
Graded Channel Reservation with Path Switching in
Ultra High Capacity Networks

Reuven Cohen, Niloofar Fazlollahi and David Starobinski
Dept. of Electrical and Computer Engineering

Boston University, Boston, MA 02215
Email: {cohenr,nfazl,staro}@bu.edu

Abstract— We introduce a new algorithmic framework for
advanced channel reservation in ultra high speed networks,
called Graded Channel Reservation (GCR). GCR allows users
to specify minimum bandwidth and duration requirements for
their connections. GCR returns the highest graded path, selected
according to a general, multi-criteria optimization objective. In
particular, if the optimization criterion is delay, we prove that GCR
returns the earliest time available to establish the connection. The
computational complexity is polynomial in the size of the graph
and the number of pending requests. We introduce a number of
variants to GCR, including one that that provides the capability to
switch between different paths during a connection. We present
practical methods for minimizing or limiting the number of
path switches. Through extensive simulations, we evaluate the
performance of GCR and its variants under various topological
settings and applications workload. Our results show that, for
certain traffic parameters, optimized path selection combined
with path switching can reduce the average delay of requests by
an order of magnitude and increase the saturation throughput
by as much as 50%.

I. INTRODUCTION

Network backbones are often presumed to be over-
provisioned. However, the emergence of new applications with
unprecedented bandwidth requirements is likely to quickly
change the current state of affairs.

For instance, future Grid applications will require transfer
of extremely large files between different national labs and
research centers [1]. As a simple illustration, experiments run
on the new Large Hadron Collider (LHC) accelerator at CERN
are expected to generate prodigious volume of data, reaching
the order of ExaBytes (1 ExaByte = 1018 bytes). This data will
have to be transferred from CERN to various sites around the
world, for the purpose of storage, processing, and analysis[2].

Needs for large file transfers are not unique to Grid appli-
cations. For instance, many corporations rely on distributed
storage area networks (SANs) to seamlessly perform various
information management functions such as data backup, mir-
roring, and recovery [3]. To implement the above functions,
distributed SANs must support quick and reliable transfer of
very large files (e.g., 100 GB and higher) between remote sites.

In order to meet the throughput and delay requirement of
the above applications, one must be able to make full use
of the network backbone resources. Yet, recent experiments
have shown that the standard TCP/IP protocol stack may be
inadequate for this purpose. Indeed, it has been observed that,
in ultra high speed networks, there is a large gap between

the capacity of network links and the maximum end-to-end
throughput achieved by TCP [4]. The major cause of this
discrepancy is the shared nature of TCP/IP where e-mails and
WWW traffic interfere with large file transfers.

As a result of the existing limitations of TCP/IP, significant
efforts have recently been devoted to develop an alternative
protocol stack based on the concept of advanced channel
reservation [5–8], that is specifically tailored for large file
transfers and other high throughput applications. This protocol
stack is not intended to replace TCP/IP but rather complement
it. The most important property of advanced channel reserva-
tion is to offer hosts and users the ability to reserve in advance
dedicated channels (paths) to connect their resources.

Advanced channel reservation protocols are run directly
on top of Layer 2 (SONET or Gigabit Ethernet) and thus
bypass IP. They make it possible for users to send requests
and specify minimum bandwidth and duration requirements
for their connection. Several testbeds, such as UltraScience
Net [5] and OptIPuter [8], are testing possible implementations
of such protocols. It should be mentioned that advanced
channel reservation is usually assumed to run in a centralized
environment. This is a reasonable scenario in small networks,
which reflect the operations of current testbeds. The algorithms
presented here may also be applied in a distributed manner
using link-state mechanisms.

At a first glance, advanced channel reservation is similar
to standard circuit switching. One of our major contributions
in this paper is to show that advanced channel reservation
actually offers a great deal of flexibility that can be exploited to
significantly improve performance. First, advanced reservation
allows to schedule the starting time of a connection so that
some general, multi-criteria optimization objective can be
satisfied. Second and more importantly, advanced reservation
does not restrict a connection to use the same path over its
entire duration. Thus, it provides the possibility to implement
path switching, that is, switching between different physical
paths throughout the life of a connection. With path switching,
it is possible to substantially reduce the delay between the time
a request is placed until the corresponding connection is set
up.

It is worth mentioning here that all the existing advanced
reservation protocols and algorithms proposed so far in the
literature (cf. Section II) allocate the same path for the entire
connection duration in a way similar to circuit switching.

Guided by the above observations, we introduce in this
paper a new algorithmic framework for advanced channel
reservation called Graded Channel Reservation (GCR). GCR

enables grading paths, so that the path with the highest
grade is selected. Paths are graded according to the desired
optimization objective. Examples of such objectives as will be
explained are the earliest, shortest, or widest path satisfying
certain bandwidth and duration requirements. The optimiza-
tion objective can also be multi-criteria. For instance, if the
optimization objective is earliest-shortest, then GCR returns the
earliest path available and, if many such paths exist, it selects
the shortest one among those. For general optimization criteria,
we prove that GCR has a computational complexity that is
polynomial in the size of the graph and the maximum number
of pending requests at any time.

We extend GCR so as to support path switching. Our
generalized framework, called GCRswitch, satisfies the same
properties as GCR, but also allows a connection to switch
between different paths throughout its duration. Furthermore,
we propose a variant called GCRminimum that provably performs
the minimum number of path switches needed throughout the
life of a connection.

In order to evaluate the performance of GCR and its ex-
tensions, we have developed an advanced, versatile simulator
written in C. This simulator allows configuring the network
topology as well as specifying the inter-arrival distribution
between requests, the connection length distribution, the dis-
tribution of the bandwidth requested by a user, and the source-
destination pair for each request. The main performance
metrics are the average delay of requests and the saturation
throughput which corresponds to the maximum sustainable
arrival rate of requests.

