
1

Throughput-Competitive Advance Reservation with
Bounded Path Dispersion

Reuven Cohen1, Niloofar Fazlollahi2 and David Starobinski2
1Dept. of Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel

2Dept. of Electrical and Computer Engineering
Boston University, Boston, MA 02215

Email: reuven@macs.biu.ac.il,{nfazl,staro}@bu.edu

Abstract—In response to the high throughput needs of grid
and cloud computing applications, several production networks
have recently started to support advance reservation of dedicated
circuits. An important open problem within this context is to
devise advance reservation algorithms that can provide provable
throughput performance guarantees, independently of the specific
network topology and arrival pattern of reservation requests. In
this paper, we first show that the throughput performance of
greedy approaches, which return the earliest possible comple-
tion time for each incoming request, can be arbitrarily worse
than optimal. Next, we introduce two new on-line, polynomial-
time algorithms for advance reservation, called BatchAll and
BatchLim. Both algorithms are shown to be throughput-optimal
through the derivation of delay bounds for 1 + ε bandwidth
augmented networks. The BatchLim algorithm has the advantage
of returning the completion time of a connection immediately as a
request is placed, but at the expense of looser delay performance
than BatchAll. We then propose a simple approach that limits
path dispersion, i.e., the number of parallel paths used by the
algorithms, while provably bounding the maximum reduction
factor in the transmission throughput. We prove that the number
of paths needed to approximate any flow is quite small and never
exceeds the total number of edges in the network. Through
simulation for various topologies and traffic parameters, we
show that the proposed algorithms achieve reasonable delay
performance, even at request arrival rates close to capacity
bounds, and that three to five parallel paths are sufficient to
achieve near-optimal performance.

I. INTRODUCTION

Current networking technologies are typically based on
the best-effort TCP/IP packet switching paradigm, wherein
packets from various sources share links. While this paradigm
makes perfect sense for most standard network applications,
due to the benefits of statistical multiplexing, this is not the
case for scientific and other resource intensive applications [1].
Indeed, it has been observed that, when using packet switch-
ing, a large gap prevails between the theoretical network
capacity and the maximum end-to-end throughput achieved by
those applications [2]. This gap, which is mainly attributed to
the shared nature of Internet traffic, has become increasingly
problematic for modern grid and cloud computing applications
requiring the transfer of petabyte file sizes and beyond.

A shorter, preliminary version of this paper appeared in the proceedings of
the High-Speed Networking Workshop at IEEE INFOCOM 2008.

To support high-end applications, the scientific community
has been devoting significant efforts to develop a new protocol
stack based on the concept of advance reservation [2, 3]. The
most important property of advance reservation is to offer
hosts and users the ability to reserve in advance dedicated
paths to connect their resources. Advance reservation ser-
vices have been successfully tested in a number experimental
projects, such as UltraScienceNet [2] and OSCARS [1, 4], and
are now offered by network providers, such as Internet2 and
ESnet4 [5], in complement to their traditional IP-based routing
services.

Several protocols and algorithms have been proposed in
the literature to support advance reservation (cf. Section II).
However, to the authors’ knowledge, none of them provides
throughput performance guarantees. Instead, most are based
on heuristics or greedy approaches, whereas each request is
allocated a path guaranteeing the earliest completion time at
the time the request is placed.

In this paper, we first uncover fundamental limitations of
greedy algorithms. Specifically, we show that there exists net-
work topologies and request patterns for which the maximum
throughput of these algorithms can be arbitrarily smaller than
the optimal throughput, as the network size grows.

Next, we propose a new polynomial-time advance reser-
vation algorithm, called BatchAll, that provably achieves
maximum throughput for any network topology and pattern of
request arrivals. Instead of immediately reserving a path for
each incoming request as in a greedy algorithm, BatchAll
accumulates several arrivals in a batch and assigns a more
efficient set of flow paths to the whole batch, based on a max-
imum concurrent flow optimization. We prove the throughput-
optimality of BatchAll by providing a bound on the ratio of
the maximum delay experienced by any request in an 1 + ϵ
augmented resource network to the maximal delay experienced
by any request in the original network using the optimal
algorithm.

The BatchAll algorithm does not return the connection
completion time to the user at the time a request is placed,
but only when the connection actually starts. We therefore pro-
pose another throughput-optimal algorithm, called BatchLim,
which provides the completion time immediately as a request
is placed, but at the expense of a slightly looser bound on the
maximum delay ratio. This algorithm operates by limiting the

length of each batch.
Our model assumes that the network infrastructure supports

path dispersion, i.e., multiple paths in parallel can be used to
route traffic, which has recently been shown to be feasible
on the ESnet network [6]. Nevertheless, a too large path
dispersion may be undesirable, as it may entail fragmenting a
file into a large number of segments and reassembling them
at the destination. To address this issue, we present a simple
approach, based on the max-flow min-cut theorem, that limits
the number of parallel paths while bounding the maximum
reduction factor in the transmission throughput. We prove
that this bound is tight. We then, propose two algorithms
BatchAllDisp and BatchLimDisp, based upon BatchAll

and BatchLim respectively. These algorithms perform sim-
ilarly to the original algorithms, in terms of the batching
process. However, after filling each batch, the algorithms will
limit the dispersion of each flow. Although these algorithms
are not throughput-optimal anymore, they are still throughput-
competitive.

