scales to
very large cardinality |U|).

Equipped with the above formulation, we can now compute
the optimal pricing policy using the Bellman equations:

J∗ + h(n) = maxun∈U[λs(un)un + h(n + 1)λ(un)
v

+h(n − 1)n
v + h(n)(1 − λ(un)

v − n
v )]

(5)

for n = 0, 1, 2...C − 1 and

J∗ = −λpK + h(C − 1)
C

v
, (6)

whereas the optimal profit is:

R∗ = J∗ + E(λp, C)λpK. (7)

The first term in Eq. (5) represents the profit gained at state n
from the acceptance of a SU. The second and third terms are
contributions to the revenue if the next transition is an arrival
or departure, respectively. The last term is a consequence of
the uniformization procedure. The effect of punishment due to
blocked PU calls is captured by the first term in Eq. (6). The
prices maximizing the RHS of Eq. (5) represent the optimal
prices.

The unknowns in the above equations are h(n) and J∗.
The quantities h(n) denote the relative reward in state n with
respect to state C. When the optimal policy is applied, h(n)/v
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Fig. 2. Optimum prices for various PU arrival rates (λp) . C = 20, K = 100,
λs(u) = (10 − u)+ and ∆u = 10−6

represents the difference between the total revenue gained over
an infinite time horizon when starting the process from state n
and that gained when starting from state C. The quantities R∗

and J∗ differ only by a normalization constant used to ensure
the non-negativity of the profit.

The solution of Bellman equation can be obtained by using
various techniques described in the literature, such as policy
iteration or relative value iteration [19, 20]. Policy iteration
theoretically requires on the order of O(|U|C) iterations to
converge while value iteration is not guaranteed to converge
within a finite number steps. However, value iteration has a
lower computational complexity at each iteration. In practice,
as in other infinite horizon average reward problems [21],
policy iteration appears to converge faster.

For different PU arrival rates λp, Figure (2) shows the
values of the optimal prices (computed using policy itera-
tion), for the demand function λs(u) = (10 − u)+ (where
(·)+ = max(·, 0)), and parameters C = 20, K = 100, and
∆u = 10−6. The figure indicates that, as λp increases, the
prices become higher in each state, and that SUs should not be
accepted when the number of busy channels exceeds a certain
threshold. More insight into this behavior will be provided in
the sequel.

B. Properties of the Optimal Policy

In this section, we provide some results characterizing the
optimal prices. First, we consider the ideal case of unlimited
capacity.

Lemma 4.1: In the infinite capacity case (i.e., C → ∞),
the optimal price in each state is

u∞ = arg max
u∈U

(λs(u)u),

and the corresponding profit is

R∞ = λs(u∞)u∞.

Note that R∞ is an upper bound on the profit achievable in
any finite capacity system.

The following lemma states that in a finite capacity system,
the optimal price in each state is larger than u∞.

Lemma 4.2: For any 0 ≤ n ≤ C − 1, u∗
n ≥ u∞.

The next result states that the optimal prices are monoton-
ically increasing in n.

Lemma 4.3: For any 0 ≤ n ≤ C − 1, u∗
n+1 ≥ u∗

n.
Proofs of these properties follow similar methods to those

used in [6]. The main difference lies in taking into considera-
tion the effects of PU arrivals and punishments. These proofs
can be found in [22].

A consequence of the above properties is that the optimal
price for any state lies between u∞ and umax. This fact can
be exploited to reduce the size of the action space U when
computing the optimal prices using Eq. (5).

V. SINGLE-PRICE POLICIES

In this section, we investigate the design of single-price
policies. In each state, these policies can either admit a SU and
charge a fixed price u or reject a SU (which is equivalent to ask
for a price umax or higher). For such policies the objective is
to optimize the value of u as well as the admission policy
i.e., the decision of whether or not to admit a SU that is
willing to pay the price. These policies are attractive because
they allow a provider to advertise a single-price. They are
also computationally easier to derive. Moreover, compared to
optimal pricing, they provide more insight into the structure
of good pricing policies.

A simple single-price policy is the so-called static pricing
where SU calls are always applied the same admission price,
unless all the channels are busy. For the cases where the
demand functions of all the users are elastic to price and
punishments are not imposed, static pricing is known to
perform well and to be even asymptotically optimal in several
regimes [6–8]. However, in this section, we show that, in
the presence of inelastic users (PU) and punishments for
blocked PU calls, the performance of static pricing degrades
significantly.