Our simulations, run for various topologies and traffic
parameters, demonstrate the importance of using multi-criteria
objectives. For instance, when the main optimization criterion
is finding the earliest path available, then the use of a sec-
ondary objective based on the the selection of the shortest
path (when several earliest paths are available) significantly
improves performance. Our simulations also reveal that path
switching leads to major performance gain. In some cases, it
reduces the average delay by up to an order of magnitude and
increases saturation throughput by as much as 50%. Significant
performance improvement is observed even if (for practical
reasons) a limit is imposed on the number of switching
permitted throughout the duration of a connection.

This paper is organized as follows. In Section II, we review
related work on advanced channel reservation. In section III,
we introduce the GCR algorithmic framework and prove its
main properties. We also describe the novel concept of path
switching and show it can be integrated into GCR. In Section
IV, we present simulation results evaluating the performance
of our algorithms under various network topologies and traffic
parameters. We conclude the paper in Section V.

II. RELATED WORK

The topic of advanced resource reservation has received
considerable attention in the literature in this field. A great
portion of which concentrates on the design of distributed
signalling protocols [9–13]. For instance, ref. [10] discusses
possible modification to RSVP to support advanced channel
reservation.

In addition, several papers have considered the problem of
joint routing and scheduling of file transfers. As mentioned
in the introduction, none of them implements path switching.
Furthermore, the concept of path grading does not seem to
have been proposed or studied earlier. We next briefly review
some of these papers.

In [14], resource reservation strategies are analyzed for
specific topologies (stars, trees, and trees of rings). In [6], a
scheduling algorithm is introduced for large file transfers over
LambdaGrids for paths with varying bandwidth. In [15] the
problem of offline scheduling and routing of file transfers from
several users, each storing multiple files, to a single receiver
node is analyzed. Ref. [7] considers a similar model but also
proposes algorithms to address the problem of rescheduling
connections that have not completed. Refs. [16, 17] propose
various load balancing approaches to allocate lightpaths.

As in our paper, ref. [18] investigates formal approaches to
advanced reservation and provides theoretical analysis of the
complexity of path selection. The presented algorithms in [18]
for advance channel reservation resemble our framework in the
sense that they segment time and keep track of future link
residual bandwidths. However, their segmentation assumes
that the time axis is discretized, thus leading to performance
loss. Our model does not have this limitation. In addition,
no performance analysis or simulation results are provided
in [18], and, as mentioned earlier, path switching and multi-
criteria optimizations are not considered.

The most relevant work on advanced resource reservation
is the algorithm currently implemented on the UltraScience
Net, referred to as ALL-SLOTS[5]. To find a path, ALL-
SLOTS implements a variant of the Floyd-Warshall based
on a union/intersection algebra instead of the standard min/+
algebra. Because of the union operation, ALL-SLOTS needs
sometimes to discard overlapping intervals. As a consequence,
there is no guarantee of finding a path with a desired property,
e.g. the shortest, earliest, or widest. Moreover, the returned
paths are kept fixed during the entire connection, i.e., there is
no path switching.

III. MODEL AND ALGORITHMS

A. Notation and model
Our model consists of a general, directed network topology

denoted by G(V, E) where V is a set of nodes, and E

is a set of links. Each request can be expressed by the
tuple (s, d, B, T, ta, tb), where s ∈ V is the source node,
d ∈ V − {s} is the destination node, B is the requested
bandwidth which is held fixed during the connection, T is
the requested communication duration, [ta, tb] specifies a time

window during which the user wants the transmission to start.
The parameters ta and tb are optional, and if omitted, they
can be interpreted as the arrival time of the request, denoted
by tnow, and ∞ accordingly.

The reply to this request is a tuple (t, P) (or as we will
explain later a vector of tuples (ti, Pi) when path switching is
allowed), where t is the transmission starting time satisfying
ta ≤ t ≤ tb, and P is a path from s to d containing only links
with residual bandwidth of at least B during the time interval
[t, t + T]. In the case that a request can not be served (which
happens if B is greater than link capacities or no path is found
starting in [ta, tb] when tb is finite), False is returned.

B. Basic algorithm
We have developed an algorithmic framework, called

Graded Channel Reservation (GCR) which returns a time slot
that can accommodate a connection path according to a certain
optimization objective in response to a request given the
current and future state of the network. The path can be graded
according to any property of interest, such as, connection start
time, path length1, path width2, or a combination of these. In
this paper, we illustrate the operation of this framework for the
case where the earliest completion time is desired. Thus, we
focus on finding the path allowing earliest task completion, in
conjunction with other criteria, when more than one such path
exists.

To simplify exposition, we present the operation of GCR for
the case where the graph G(V, E) is undirected. However,
our results (as well as simulations in Section IV), apply to
directed graphs. GCR uses the following procedure: it divides
the time axis into slots delineated by events, as shown in figure
1. Each event corresponds to a set up or tear down instance of
a connection. Therefore, during each time slot the state of all
links in the network remains unchanged. In general, the time
axis will consist of n time slots, where n ≥ 1 is a variable
and slot i corresponds to time interval [ti, ti+1]. Note that t1 =
tnow and tn+1 = ∞. We denote by L = {t1, . . . , tn+1} the
ordered list of events. Every time a request arrives, we update
L by setting t1 = tnow and discard all elements ti < tnow. Let
Wi = {bi

1, b
i
2, . . . , b

i
|E|} be the vector of available bandwidths

of all links at time slot i where i = 1, . . . , n, and bi
j denote the

available bandwidth of link j during slot i. We then define a
bandwidth list as W = {W1, . . . , Wn}. At the arrival of each
request, W is updated the same way as L by dropping the
terms Wi for which ti < tnow.

