
Birdwatching: False Negatives In Cuckoo Filters
Novak Boskov

Boston University

Boston, MA, USA

boskov@bu.edu

Ari Trachtenberg

Boston University

Boston, MA, USA

trachten@bu.edu

David Starobinski

Boston University

Boston, MA, USA

staro@bu.edu

ABSTRACT
Cuckoo filters are a probabilistic data structure for approximate set

membership queries. Their lookup queries are designed to return

either “probably in the set” (with probability of error 𝜖) or “definitely

not in the set”. We show that the latter does not necessarily hold

in practice, meaning that these filters may suffer from both false

positives and false negatives. Specifically, we analyze state-of-the-

art cuckoo filter implementations, and identify a source of false

negatives arising from an interplay between partial-key hashing

and cuckoo evictions in filters that are close to full. We further

show that for practical implementations of cuckoo filters, there is a

trade-off between space efficiency and incurring a certain amount

of false negatives. Finally, we compare state-of-the-art cuckoo filter

implementations with their Bloom filter counterparts. We show

that for a false positive rate below 3%, Bloom filters achieve better

space efficiency than cuckoo filters for most of the filter sizes.

CCS CONCEPTS
• Theory of computation→ Bloom filters and hashing;

KEYWORDS
Cuckoo filters, Bloom filters

ACM Reference Format:
Novak Boskov, Ari Trachtenberg, and David Starobinski. 2020. Birdwatch-

ing: False Negatives In Cuckoo Filters. In Student Workshop (CoNEXT’20),
December 1, 2020, Barcelona, Spain. ACM, New York, NY, USA, 2 pages.

https://doi.org/10.1145/3426746.3434063

1 INTRODUCTION
Cuckoo filters are an approximate set membership data structure

that support Insert, Lookup, and Delete operations. They were in-

troduced by Fan et al. [4] in 2014, and have since been adopted in

a wide range of network applications in which Bloom filters were

utilized beforehand. To maximize their space efficiency and oper-

ations throughput (i.e., number of operations per second), cuckoo
filters make their Lookup approximate, admitting a fraction 𝜖 of

false positives. By design, cuckoo filters are supposed to not incur

any false negatives for Lookup.
Our contributions are summarized as follows:

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CoNEXT’20, December 1, 2020, Barcelona, Spain
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8183-3/20/12. . . $15.00

https://doi.org/10.1145/3426746.3434063

4 5 6 7 8 9 10 11
nmax: number of elements to store (thousands)

0
1
2
3
4
5
6
7
8
9

Fa
ls

e
ne

ga
ti

ve
s

(%
)

α=50%
α=80%

α=90%
α=95%

0

200

400

600

800

1000

Fa
ls

e
ne

ga
ti

ve
s

co
un

t
(d

as
he

d)

Figure 1: Empirical false negatives rate for𝑏 = 4, 𝑓 = 8 cuckoo
filters, with𝑚 not a power of two.

1 2 3 4 5 6 7 8 9 10
nmax: number of elements to store (thousands)

2

4

6

8

10

12

14

Si
ze

 o
f

th
e

fi
lt

er
 (

K
B

)

Cuckoo Filter
Bloom Filter from Bitcoin

Figure 2: Space utilization of space optimized cuckoo [1] and
Bloom filters [2].

• We conduct experiments to measure the space efficiency of

cuckoo filters [1], showing that they may use up to twice

the theoretically expected amount of memory.

• We compare the space efficiency of cuckoo filters [1] with

Bloom filters implementation in Bitcoin Core [2] and iden-

tify conditions under which Bloom filters are smaller than

cuckoo filters (See Fig. 2).

• Finally, we identify the potential source of false negatives

in some cuckoo filters and evaluate their effect in practical

filter configurations (See Fig. 1).