Instead, we show next that among all single-price poli-
cies (including randomized), a deterministic threshold pricing
policy performs optimally. In threshold pricing, SU calls are
admitted and charged a price u when the channel occupancy
is smaller than some threshold T and rejected otherwise. We
provide numerical evidence showing that threshold pricing
performs very close to optimal.

A. Optimality of Threshold Pricing

Theorem 5.1: For any price u (including the optimal one),
a threshold admission policy is optimal among all single-price
policies.

Proof: Revenue-wise, gaining u for each admitted SU
call is the same as getting punished u for each rejected one.
Therefore, the problem can be reformulated as to minimize
punishment. This problem is identical to the well-known
MINOBJ problem analyzed in [13] where SU and PU calls
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Fig. 3. Average profit vs primary load (λp) for different pricing policies.
System parameters: C = 20, K = 100, λs(u) = (10 − u)+ and ∆u =
10−6.

are analogous to new and handover calls, respectively. It is
shown in [13] that a threshold admission policy is the optimal
solution for the MINOBJ problem and, thus, the same result
applies to our setting. Note that the analogy is valid when
K > u. If this is not the case, then the admission policy is
obvious, namely, always admit SU calls.

Figure (3) compares the average profits achieved by the
the optimal, static, and threshold policies for a linear demand
function λs(u) = (10−u)+ (we explain in Section VI how to
compute the optimal price and threshold). Figure (4) makes the
same comparison for the following popular non-linear demand
function [23]

λs(u) = (Ae−γu2 − ε)+ , (8)

where A and γ are scaling factors, and ε > 0 is a small
constant introduced to enforce Assumption 3.1. Both figures
show that threshold pricing performs close to optimal while
static pricing performs significantly worse. Furthermore, we
observe that beyond a certain value of λp, static pricing stops
generating profit while threshold pricing continues doing so.
This observation will be formalized in Section V-D.

B. Properties of Threshold Pricing

Having showed that threshold pricing is the optimal single-
price policy, we next derive an expression for the profit
obtained with this policy, denoted by RT (λs). We denote
profit function and blocking probabilities as a function of λs.
This considerably simplifies notation in the rest of the paper.
First, we define the following function which will be used
extensively:

Q(λs) = λsu(λs) (9)
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where u(λs) is the inverse function of λs(u). Then, we
compute the blocking probabilities for the PUs and SUs:

BPU (λs, T )=πC (10)

=
(λs+λp)T λC−T

p

C!∑T−1
n=0

(λs+λp)n

n! + (λs+λp)T
∑C

n=T
λn−T

p

n!

;

BSU (λs, T )=
C∑

n=T

πn (11)

=
(λs+λp)T

∑C
n=T

λn−T
p

n!∑T−1
n=0

(λs+λp)n

n! + (λs+λp)T
∑C

n=T
λn−T

p

n!

.

Note that, arrival rate until congestion level reaches T channels
is λs+λp and just λp afterwards.

Finally, we can provide an explicit expression for RT (λs)
as follows:

RT (λs)=(1−BSU (λs, T ))Q(λs) − BPU (λs, T )λpK
+E(λp, C)λpK.

(12)

The first term in Eq. (12) is the revenue collected from SU
calls. The second term is a result of the punishment due to
blocked PU calls. The last term is the normalization term
which is used to ensure that profit is zero when there are
no SUs (see Eq. (3)).

Next, we derive an important property of the blocking
probabilities BPU and BSU , that will be exploited in the next
section. Specifically, we show that the ratio of these blocking
probabilities depends only on the PU’s call arrival rate λp and
threshold T but not on the price or the demand function of
the SU.

Lemma 5.2: The ratio BP U (λs,T )
BSU (λs,T ) is independent of u and

λs.



Proof:

BPU (λs, T )
BSU (λs, T )

=
λC−T

p

C!∑C
n=T

λn−T
p

n!

(13)

which is independent of u and λs.