Finally, we provide simulation results illustrating the delay
performance of the various proposed algorithms as a function
of the arrival rate of requests. The results are compared to
a capacity bound, whose value represents an upper bound
on the maximum request arrival rate for which the delay
of requests is bounded. We show that BatchAll approaches
the capacity bound at a reasonable delay value. Further, we
propose and evaluate a modified version of the algorithm,
called BatchAll+, whose performance is even closer to the
bound. With respect to path dispersion, we show that excellent
performance can be achieved with as few as five or so parallel
paths per connection.

The rest of this paper is organized as follows. In Section
II, we scan related work on advance reservation, compet-
itive approaches, and path dispersion. In Section III, we
introduce our model and define performance measures of
interest. In section IV, we present natural greedy approaches
and demonstrate their inefficiency. Then, in Section V, we
describe the BatchAll and BatchLim algorithms and prove
their throughput-optimality. Our method for bounding path
dispersion is described and analyzed in Section VI. In Section
VII, simulation results evaluating the performance of the algo-
rithms for different network topologies and traffic parameters
are presented. We conclude the paper in Section VIII.

II. RELATED WORK

There exists a rich literature on advance reservation of
network resources. Thus, we focus on algorithmic work, which
is most relevant to this paper. We refer the interested reader
to [7], for further discussion on architectures and services.

Several papers consider the problem of joint routing and
scheduling of file transfers. Ref. [8] introduces a scheduling
algorithm for large file transfers over paths with varying
bandwidth. Ref. [9] analyzes the problem of offline scheduling
and routing of file transfers from several users, each storing
multiple files, to a single receiver node. Ref. [10] considers
a similar model but also proposes algorithms to address the
problem of rescheduling connections that have not completed.

Ref. [11] proposes greedy algorithms guaranteeing earliest
completion to each incoming request. Ref. [3] introduces
an algorithmic framework, called GCR, that assigns grades
to paths according to a general optimization objective, e.g.,
shortest path, widest path, earliest path, or a combination of
those, and then selects the highest graded path. GCR also
supports path switching, which is shown to enable significant
performance improvement.

Advance reservation plays an important role in optical
networks, such as those based on optical flow switching (OFS)
architectures [12, 13]. Thus, a number of papers investigate
joint routing-scheduling optimization with the additional con-
straint of maintaining wavelength continuity along a path. For
instance, [14] focuses on the design of effective routing and
wavelength assignment heuristics and [15, 16] propose various
load balancing approaches to allocate lightpaths.

In contrast to the above work, the algorithms that we pro-
pose in this paper provide theoretical guarantees on throughput
performance. These results are obtained under the following
relaxations: (i) job requests do not have strict bandwidth
requirements; (ii) no additional constraints (e.g., wavelength
continuity) are imposed. Hence, our model is appropriate for
elastic applications, such as bulk transfer, operating under a
single lambda service [2].

Next, we summarize work related to competitive algorithms
for advance reservation. Ref. [17] discusses the on-line ftp
problem, where reservations are made for channels for the
transfer of different files. The presented algorithm provides a
4-competitive algorithm for the makespan (the total comple-
tion time). However, [17] focuses on the case of fixed routes.
When routing is also to be considered, the time complexity
of the algorithm presented there may be exponential in the
network size. Ref. [18] proposes an off-line approximation
algorithm for accommodating advance reservation of job
requests in some specific topologies, e.g., lines and trees.
Ref. [19] studies a related problem, whereby the path selection
is based on several choices supplied by a user. Ref. [20]
focuses on the problem of joint routing and scheduling in
packet switched network in an adversarial setting and provides
delay bounds. The model is for packet scheduling, rather than
file (job) scheduling as in our paper. Moreover, [20] puts some
restrictions on the adversary (e.g., the maximum amount of
packets that it can inject during any time interval), which are
unnecessary in our paper.

Most of the other work on competitive routing algorithms
mainly focuses on call admission, without the ability of
advance reservation [21, 22]. In [23], a combination of call
admission and circuit switching is used to obtain a routing
scheme with a logarithmic competitive ratio on the total
revenue received. A competitive routing scheme in terms of
the number of failed routes in the setting of ad-hoc networks
is presented in [24]. A competitive algorithm for admission
control and routing in a multicasting setting is presented in
[25].

In [26], a throughput-optimal scheme for packet switching
at the switch level is presented. The scheme is based on
a convergence to the optimal multicommodity flow using
delayed decision for queued packets. Their results somewhat

resemble our BatchAll algorithm. However, their scheme re-
quires packet lengths to be independent and applies to specific
switch architectures, whereas our scheme addresses the full
routing-scheduling question for general graphs and does not
impose specific statistical requirements (e.g., independence)
on the arrival process or the packet length. In [27], a queuing
analysis of several optical transport network architectures is
conducted. It is shown that, under certain conditions imposed
on the arrival process, some of the schemes can achieve the
maximum network rate. This paper does not address the full
routing-scheduling issue either. Another difference with the
above two papers is that we provide an algorithm, BatchLim,
guaranteeing the completion time of a job at the time of its
arrival.