2 STRUCTURE OF CUCKOO FILTERS
A cuckoo filter is a two-dimensional bit array divided logically into

slots, buckets and fingerprints. The number of slots per bucket

(𝑏), number of buckets (𝑚), and bits per slot (𝑓) are fixed and uni-

form throughout the filter. We write 𝑛𝑚𝑎𝑥 to denote the maximum

capacity of the filter,𝑛 to denote the number of currently inserted el-

ements, and 𝛼 = 𝑛/(𝑏 ∗𝑚) to denote the current load factor. Cuckoo

https://doi.org/10.1145/3426746.3434063
https://doi.org/10.1145/3426746.3434063

CoNEXT’20, December 1, 2020, Barcelona, Spain Boskov et al.

filters also make use of two independent hash functions: the fin-
gerprint hash (𝑥 𝑓) and bucket hash (𝐻). These two hash functions

participate in partial-key cuckoo hashing — the procedure of identi-

fying the two buckets into which a fingerprint 𝜙𝑥 of an item 𝑥 may

be stored. The fingerprint hash determines the fingerprint of an

item, while the bucket hash determines the two candidate buckets
(denoted 𝑖1 and 𝑖2) into which the fingerprint may be stored. The

fingerprint of each successfully inserted item is stored in only one

of the two candidate buckets, depending on which bucket has suffi-

cient space. If no bucket has space to store the fingerprint, a bucket

(𝑖1 or 𝑖2) is chosen uniformly at random and the recursive process

of cuckoo eviction is triggered [4]. Partial-key cuckoo hashing is

thus calculated as follows (for fingerprint function 𝜙𝑥 = 𝑥 𝑓 (𝑥)):

𝑖1= 𝐻 (𝑥) (mod 𝑚)

𝑖2= 𝑖1 ⊕ 𝐻 (𝜙𝑥) (mod 𝑚)

(1)

Importantly, 𝑖1 and 𝑖2 represent the indices of the buckets, and

thus must be translated into the bucket range [0,𝑚 − 1] to prevent

illegal memory references. State-of-the-art implementations [1] use

modulo operation for this purpose. When𝑚 is a power of two, this

modulo operation is reduced to a bit-wise “and”, which eventually

allows for higher operations throughput on modern hardware.

Additionally, most probabilistic filters are designed with a tar-

geted false positive rate 𝜖 > 0. For example, given the false positive

rate 𝜖 , a space-optimized Bloom filter uses
1

ln 2
log

2
(
1

𝜖) bits per item.

On the other hand, cuckoo filters use 𝑓 bits to fingerprint each item,

and the minimal fingerprint size for a given false positive rate 𝜖 and

bucket size 𝑏 is 𝑓 = ⌈log
2
(1/𝜖) + log

2
(2𝑏)⌉ [4]. Thus, for the fixed

𝜖 we can choose 𝑏 and 𝑓 to make cuckoo filters that are smaller

than corresponding Bloom filters. This property of cuckoo filters

makes them a plausible alternative to Bloom filters when we need

to minimize memory consumption.

3 CAUSES OF FALSE NEGATIVES
The partial-key alternative bucket calculation given in (1) is false

negatives free only when𝑚 is a power of two. Otherwise, when

𝑚 is not constrained to powers of two, we have the following

observations:

Observation 1. There exist cuckoo filters that permit evictions to
an incorrect bucket 𝑖 , such that 𝑖 ̸= 𝑖1, and 𝑖 ̸= 𝑖2.

Observation 2. An element 𝑥 that is evicted to an incorrect bucket
is a false negative when there is no previously inserted 𝑥 ′ such that:

(𝜙
𝑥 ′ = 𝜙𝑥) and (𝐻 (𝑥 ′) = 𝐻 (𝑥) (mod 𝑚)). (2)

When the condition from (2) holds, we observe not only the false

positives (dictated by parameter 𝜖), but also observe false negatives.
For traditional applications of probabilistic filters, a significant

amount of false negatives is unacceptable.
Graf and Lemire [5] have recently proposed an alternative ver-

sion of partial-key cuckoo hashing to replace (1) and avoid modulo

operation. However, their version results in a twofold degrada-

tion in the throughput of the Insert operation [5], which may be

unacceptable in traditional network applications.