C. Unimodality of the Profit Function

In this section, we show that for each given threshold T ,
the profit function of threshold pricing RT is unimodal in u (a
function is unimodal over a certain interval, if it has a single
maximum over that interval). This result requires the following
mild assumption on the demand function:

Assumption 5.3: The function Q(λs) is concave i.e.,
Q′′(λs) ≤ 0 where the derivative is taken with respect to
λs.
Assumption 5.3 is widely used in the literature [6, 9] and
is satisfied by several types of functions, such as linear and
exponential decaying demand functions.

The proof of our theorem will be based on the following
lemma, which is proved in the Appendix.

Lemma 5.4: For all λs > 0,

BSU (λs, T )
1 − BSU (λs, T )

>
−B′′

SU (λs, T )
2B′

SU (λs, T )
,

where the derivatives are taken with respect to λs.
We can now state our theorem:
Theorem 5.5: For a fixed threshold T , the function RT is

unimodal with respect to the price u over the interval [0, umax].
Proof: We will prove that RT (λs) is unimodal with

respect to λs. Since by Assumption 3.1 the function λs(u)
is strictly decreasing, this will also prove the unimodality of
RT with respect to u.

We refer to any value of λs at which the derivative of
RT (λs) is equal to zero as a critical point. We will denote such
a point with λ∗

s , i.e., R′
T (λ∗

s) = 0. To prove the theorem, we
will show that R′′

T (λ∗
s) < 0, for any λ∗

s . This means that there
can be at most one critical point and it must be a maximum.

Let X = BP U (λs,T )
BSU (λs,T ) (recall Lemma 5.2). Then, we can

rewrite the profit function and its first and second derivatives
as follows:

RT (λs) = (1 − BSU (λs, T ))Q(λs)
− XBSU (λs, T )λpK + E(λp, C)λpK; (14)

R′
T (λs) = (1 − BSU (λs, T ))Q′(λs)

− B′
SU (λs, T )(Q(λs) + XλpK); (15)

R′′
T (λs) = (1 − BSU (λs, T ))Q′′(λs)

− B′′
SU (λs, T )(Q(λs) + XλpK)

− 2B′
SU (λs, T )Q′(λs).

(16)

Since R′
T (λ∗

s) = 0, we obtain from Eq. (15):

Q′(λ∗
s)

Q(λ∗
s) + XλpK

=
B′

SU (λ∗
s, T )

1 − BSU (λ∗
s, T )

(17)

From Eq. (16) and Assumption 5.3, a sufficient condition
for R′′

T (λ∗
s) < 0 is

Q′(λ∗
s)

Q(λ∗
s) + XλpK

≥ −B′′
SU (λ∗

s, T )
2B′

SU (λ∗
s, T )

, (18)

which holds true by Lemma 5.4 and Eq. (17).

D. Characterization of the Profit Regions of Static and Thresh-
old Pricing

In this section, we characterize the profit regions of static
and threshold pricing. Specifically, we are interested in de-
termining the maximum value of λp, denoted by λp,max, for
which each of these policies still achieves a positive profit.
The results in this section also require Assumption 5.3.

We prove that there exists a range of values of λp (which
can be very large) for which threshold pricing achieves a
positive profit while static pricing does not. Remarkably, the
value of λp,max for static pricing depends only on umax, but
is independent of the demand function otherwise. Moreover,
the lower bound we provide on threshold pricing profit region
is also independent of the demand function.

We first establish the condition for which static pricing stops
generating profit (i.e., blocks all SU calls).

Lemma 5.6: Optimal static pricing blocks all SU calls if
and only if

umax ≤ (E(λp, C − 1) − E(λp, C))λpK. (19)

Proof: If all SU calls are blocked then the optimal SU
arrival rate λ∗

s is zero. We prove the lemma by showing that
if condition (19) is satisfied then λ∗

s = 0 and if it is not then
λ∗

s �= 0 (i.e., static pricing generates profit).
Next, we analyze the expression

∂RC(λs)
∂λs

∣∣
λs=0+ (20)

where the notation 0+ is used to mean that the derivative is
taken to the right of 0. If ∂RC(λs)

∂λs

∣∣
λs=0+ > 0 then there exists

λs > 0 that generates profit. (i.e., λ∗
s �= 0).

In Theorem 5.5 we show that RC is unimodal with respect to
u and λs under Assumption 5.3. Due to the unimodality of
RC , if ∂RC(λs)

∂λs

∣∣
λs=0+ ≤ 0 then λ∗

s = 0.
Note that, in the case of static pricing

BSU (λs, C) = BPU (λs, C) = E(λs+λp, C).