Suppose a user sends a request tuple (s, d, B, T, ta, tb). We
define L̄ as the remainder of L after we omit all terms ti, such
that, ti < ta or ti > tb. If ta or tb are not already included
in L, they should be appended to the beginning and end of
set L̄ correspondingly. This notation is illustrated in Figure
2, where for each time slot, only the links in the graph with
sufficient residual bandwidth, i.e. residual bandwidth greater
than or equal to B, are shown. The figure shows the duration

1Path length refers to the number of hops between source and destination.
2Path width is defined as the minimum bandwidth over the available

bandwidth of all links in the path.

.....
t t t t3 i i +12t 1 = t now

slot 1 slot 2 slot i

Fig. 1. Segmentation of time axis into slots delineated by events. The state
of the network is fixed during each slot.

of each slot, e.g., slot 1 lasts from time 0 to time 2, slot 2 lasts
from time 2 to time 3, etc. In this case, L = {0, 2, 3, 5, 6, 8}.
Now, suppose ta = 1 and tb = 6, then L̄ = {1, 2, 3, 5, 6}.
Finally, we derive W̄ from W the same way L̄ is derived
from L, but in this case for bandwidths, Wi, instead of time
events, ti.

We now describe GCR and its functions. The pseudo-code
of the main routine is as follows:

Algorithm GCR:
t← SlotSearch(s, d, B, T, ta, tb)
If t 6= False

P ← PathSearch(t).
(L, W)← Update(t, P).
Return (t, P).

Else,
Return (False).

The function SlotSearch returns the highest graded time
slot in L̄, denoted by t, that can accommodate the request
(s, d, B, T, ta, tb). If no such slot is available it returns False

which means that no slot could be found and the request is
rejected. In the sequel, we will show an implementation of
SlotSearch where the highest graded time slot is defined
as the earliest slot in which a connection can be established.
However, beforehand, we describe the other functions in GCR.

If SlotSearch result is not False, then the function
PathSearch is called which returns a path P between source s

and destination d starting at time t. PathSearch returns a path
P according to the selected optimization criteria, e.g., shortest
path, widest path, narrowest path, or a combination of these.
Combination of path properties, such as shortest-widest path,
means priority is given to the shortest paths, but if multiple
shortest paths are found, we return the widest among those
whereas in the shortest path search, if multiple shortest paths
exist, one is just picked at random.

The function Update is used to update L and W after a
request is allocated as follows: If the end time of connection,
te = t + T , is not already included in L, then Update

adds te to L in the right position so as to maintain the
increasing order of elements of L. After updating L, it also
updates W by subtracting the allocated bandwidth B from
the available bandwidth of all links included in path P , for all
slots ti, . . . , tj , where ti = t, and tj = te.

We now explain the SlotSearch function in detail. The
pseudo-code can be presented as follows:

Function SlotSearch(s, d, B, T, ta, tb):
For ti in L̄ do:

g(i)← grade solution(i, s, d, T, B).
I ← arg maxi g(i).
If g(I) > 1,

Return(tI).
Else,

Return (False).

SlotSearch can be explained by the following steps:
1) For each slot i in L̄ calculate a grade g(i) by calling

a function grade solution. Specifically, the function
grade solution(i, s, d, T, B), explained below, is used
to give a grade to a route starting at time ti.

2) Find slot I which maximizes over all grades g(i).
3) If g(I) > 1, it is possible to establish a path starting

from some slot in L̄. Return the starting time tI .
4) Else, no path is found for the connection duration, and

no connection can be started in [ta, tb] between s and
d. Therefore, the request will be rejected by returning
False.

Function grade solution grades slots. Only slots in which
a connection can be started have a grade greater than 1. The
implementation of grade solution depends on the specific
optimization criterion. We next consider the case that the goal
is to find the earliest time slot at which a connection can be
started:

Function grade solution(i, s, d, T, B):
j ← i

while tj+1 − ti < T do j ← j + 1
G← ∩j

k=iGk.
return(bfs(G, s, d) + exp(−ti)).

Operator ∩ stands for intersection between graphs
which means set of all links belonging to both graphs.
grade solution for i can be explained in more detail as
follows:

1) For each slot k ∈ L, construct a graph Gk by removing
from G all the links with residual bandwidth less than
B.

2) Find an intersection of graphs Gi, . . . , Gj for the small-
est j, such that the requested duration is satisfied, that
is, tj+1 − ti ≥ T , and denote it by G. Thus, each link
in G has residual bandwidth greater than or equal to B

for all the time slots from slot i to slot j.
3) Perform a Breadth First Search (BFS) path discovery

from s to d on the graph G using function bfs(G, s, d).
4) If one or more paths exist, function bfs(G, s, d) returns

1.
5) Else, function bfs(G, s, d) returns 0.
6) Grade for each slot is defined as g(i) = bfs(G, s, d) +

exp(−ti). Adding the exponential term results a better
score for earlier time slots.

When grade solution is implemented as above, then the

SlotSearch procedure satisfies the following property:
Theorem 1: SlotSearch always returns the earliest time

at which a path satisfying the requested bandwidth B and
connection length T can be established between nodes s and
d.

Proof: We prove by contradiction, let t denote the starting
time slot returned by SlotSearch. Suppose the intersection
between graphs Gk with k = i, . . . , j for ti ∈ L̄ and ti <

t contains a path between the source and destination. Since
exp(−ti) > exp(−t), the grade gi will be smaller than g∗

corresponding to t which contradicts our assumption that t is
returned by SlotSearch. Also, if the intersection between the
relevant graphs, Gk, k = i, . . . , j contains no path between the
source and destination, then necessarily there is no possibility
to find a path satisfying the constraints starting at any time
in the interval [ti, ti+1). Therefore, we are sure that no path
exists starting at a time earlier than t.

We note that if tb = ∞ , then it is guaranteed that
SlotSearch will always find a path (assuming that the
requested bandwidth B does not exceed the link capacities).
This is because all the links in the network are available in full
capacity in the last time slot (slot n) and its length is infinite.

The following theorem states that GCR has polynomial-time
complexity. Specifically, denote by r the maximum number of
pending requests at any time and C the worst-case computa-
tional complexity of the path search, then:

Theorem 2: GCR has a computational complexity of
O(|E|r2 + C).