500 600 700 800 900 1000
nmax: number of elements to store (thousands)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

O
ve

rh
ea

d
 (

M
eg

ab
yt

es
)

4 fingerprint bits

8 fingerprint bits

12 fingerprint bits

16 fingerprint bits

32 fingerprint bits

Figure 3: Space overhead as a function of 𝑛𝑚𝑎𝑥 for 𝑏 = 4 (ref-
erential implementation [1]).

4 EXPERIMENTAL EVALUATION
We measure the sizes of the cuckoo filters [1] for various capacities

in Fig. 3. When 𝑚 is a power of two, the maximal overhead is

𝑓 (𝑛𝑚𝑎𝑥 − 2) bits and occurs when ⌈𝑛𝑚𝑎𝑥/𝑏⌉ = 2
𝑘
+ 1, for some

integer 𝑘 (the peak on Fig. 3 occurs when 𝑛𝑚𝑎𝑥/4 = 2
18

+ 1).

Next, we compare cuckoo filters [1] (with𝑚 constrained to pow-

ers of two) with Bloom filters from Bitcoin Core [2]. For a fixed

𝜖 ≤ 3%, Bloom filters are smaller than cuckoo for most filter capac-

ities (See Fig. 1). These results suggest that one need to relax the

constraints on𝑚 to achieve the maximal space efficiency of cuckoo

filters.

To evaluate the empirical false negatives rate, we offer an alterna-

tive cuckoo filter implementation based on the state-of-the-art [1].

The only modification is that we permit all possible values𝑚 (i.e.,
not just powers of 2). Fig. 1 depicts the false negatives rate as a

function of the desired filter capacity 𝑛𝑚𝑎𝑥 . We see that for the

load factors lower than 80%, the false negatives rate remains close

to 1%. However, the cuckoo filters that are 95% full lead to up to a

10% false negatives rate. The false negatives are caused by cuckoo

evictions to the incorrect buckets during inserts, when the condi-

tion from Observation 2 holds. Interestingly, the false negative rate
of 10% is even higher than the 3% false positive rate given by 𝜖 . In

security applications such as IP packet filtering [3], a false negative
could allow a malicious packet to be processed as benign, therefore

possibly compromising the security of the system.

ACKNOWLEDGMENTS
This research was supported in part by NSF under grant CCF-

1563753.

REFERENCES
[1] Efficient Computing at Carnegie Mellon. 2019. Cuckoo Filter. https://github.com/

efficient/cuckoofilter. (2019).

[2] Bitcoin Core. 2020. Bitcoin. https://github.com/bitcoin/bitcoin/blob/master/src/

bloom.h. (2020).

[3] SarangDharmapurikar, Praveen Krishnamurthy, Todd Sproull, and John Lockwood.

2003. Deep packet inspection using parallel bloom filters. In 11th Symposium on
High Performance Interconnects, 2003. Proceedings. IEEE, 44–51.

[4] Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher.

2014. Cuckoo Filter: Practically Better Than Bloom. CoNEXT ’14 (2014).
[5] Thomas Mueller Graf and Daniel Lemire. 2020. Xor Filters: Faster and Smaller

Than Bloom and Cuckoo Filters. Journal of Experimental Algorithmics (JEA) 25, 1
(2020), 1–16.

https://github.com/efficient/cuckoofilter
https://github.com/efficient/cuckoofilter
https://github.com/bitcoin/bitcoin/blob/master/src/bloom.h
https://github.com/bitcoin/bitcoin/blob/master/src/bloom.h

	Abstract
	1 Introduction
	2 Structure Of Cuckoo Filters
	3 Causes of False Negatives
	4 Experimental Evaluation
	Acknowledgments
	References