It can be verified that
∂E(λs+λp,C)

∂λs
= (1 − E(λs+λp, C))
· (E(λs+λp, C − 1) − E(λs+λp, C)),

(21)

and by using this equation we can evaluate ∂RC(λs)
∂λs

at λs =
0+ as

∂RC(λs)
∂λs

∣∣
λs=0+ = (1 − E(λp, C))

·(umax − (E(λp, C − 1) − E(λp, C))λpK).
(22)



Note that E(λp, C) < 1. Therefore, the sign of Eq. (22)
depends only on the last term.

An interesting corollary from this lemma is that if K = 0
(i.e., there is no punishment), then static pricing policy will
accept SUs for all values of λp, and hence achieves the
maximum profit region. This result indicates that the non-
optimality of static pricing is due to both the presence of
non-elastic PUs and punishments.

Next, we conduct a similar analysis for threshold pricing.
We consider the case T = 1. This will provide a lower bound
on the profit region of threshold pricing. Note that if threshold
pricing generates profit when T = 1, it will also do so when
the threshold is set to its optimal value.

Lemma 5.7: Threshold pricing with T = 1 generates profit
if and only if

umax ≥ E(λp, C)K. (23)

Proof: It can be shown that
∂BP U (λs,1)

∂λs
= (1 − BSU (λs, 1))BPU (λs, 1) 1

λs+λp
, (24)

∂BSU (λs,1)
∂λs

= (1 − BSU (λs, 1))BSU (λs, 1) 1
λs+λp

. (25)

By using Eqs. (24) and (25), we can evaluate ∂R1(λs)
∂λs

at λs =
0+ as

∂R1(λs)
∂λs

∣∣
λs=0+ = (1 − BSU (0, 1))

· (umax − BPU (0, 1)K).
(26)

Note that, BPU (0, 1)=E(λp, C). The result follows based on
arguments similar to those of the previous lemma.

It is a reasonable conjecture that maximum profit region for
threshold pricing is archived when T = 1. This is supported
by our simulations.

We next show that the profit region of threshold pricing is
larger than that of static pricing. We do so by showing that
the RHS of Eq. (23) is larger than that of Eq. (19).

Lemma 5.8: For C > 1 and λp > 0

(E(λp, C − 1) − E(λp, C))λp > E(λp, C). (27)

Proof: Manipulating expressions we obtain that Eq. (27)
holds if only if

E(λp, C) >
λp − C

λp
⇔ 1 − E(λp, C) <

C

λp
.

Note that at this point the claim is proved for C > λp. Further
manipulation yields

1 − E(λp, C) <
1
λp

∑C−1
n=0

λn
p

n!∑C
n=1

λn−1
p

n!

(28)

=
1
λp

1 +
∑C−1

n=1

λn
p

n!

1 + C−1
∑C

n=2
λn−1

p C
n!

(29)

<
1
λp

1 +
∑C−1

n=1

λn
p

n!

1 + C−1
∑C−1

n=1

λn
p

n!

<
C

λp
. (30)

C = 20 C = 40

umax λSP
p,max λTP

p,max λSP
p,max λTP

p,max

10 12.4 17.6 28.6 38.8
30 15.4 25.6 33.1 54.2
50 18.2 38.2 37.2 78.1
70 22.4 65.3 42.9 98.6

TABLE I
MAXIMUM VALUES OF λp FOR WHICH STATIC PRICING (SP) AND

THRESHOLD PRICING (TP) GENERATE PROFITS FOR

λs(u) = (umax − u)+ AND K = 100.

Finally, we state our theorem which is a result of the
previously stated lemmas.

Theorem 5.9: If Eq. (27) holds then for any demand func-
tion λs(u) there exists values of λp for which static pricing
blocks all SU calls but threshold pricing does not.

Proof: By Lemma 5.8, there exist a λp for which the
following is true:

(E(λp, C − 1) − E(λp, C))λpK ≥ umax > E(λp, C)K (31)

and by Lemmas 5.6 and 5.7 the result follows.

Table I provides a comparison for linear demand function
with different values of umax. We observe that the difference
can be very large. For instance, for the case C = 20 and
umax = 70, the value of λp,max for threshold pricing is almost
three times larger than that for static pricing.