Proof: Every new job starts with an existing event (or
at tnow). Therefore, it only adds at most one new future
event (at its end, unless it coincides with an existing event).
Therefore, the number of future events is at most to the
number of pending (or unfinished) jobs, r. In other words,
because according to each arriving job at most one new event
is generated in event list L, the number of slots is at most
r + 1.

Every execution of grade solution requires finding the
intersection of at most r different graphs, each having |E|
edges requiring at most O(|E|r) operations, and then per-
forms a BFS search, requiring another O(|E|) operations.
grade solution is called at most r+1 times by SlotSearch,
and then PathSearch is called, requiring another O(C)
operations, leading to the result in the theorem statement.

As an example, consider the case where the search criterion
is the shortest path. Using a Breadth First Search (BFS) pro-
cedure, computing the shortest path requires at most C = |E|
operations. Thus, the computational complexity of SlotSearch
in this case is just O(|E|r2). In fact, if the criterion is only
based on finding the earliest time slot available, and then
performing a search for the optimal path, the optimization
presented in [18] can lead to a time complexity of O(|E|r+C),
by storing for each edge the next time its capacity drops below
the required bandwidth and utilizing this in grade solution,
updating only when this time arrives. For further details,
see [18].

��

����

�� �	

��

�� ��

����

��

��

����

�� !

"#$%

&'

()()()()()(*)*)*)*)*)*
+)+)+)+)+)+
+)+)+)+)+)+
+)+)+)+)+)+
+)+)+)+)+)+
+)+)+)+)+)+
+)+)+)+)+)+

,),),),),),
,),),),),),
,),),),),),
,),),),),),
,),),),),),
,),),),),),

-)-)-)-)-)-.).).).).).
/)/)/)/)/)/
/)/)/)/)/)/
/)/)/)/)/)/
/)/)/)/)/)/
/)/)/)/)/)/
/)/)/)/)/)/

0)0)0)0)0)0
0)0)0)0)0)0
0)0)0)0)0)0
0)0)0)0)0)0
0)0)0)0)0)0
0)0)0)0)0)0

1)1)1)1)1)1
1)1)1)1)1)1
1)1)1)1)1)1
1)1)1)1)1)1
1)1)1)1)1)1
1)1)1)1)1)1

2)2)2)2)2)2
2)2)2)2)2)2
2)2)2)2)2)2
2)2)2)2)2)2
2)2)2)2)2)2
2)2)2)2)2)2

3)3)3)3)3)3
3)3)3)3)3)3
3)3)3)3)3)3
3)3)3)3)3)3
3)3)3)3)3)3
3)3)3)3)3)3

4)4)4)4)4)4
4)4)4)4)4)4
4)4)4)4)4)4
4)4)4)4)4)4
4)4)4)4)4)4
4)4)4)4)4)4

5)5)5)5)5)56)6)6)6)6)6

7)7)7)7)7)78)8)8)8)8)8

9)9)9)9)9)9
9)9)9)9)9)9
9)9)9)9)9)9
9)9)9)9)9)9
9)9)9)9)9)9
9)9)9)9)9)9

:):):):):):
:):):):):):
:):):):):):
:):):):):):
:):):):):):
:):):):):):

;);););););
;);););););
;);););););
;);););););
;);););););
;);););););

<)<)<)<)<)<
<)<)<)<)<)<
<)<)<)<)<)<
<)<)<)<)<)<
<)<)<)<)<)<
<)<)<)<)<)<

=)=)=)=)=)=>)>)>)>)>)>
?)?)?)?)?)?
?)?)?)?)?)?
?)?)?)?)?)?
?)?)?)?)?)?
?)?)?)?)?)?
?)?)?)?)?)?

@)@)@)@)@)@
@)@)@)@)@)@
@)@)@)@)@)@
@)@)@)@)@)@
@)@)@)@)@)@
@)@)@)@)@)@

A)A)A)A)A)A
A)A)A)A)A)A
A)A)A)A)A)A
A)A)A)A)A)A
A)A)A)A)A)A
A)A)A)A)A)A

B)B)B)B)B)B
B)B)B)B)B)B
B)B)B)B)B)B
B)B)B)B)B)B
B)B)B)B)B)B
B)B)B)B)B)B

Slot 1 Slot 2 Slot 3

Slot 4 Slot 5

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

time [0 , 2] time [2 , 3] time [3 , 5]

 time [5 , 6] time [6 , 8]

Fig. 2. With path switching, a connection lasting T = 5 time units between
nodes B and C can be established starting from slot 1. Without path switching,
the connection can be established starting from slot 3 only.

C. Path switching
The basic algorithm described in the previous section returns

a single path for the entire connection duration. This can be
improved by noting that a request is satisfied even if different
paths are used at different time slots. We refer to this approach
as path switching. By relaxing the constraint of using the
same path over all the time slots, significant performance
improvement in terms of network utilization can be achieved.

Figure 2 illustrates the benefits of path switching for a fully
connected graph with 4 nodes. Suppose we are interested in
setting up a connection for T = 5 time units between nodes
B and C. If we do not use path switching, the earliest time
slots in which a path can be established are slots 3, 4, and
5, where the same path (e.g., the direct link between nodes B
and C) is available during each time slot. On the other hand,
if path switching is enabled, then the connection can be set
earlier, namely during slots 1, 2, 3. In this case, a different
path would be used at each of the time slots.

We extend GCR to GCRswitch which has similar structure to
GCR, and consists of the following functions:
SlotSearchswitch: This function returns the starting time

for a set of slots, all containing at least one path between s

and d. The set of slots should satisfy the connection duration.
The paths in different slots are not necessarily the same. If no
such set of slots are available it returns False which means
that the request is rejected:

1) For each slot i in L̄ calculate a grade g(i) by calling a
function grade solutionswitch for i.

2) Find slot I which maximizes over all grades g(i).
3) If g(I) > 1, a path is found starting at some slot in L̄.

Return the starting time tI .
4) Else, no path is found for the connection duration, and

no connection can be started in [ta, tb] between s and
d. Therefore, the request will be rejected by returning
False.

Function grade solutionswitch grades slots. As before,

slots at which a connection can be initiated are given grades
greater than 1, and the rest smaller than 1. Also as earlier,
we have a secondary grading based on a negative expo-
nential function that assigns higher grades to earlier slots.
grade solutionswitch can be presented by the following
pseudo code:

Function grade solutionswitch(i, s, d, T, B):
j ← i

while tj+1 − ti < T do j ← j + 1
v ← ∧j

k=ibfs(Gk, s, d).
return(v + exp(−ti)).

The ∧ operator above is a logical AND between outcomes of
the bfs functions. The following steps are used to present this
function:

1) For each slot k ∈ L, construct a graph Gk by removing
from G all the links with residual bandwidth less than
B.

2) Find minimum number j such that the requested dura-
tion is satisfied, i.e. tj+1 − ti ≥ T .

3) Perform a Breadth First Search (BFS) path discov-
ery from s to d on each graph Gk using function
bfs(Gk, s, d), where k = i, . . . , j.

4) If there is a path (not necessarily the same) between the
source and destination in each time slot from slot i to
slot j, then the variable v is set to 1.

5) Else, the variable v is set to 0.
6) An exponential term exp(−ti) is added to v to assign

higher score to earlier slots.
If SlotSearchswitch result does not return False, then

GCRswitch calls PathSearchswitch which finds a set of paths
between source and destination for the connection duration
starting at time t as follows: return a vector of tuples
{(tI , PI), . . . , (tI+X , PI+X)}, where tI , . . . , tI+X are path
switch instances in [t, te] (tI = t is the connection starting
time as before), Pi denotes the selected path starting at time
ti for I ≤ i ≤ I+X , and X is the number of path switches. At
each time slot, a paths can be selected according to a desired
optimization criteria, e.g., shortest path, widest path, etc.

Finally, GCRswitch calls the Updateswitch function that up-
dates L and W after a request is allocated. It updates L

the same way as in function Update. For updating W , we
note here that the connection path from t to te is not fixed.
Therefore, bandwidth B is subtracted from residual bandwidth
of links included in Pi for the duration from ti to ti+1 where
ti and ti+1 are members of the set {tI , . . . , tI+X}.

For the above implementation of SlotSearchswitch, the
following property can be proved:

Theorem 3: When path switching is permitted,
SlotSearchswitch always returns the earliest available
time slot that can accommodate a connection between nodes
s and d satisfying the requested bandwidth B and connection
length T .

Proof: For any starting time, t grade solutionswitch
will fail (return a result less than 1) only if there is a time slot

within [t, t+T) where no appropriate path exists. Otherwise, it
will return a true result, with grade decreasing with the starting
time.

The computational complexity of GCRswitch as presented is
O(|E|r2+Cr), but it can be further decreased to O(|E|r+Cr)
by keeping in storage the next failure time similar to the non-
switching case.

D. Minimum path switching
From a practical perspective, a possible drawback of path

switching is the need to perform many path establishments and
releases throughout the life of a connection. It is possible to
devise various algorithms to address this issue. One possible
approach called, minimum switching guarantees that the num-
ber of switches performed during a connection is minimized.
In this case, the selected path may not be the optimal one in
each time slot.

In order to establish a connection with minimum number of
switches upon arrival of a request, first we should find a set
of time slots that can accommodate this channel. It suffices
to find a subsequent set of slots in L̄, such that in every slot
there exists at least one path from source s to destination d.
Therefore, we can use function SlotSearchswitch as before
which returns the earliest such slot or a False if none is
found. Here, it’s called SlotSearchminimum (notice that it
may be desirable to change this function to take the number
of switches into the grading. This is also possible in the
suggested setting). The PathSearchswitch function however,
should be replaced by PathSearchminimum which needs some
modifications as specified below.

Let us call the algorithm for minimum switches GCRminimum.
GCRminimum will consist of the following functions:
SlotSearchminimum: same as function SlotSearchswitch.
PathSearchminimum: If a slot I , beginning at time tI , is

found by SlotSearchminimum do the following:
1) Initialize Paths to be an empty list, te ← tI + T . Set

i = I , t = ti.
2) Set G′ ← Gi, where Gi is the graph obtained by

removing all links with insufficient residual bandwith
for the request at slot i.

3) If ti ≥ te append (t, P) to Paths and exit.
4) If bfs(G′, s, d) = 1, set P to be the shortest, or

otherwise best path between s and d in the graph G′

(for any single time slot it is guaranteed such a path
exists by the success of SlotSearchminimum).

5) Else (bfs(G′, s, d) = 0), append (t, P) to Paths, set
G′ ← Gi, t← ti and return to step 3.

6) Set i← i + 1, G′ ← G′ ∩Gi, and return to step 3.
The algorithm works by intersecting the graphs for consecutive
time slots (done in step 6) and checking whether a path
continues to exist for all these time slots (done in step 3).
When no path remains between the source and destination
after some number of intersections, the last found path is used
and a new path is searched (step 5).
Updateminimum: updates L and W same as Updateswitch.

Theorem 4: Function PathSearchminimum(t) finds the min-
imum number of switchings from time t.

Proof: Function PathSearchminimum(t) where t = ti for
some i works by finding the maximum j such that a single
path with sufficient bandwidth exists between t and tj (i.e., the
maximum j such that ∩j−1

n=iGn still contains a path between s

and d), then it searches for a new path beginning at tj and so
on. Denote the times of switching by t0, t1, t2, . . . , tf , where
t0 is the beginning time.