VI. EFFICIENT COMPUTATION OF THE OPTIMAL

THRESHOLD AND PRICE

In Section V-C we showed that the profit function of thresh-
old pricing is unimodal. This allows us to exploit efficient
logarithmic search techniques, such as Fibonacci search, to
find the optimum price for a given threshold.

Our numerical results in the previous section have showed
that threshold pricing performs close to optimal and far better
than static pricing. In this section, we show another benefit
of threshold pricing, namely, low computational complexity.
Specifically, we show that the optimal price u∗ and corre-
sponding optimal threshold T ∗(u∗) can be computed using
O(C log |U|) iterations. This result is significant because the
discretization step ∆u should be chosen very small in order
to minimize the loss of profit due to price discretization.

We can further speed up the process by reducing the search
range. The following lemma shows that the optimum price for
threshold pricing is higher than or equal to u∞. Hence, we can
restrict the search range for the optimum price to the interval
[u∞, umax].

Lemma 6.1: For any given threshold T , u∗(T ) > u∞,
where u∗(T ) is the optimum price when the threshold is set
to T .

Proof: Let u− < u∞. From Assumption 3.1 on
the demand function, we know that λs(u−) > λs(u∞)
and Q(λs(u−)) < Q(λs(u∞)). Moreover, for any



T we have BSU (λs(u∞), T ) < BSU (λs(u−), T ) and
BPU (λs(u∞), T ) < BPU (λs(u−), T ). These inequalities lead
to the following conclusion:

(1−BSU (λs(u−), T ))Q(λs(u−)) −BPU (λs(u−), T )λpK
< (1−BSU (λs(u∞), T ))Q(λs(u∞))−BPU (λs(u∞), T )λpK.

Thus, for any T (including T ∗) the profit decreases as prices
go below u∞. Therefore, for any T , u∗(T ) ≥ u∞.

Next, we prove that optimal threshold is T∞ ≤ T ∗ ≤ C
where

T∞ = arg max
0≤T≤C

(RT (λs(u∞))

i.e., T∞ is the optimal threshold when price is set to u∞. This
statement enables us to reduce search interval for the optimum
threshold. Thus speeding up the computation time of optimal
threshold policy. For the proof we need the following lemma.

Lemma 6.2: Assume λs and u are independent variables.
The optimal threshold T ∗ is a non-increasing function of λs

assuming u is fixed. It is also non-decreasing function of u
assuming λs is fixed.

Proof: This lemma is obtained by applying Theorem 2 of
[18] (see Section II). In order to apply results of [18] to our
threshold model we assume that there are no walk-in users. We
consider PUs and SUs as two different contract user classes
for which prices are set to K and u and arrival rates are λp

and λs, respectively. Theorem 2 of [18] states that in such a
setting if we increase u (λs is fixed) the corresponding optimal
threshold for SUs will increase. Moreover, if we reduce λs (u
is fixed) the threshold will increase again.

Now, we can state the theorem
Theorem 6.3: Optimal threshold is in the range

T∞ ≤ T ∗ ≤ C. (32)

Proof: Assume u is increased in the amount of α units
to u + α. Let β = λs(u) − λs(u + α) be the corresponding
decrease in demand. By using Lemma 6.2 we can claim

T ∗(λs, u) ≤ T ∗(λs, u + α) ≤ T ∗(λs − β, u + α) (33)

Eq. (33) means if we increase u, the corresponding optimal
threshold will not decrease.
Since optimal price, u∗, is higher than u∞, we can conclude
that T∞ ≤ T ∗.

Using the above theorem and lemmas, we can thus compute
T ∗ and u∗(T ∗) very easily, namely, we first compute the
optimal price u∗(T ) (within the range [u∞, umax]) for each
threshold T ∈ [T∞, C], using a logarithmic search procedure.