Assume that there is some other sequence of times
t′0, t

′
1, . . . , t

′
g, where t′0 = t0, t′g = tf , and g < f , i.e., less

switchings. Since g < f at least one of the switchings in the
primed sequence is conducted later than its equivalent in the
returned sequence. So, here must be some first slot, x, such
that tx < t′x. By minimality tx−1 ≥ t′x−1. Therefore, since a
single path exists between times t′x−1 and t′x, it must also exist
between the times tx−1 and tx (since tx < t′x). However, the
function PathSearchminimum should have used this path for as
long as it exists, and should have returned time t′x instead of
tx, leading to a contradiction.

Therefore the theorem holds.
Another approach for decreasing the number of switches

is limited switching which states that we allow a connection
to switch to a better path as long as the number of switches
does not exceed a certain predefined threshold. This algorithm,
called GCRlimitx, limits the number of switches per connection
to at most x. GCRlimitx could be considered as a mixture of
GCR and GCRswitch. It operates as follows: It starts with a slot
in L̄ that contains at least one path between the source and
the destination and selects a path according to the desired
optimization criterion. In the next slot, it switches path if
the current path is no longer available or a better path is
found. This procedure continues as long as the number of path
switches does not exceed the limit x. After x path switches,
GCRlimitx sticks to the last path found for the rest of the
connection. In the case that no path is available at one of the
time slots or if after x switches the connection cannot continue
with the current path, then the algorithm starts another search
for this connection, starting from the next time slot in the
window specified by the user. It should be noted that if some
measure of the cost of path switching is defined, it may be
combined with the limited switching or minimal switching
approaches as part of the grading mechanism in order to give
an optimal tradeoff between the number of switches and the
job’s completion time. For some experiments related to the
cost of path switching see [19].

IV. SIMULATION AND PERFORMANCE EVALUATION

A. Performance Measures
We have developed a simulation tool in C code to evaluate

the performance of our algorithms. The main performance
metrics of interest are:

1) Average delay, which corresponds to the average time
elapsing from the point a request is sent until the
connection actually starts.

2) Saturation throughput, which corresponds to the max-
imum offered load (in terms of requests per unit of
time) that the network can sustain. When the offered
load exceeds the saturation throughput, then the average
delay of requests becomes unbounded.

In terms of network performance, algorithms with lower
average delay and higher saturation throughput are of course
more desirable.

B. Simulation Parameters
Our simulator allows evaluating our algorithms under var-

ious topological settings and traffic conditions. The main
simulation parameters are as follows:

• Topology: our simulator supports arbitrary topologies. In
our simulations, we have considered two types of topol-
ogy shown in Figure 3, namely, a fully connected graph
of 8 nodes and a topology that represents a superposition
of the DoE UltraScience Net and the National Lambda
Rail testbeds [7, 20, 21]. Each link on these graphs is full-
duplex and assumed to have a capacity of 20 Gb/s.

• Arrival process: we assume that the aggregated arrival
of requests to the network forms a Poisson process (this
can easily be changed, if desired). Our simulations are
repeated for different arrival rates, also referred to as
network load. The saturation throughput corresponds to
the maximum arrival rate at which the average delay is
still bounded.

• Connection length: we assume that the requested connec-
tion length T is distributed according to an exponential
distribution (again this can be changed, if desired). With-
out limitation of generality, the mean connection length
is set to one time unit. In our simulations, a time unit is
defined as one hour.

• Bandwidth: This parameter corresponds to the requested
bandwidth B. We consider two models:

1) Uniform: the bandwidth B is uniformly distributed
among the integers 1 to 10 Gb/s.

2) 80/20: Whereas 80% of the requests are for 1 Gb/s
connections and the remaining 20% are for 10 Gb/s
connections. This models the scenarios where most
of the users have access to 1 Gb/s links and some
have access to 10 Gb/s links.

• Source: We again consider two models:
1) Uniform: the source s is chosen uniformly at ran-

dom among all the nodes.
2) Hot-spot: one of the nodes (e.g. a host with a

supercomputer) is more likely to be a source node
than other nodes in the network. In our simulations,
we assume that the hot-spot node has a probability
50% to be selected. Otherwise, one of the other
nodes is selected uniformly at random.

• Destination: the destination d is selected uniformly at
random among all the nodes (except for the source).

All of the simulations are run for a total of 106 requests
for each value of network load. The network load is increased

(a) 8 node

2 3
1 4

5

6

7
8

9

10
11

12

13 0

(b) 14 node LambdaRail

Fig. 3. topologies for simulations.

70 80 90 100 110 120 130 140 150 160
0

5

10

15

20

24

av
er

ag
e

de
la

y
(h

ou
rs

)

network load (requests/hour)

GCR
GCRswitch

Fig. 4. Performance of GCR with and without path switching for the 8-node
clique topology. Distributions of source, destination and requested bandwidth
are uniform.

from an initial value up to the saturation load for each plot.
We note that it is difficult to determine the exact value of the
saturation throughput using simulations. Thus, in our simu-
lations, we define saturation throughput as the network load
at which the average delay starts exceeding 24 hours. Since,
the average delay curve increases very sharply with network
load around that value, we conjecture that the actual saturation
throughput is very close. Thus, our simulation results always
provide a lower bound on the saturation throughput.

C. Simulation results
In this section, we present simulation results illustrating

the benefits of path switching and the importance of path
optimization.

1) Path switching: Figure 4 depicts the average delay ver-
sus network load for GCR (no switch) and GCRswitch (unlimited
switching) for the 8-node clique topology. In both cases,
path selection is based on the earliest-shortest optimization
criterion.

It is apparent in the figure that switching improves both
the delay and the saturation throughput significantly. Specif-
ically, the saturation throughput is slightly more than 150
request/hour with path switching, while it is slightly above
100 requests/hour without path switching. Thus path switching
leads roughly to a 50% increase in the maximum network

70 80 90 100 110 120 130 140 150 160
0

5

10

15

20

24

network load (requests/hour)

av
er

ag
e

de
la

y
(h

ou
rs

)

GCR
GCRminimum

GCRlimit1

GCRlimit2

GCRlimit3

GCRswitch

Fig. 5. Performance of GCR with several path switching alternatives for the 8-
node clique topology, i.e., GCR, GCRminimum , GCRlimit1 , GCRlimit2 , GCRlimit3 ,
and GCRswitch . Average delay decreases in the same order the algorithms
are listed. Distributions of source, destination and requested bandwidth are
uniform.

15 20 25 30 35 40
0

5

10

15

20

24

network load (hours)

av
er

ag
e

de
la

y
(h

ou
rs

)

GCR
GCRswitch

Fig. 6. Performance of GCR with and without path switching for the Lambda
Rail topology. Distributions of source, destination and requested bandwidth
are uniform.

utilization achievable.
For the same topology and traffic parameters, Figure 5

shows the performance of various heuristics aimed at limiting
the number of path switches. The figure indicate that even if
the number of switches is limited to a maximum of 3, 2, or
even 1 per connection, significant performance improvement
can be achieved. In the latter case, the saturation throughput
exceeds 120 requests/hour, about a 20% improvement com-
pared to the case where switching is disabled. On the other
hand, the minimum switch heuristic does not perform better
than no switching at all. The probable reason is that mini-
mum switching uses non-optimal paths that end up degrading
performance.

Figure 6 compares the performance of GCR with and without
path switching, for the Lambda Rail topology. The results
show that the gain in terms of saturation throughput is not
as significant as for the 8-node clique topology. The main
reason is that the Lambda Rail topology is less dense (i.e., the
graph has fewer links). Thus, there are fewer alternative paths
between each source and destination that can be used for path
switching. That being said, path switching is still very helpful

30 40 50 60 70 80
0

5

10

15

20

24

network load (requests/hour)

av
er

ag
e

de
la

y
(h

ou
rs

)

GCR
GCRminimum

GCRlimit1

GCRlimit2

GCRlimit3

GCRswitch

Fig. 7. Performance of GCR, GCRminimum , GCRlimit1 , GCRlimit2 , GCRlimit3 ,
and GCRswitch for the Lambda Rail topology, with uniform source and desti-
nation and 80/20 requested bandwidth distribution. Average delay decreases
in the same order the algorithms are listed here.

15 16 17 18 19 20 21 22 23
0

5

10

15

20

24

network load (requests/hour)

av
er

ag
e

de
la

y
(h

ou
rs

)

GCR
GCRminimum

GCRlimit1

GCRlimit2

GCRlimit3

GCRswitch

Fig. 8. Performance of GCR, GCRminimum , GCRlimit1 , GCRlimit2 , GCRlimit3 ,
and GCRswitch for the Lambda Rail topology, for the hot-spot model (node 6
is the hot spot) and uniform requested bandwidth distribution. Average delay
decreases in the same order the algorithms are listed here.

in reducing the average delay of requests.
We have compared the performance of GCR with different

switching options for other distributions of requested band-
width and destination as well. Figure 7 shows the performance
of the different path switching heuristics with uniform source
and destination and requested bandwidth distributed accord-
ing to the 80/20 model for the 13-node topology. Figure 8
shows results for the hot-spot model and uniformly requested
bandwidth for the same topology. The results obtained are
qualitatively similar to those earlier, wherein GCRswitch and
GCRlimit always improve performance.

2) Multi-criteria path optimization:: As mentioned in Sec-
tion II, the variation of SlotSearch we used for the sim-
ulations always returns the earliest available path. In addi-
tion, when several earliest paths are available, GCR allows
performing optimization of the path selection. Figures 9 and 10
illustrate the importance of such optimization for the 8-node
and Lambda Rail topologies respectively. Source, destination,
and bandwidth have uniform distribution. The figures show the
performance of GCRswitch using four types of path optimiza-
tions. In the first three, if multiple earliest paths are found, the

70 80 90 100 110 120 130 140 150 160
0

5

10

15

20

24

network load (requests/hour)

av
er

ag
e

de
la

y
(h

ou
rs

)

shortest−narrowest
shortest
shortest−widest
widest−shortest

Fig. 9. Performance of GCRswitch with various multi-criteria path optimiza-
tion in the 8-node clique topology, namely: widest-shortest, shortest, shortest-
widest, and shortest-narrowest path optimizations. Source, destination, and
bandwidth have uniform distribution.

15 20 25 30 35 40
0

5

10

15

20

24

av
er

ag
e

de
la

y
(h

ou
rs

)

network load (requests/hour)

widest−shortest
shortest−narrowest
shortest
shortest−widest

Fig. 10. Performance of GCRswitch with various multi-criteria path optimiza-
tion in the Lambda Rail topology, namely: widest-shortest, shortest, shortest-
widest, and shortest-narrowest path optimizations. Source, destination, and
bandwidth have uniform distribution.

shortest one is selected. If several shortest paths are available,
then shortest-narrowest heuristic chooses the narrowest path
among those, the shortest-random (or shortest) chooses one of
the paths at random, and shortest-widest chooses the widest3.
Widest-shortest heuristic first selects the widest path among all
the earliest paths available. If multiple earliest-widest paths are
found, the shortest among those is selected.

From both figures, it is clear that the first three heuristics
significantly outperform the fourth one, that is, selecting one
of the shortest among all the earliest paths is a better strategy
than selecting one of the widest. The figures also show that
a further optimization is not as essential, that is, choosing an
earliest-shortest path at random is approximately as good as
the other heuristics.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have introduced an algorithmic framework
for advanced channel reservation, called GCR. We have ex-
plained how this framework can be used to find and grade

3Widest and narrowest refer to the path with the largest or smallest path
bandwidth, respectively.

paths according to a desired optimization criterion. If the
optimization criterion is delay, we have proved that GCR returns
the earliest time available to start the requested connection.
We have proved that the complexity of this algorithm is
polynomial in the size of the graph and the number of pending
requests.