Then, we establish the optimal threshold

T ∗ = arg max
T∞≤T≤C

RT (λs(u∗(T ))),

with corresponding optimal price u∗(T ∗).
In Table II, we present a numerical comparison of the time

required to compute the optimal threshold policy and optimal

C tOP
run/tTP

run ROP RTP RSP

250 5.9 3.8 3.1 0
500 11.1 42.1 39.7 15.0
750 18.7 111.6 108.4 75.5
1000 27.7 188.6 185.7 155.3

TABLE II
REVENUES OF OPTIMAL DYNAMIC PRICING (OP), TP, AND SP AND RATIO

OF RUN TIMES OF OP AND TP. SYSTEM PARAMETERS: λp = 9
10

C ,

K = 100, λs(u) = C
250

(10e−( u
5 −1)2 − 10−1)+ FOR u ≥ 5, AND

∆u = 10−6 .

dynamic policy. For computation of optimal dynamic policy
policy iteration is used due to reasons mentioned in section
IV. Moreover, the policy iteration procedure is also speeded
up by taking advantage of unimodality. Both algorithms were
developed in MATLAB and run on a Pentium M 1.7GHz PC.
These numerical results demonstrate the practical importance
of the optimization developed in this section.

VII. CONCLUDING REMARKS

In this paper we have investigated the problem of devising
efficient pricing policies for secondary spectrum usage. Such
policies are essential in order to minimize the loss of efficiency
in transactions, which could limit the granularity and thereby
liquidity of secondary spectrum markets.

Specifically, we have formalized the problem of profit max-
imization for the usage of wireless spectrum in the presence
of both primary and secondary users (PUs and SUs). We have
provided a stochastic dynamic programming formulation of
the problem and shown how to derive the optimal stationary
pricing policy using policy iteration or relative value iteration.

A drawback of the optimal dynamic policy is to charge
SUs different prices over time, depending on the channel
occupancy. This makes the cost of spectrum access much less
predictable and could potentially reduce demand. Thus, we
have investigated the design of simple, yet efficient, single-
price policies. We have provided numerical and analytical
evidences that static pricing policies do not perform well in
such settings (in contrast to settings where all the users are
elastic). On the other hand, we have proven that deterministic
threshold pricing achieves the optimal profit amongst all the
single-price policies and performs close to global optimal
pricing for a variety of demand functions. Under certain
reasonable assumptions on the demand function, we have
also proven that the profit function of threshold pricing is
unimodal in the price. We have also showed that the optimal
threshold lies within a specific interval. By taking advantage of
these properties we showed that the optimal threshold policy
is computationally more efficient than the optimal dynamic
policy.

Lastly, we have characterized the profit regions of static and
threshold pricing, as a function of the arrival rate of PUs. We
have shown that these regions critically depend on the support
of the demand function and, in particular, the parameter umax,
but not on the specific form of the demand function. We have



shown that threshold pricing is capable to achieve a much
larger profit region. The numerical results also seem to indicate
that the profit region of threshold pricing is identical to that
of optimal pricing. However, a formal proof of this conjecture
still remains an open problem.

APPENDIX: PROOF OF LEMMA 5.4

It can be shown that

∂

∂λs
(− ln(1 − BSU (λs, T ))) =

B′
SU (λs, T )

1 − BSU (λs, T )
(34)

and

∂

∂λs
(
1
2

ln(−B′
SU (λs, T ))) = − B′′

SU (λs, T )
2B′

SU (λs, T )
, (35)

from which it follows that

BSU (λs, T )
1 − BSU (λs, T )

− −B′′
SU (λs, T )

2B′
SU (λs, T )

> 0 (36)

⇔ 1
2

∂

∂λs

(
ln

( B′
SU (λs, T )

(1 − BSU (λs, T ))2
))

> 0. (37)

Since the ln(·) function is strictly increasing, we have

BSU (λs, T )
1 − BSU (λs, T )

− −B′′
SU (λs, T )

2B′
SU (λs, T )

> 0 (38)

⇔ ∂

∂λs

( B′
SU (λs, T )

(1 − BSU (λs, T ))2
)

> 0. (39)

In [9] it is shown that inequality (39) is satisfied for an
M/M/T/T queueing system when BSU (λs, T ) is replaced
by E(λs+λp, T ) (the blocking probability in an M/M/T/T
queue). This inequality also holds for our system since

B′
SU (λs, T )

(1 − BSU (λs, T ))2
) = Y

( E′(λs+λp, T )
(1 − E(λs+λp, T ))2

)
, (40)

where Y = T !( 1
T ! + λp

(T+1)! + ... + λC−T
p

C! ). and Y > 0. Thus,
we have

∂

∂λs

( B′
SU (λs, T )

(1 − BSU (λs, T ))2
)

> 0, (41)

which proves the lemma.
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