We have also presented an important extension to GCR,
called GCRswitch, which is capable of returning a connection
that switches between different paths. We have shown that
this algorithm retains the same properties as GCR, that is, it
returns the earliest available time slot and its complexity is
polynomial. Considering practical issues of switching, we have
designed a variant called GCRminimum that provably minimizes
the number of switches needed during a connection and
another variant, called GCRlimitx, that limits the number of
path switches to at most x switches per connection.

Our simulation results, run for various topologies and
traffic parameters, show that that GCRswitch can significantly
improve performance, compared to GCR, in terms of saturation
throughput and average delay. Unsurprisingly, the biggest gain
is achieved when the topology is dense, that is, when there
are many alternatives for switching paths. The GCRminimum
heuristic, while appealing from a theoretical perspective, did
not perform much better than GCR. We conjecture that paths
returned by GCRminimum are suboptimal (i.e., not necessarily the
shortest ones) and thus may consume considerable network
resources. On the other hand, the GCRlimitx class of algorithms
performed better than GCR, even when only a single switch
between paths is allowed during a connection.

Another important and novel aspect of our algorithmic
framework is to enable multi-criteria path optimization. Our
simulations of GCRswitch show that a secondary optimization
in conjunction with the earliest path selection is beneficial, i.e.,
choosing earliest-shortest paths is better than other heuristics,
but we observe that further optimizations, like earliest-shortest-
widest path, is not essential.

We conclude by noting that in all our simulation the window
of request time was unlimited. In some cases, however, a user
may want to specify a certain window of time [ta, tb] to set-up
a connection. In such a case, a request could be blocked if no
available path is found during that window. In future work, it
would therefore be interesting to evaluate the performance of
our various algorithms with respect to the blocking probability
metric. We conjecture that path switching and multi-criteria
optimization would improve performance in this case as well.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Nageswara Rao for
fruitful discussions.

This research was supported in part by the US Department
of Energy under ECPI grant DE-FG02-04ER25605.

REFERENCES

[1] “GlobalGridForum,” http://www.gridforum.org/.
[2] “Large Hadron Collider (LHC) project,” http://www.optiputer.net/.
[3] T. Jepsen, “The Basics of Reliable Distributed Storage Networks,” IT

Professional, vol. 6, no. 3, pp. 18–24, May/June 2004.

[4] “Network Provisioning and Protocols for DOE Large-Science Applica-
tions,” in Provisioning for Large-Scale Science Applications, N. S. Rao
and W. R. Wing, Eds. Springer, New-York, April 2003, Argonne, IL.

[5] N.S.V. Rao and W.R. Wing and S.M. Carter and Q. Wu, “UltraScience
Net: Network Testbed for Large-Scale Science Applications,” IEEE
Communications Magazine, vol. , 2005.

[6] H. Lee and M. Veeraraghavan and H. Li and E.K. P. Chong, “Lambda
Scheduling Algorithm for File Transfers on High-speed Optical Circuit,”
in IEEE International Symposium on Cluster Computing and the Grid
(CCGrid 2004), April 2004, Chicago, USA.

[7] A. Banerjee et. al., “Routing and Scheduling Large File Transfers over
Lambda Grids,” in Proc. of the 3rd International Workshop on Protocols
for Fast Long-Distance Networks (PFLDnet’05), February 2005, Lyon,
France.

[8] “OptIPuter,” http://www.optiputer.net/.
[9] Norden, S. and Turner, J., “DRES: Network Resource Management

Using Deferred Reservations,” in Proceedings of IEEE GLOBECOM,
November 2001.

[10] A. Schill and S. Kuhn and F. Breiter, “Resource Reservation in
Advance in Heterogeneous Networks with Partial ATM Infrastructures,”
in Proceedings of INFOCOM’97, April 1997, Kobe, Japan.

[11] W. Reinhardt, “Advance Reservation of Network Resources for Multi-
media Applications,” in Proc. 2nd Intl. Workshop on Advanced Tele-
services and High-Speed Communication Architectures (IWACACA’94),
September 1994, Heidelberg, Germany.

[12] W. Reinhardt, “Advance Resource Reservation and its Impact on
Reservation Protocols,” in Proc. Broadband Islands, September 1995,
Dublin, Ireland.

[13] Schill, A. and Kuhn, S. and Breiter, F., “Resource Reservation in
Advance in Heterogeneous Networks with Partial ATM Infrastructures,”
in Proc. IFIP Broadband, April 1998, Stuttgart, Germany.

[14] Erlebach, T., “Call admission control for advance reservation requests
with alternatives,” Tech. Rep. 142, ETH, Zurich, 2002.

[15] A. Banerjee et. al., “A Time-Path Scheduling Problem (TPSP) for
Aggregating Large Data Files from Distributed Databases using an
Optical Burst-Switched Network,” in Proc. ICC, 2004, Paris, France.

[16] S. Figueira, N. Kaushik, et. all, “Advance Reservation of Lightpaths in
Optical-Network Based Grids,” in Proc.ICST/IEEE Gridnets, October
2004, San Jose, USA.

[17] N. Kaushik, S. Figueira, “A Dynamically Adaptive Hybrid Algorithm
for Scheduling Lightpaths in Lambda-Grids,” in Proc. IEEE/ACM
CCGRID/GAN’05-Workshop on Grid and Advanced Networks, May
2005, Cardiff, USA.

[18] Guerin, R. A. and Orda, A., “Networks With Advance Reservations: The
Routing Perspective,” in Proceedings of INFOCOM’00, March 2000,
Tel-Aviv, Israel.

[19] “Lambda Station path switching experiment,”
http://www.lambdastation.org/path-switching.html.

[20] “National LambdaRail Inc.,” http://www.nlr.net/.
[21] “UltraScience Net,” http://www.csm.ornl.gov/ultranet/topology.html.