Many papers have discussed the issue of path dispersion and
attempted to achieve good throughput with limited dispersion.
A survey of some results in this field is given in [28]. In [29,
30], heuristic methods of controlling multipath routing and
some quantitative measures are presented. As far as we know,
our work proposes the first formal treatment allowing the
approximation of a flow using a limited number of paths at
any desired level of accuracy.

III. NETWORK MODEL

A. Notation and assumptions

We consider a general network topology, represented by a
graph G(V,E), where V is the set of nodes and E is the set
of links connecting the nodes. The graph G can be directed or
undirected. The capacity of each link e ∈ E is C(e). Any pair
of nodes may request a connection at any time. A connection
request, also referred to as job, contains the tuple (s, d, f),
where s ∈ V is the source node, d ∈ V −{s} is the destination
node, and f is the file size.

Accordingly, an advance reservation algorithm computes a
starting time at which the connection can be initiated, a set of
paths used for the connection, and an amount of bandwidth
allocated to each path. Our model supports path dispersion,
i.e., multiple paths in parallel can be used to route data traffic.

In subsequent sections, we will make frequent use of
multicommodity functions. The multicommodity flow prob-
lem is a linear planning problem returning true or false

based upon the feasibility of fully transmitting a list of jobs
between given source-destination pairs concurrently during a
given time window, such that the total flow through each
link does not exceed its capacity. It is solved by a function
multicomm(G,L, T), where L is a list of jobs, each containing
a source, a destination, and a file size, and T is the time
window.

The maximum concurrent flow is calculated by the function
maxflow(G,L). It returns Tmin, the minimum value of T such
that multicomm(G,L, T) returns true. Both the multicom-
modity and maximum concurrent flow problems are known to
be computable in polynomial time [31, 32].

We assume that no queuing delays arise in relay nodes in
the network. Therefore, the instantaneous departure rate of
information at each relay node equals the arrival rate. It is
a reasonable assumption for the networks under consideration

which reserves dedicated bandwidth to each flow. As such, the
average transmission rate between all pairs in the network for
any time interval T must be a feasible multicommodity flow.

B. Performance metrics

The main performance metric of interest in this paper
is the saturation throughput, defined as follows. Suppose
requests generate an average demand over time of λij = αijλ
bits/second from each node i to node j, where αij is a
fixed parameter and j ̸= i. Define the delay of a request
as the amount of time elapsing from the point where the
request for a connection set-up arrives till the point where
the corresponding connection completes. Then, the saturation
throughput, denoted λ∗, is the maximum value of λ (or the
supremum, if the maximum does not exist) for which the delay
experienced by any request is finite almost surely.

Determining analytically the value of λ∗ is a difficult task in
general as the answer depends on the graph topology and the
statistics of the arrival process. Yet, even without knowing λ∗,
one can devise algorithms that achieve optimal or competitive
saturation throughput, as described later.

A simple upper bound on λ∗ can be obtained as follows.
Consider a set of feasible multicommodity flows gij assigned
to each pair of nodes i and j, such that gij = αijg. The
maximization of g is a linear planning problem known as
the Maximum Concurrent Flow Problem (MCFP) [31]. The
maximum value of g in MCFP, denoted g∗, provides an upper
bound on the saturation throughput λ∗. This result holds true
because for every achievable value of λ there must exist an
equally feasible value g.

IV. GREEDY ALGORITHMS

In this section, we present greedy algorithms and show that
their saturation throughput can be arbitrarily far from optimal
as the network size grows.

A. The Greedy algorithm

A seemingly natural way to implement advance reservation
is to follow a greedy procedure, where, at the time a request
is placed, the request is allocated a path (or set of paths)
guaranteeing the earliest possible completion time. We refer
to this approach as Greedy and explain it next.

The Greedy algorithm divides the time axis into slots de-
lineated by events. Each event corresponds to a set-up or tear-
down instance of a connection. Therefore, during each time
slot the state of all links in the network remains unchanged. In
general, the time axis will consist of n time slots, where n ≥ 1
is a variable and slot i corresponds to time interval [ti, ti+1].
Note that t1 = t (the time at which the current request is
placed) and tn+1 =∞.

Let Wi = {bi(1), bi(2), . . . , bi(|E|)} be the vector of re-
served bandwidth on all links at time slot i where i = 1, . . . , n,
and bi(e) denote the reserved bandwidth on link e during slot
i, with e = 1, . . . , |E|.

For each slot i ∈ L, construct a graph Gi, where the
capacity of link e ∈ E is Ci(e) = C(e) − bi(e), i.e., Ci(e)
represents the available bandwidth on link e during slot i.

In order to guarantee the earliest completion time, Greedy
repeatedly performs a maximum flow allocation between
nodes s and d, for as many time slots as needed until the
entire file is transferred. This approach ensures that, in each
time slot, the maximum possible number of bits is transmitted
and, hence, the earliest completion time feasible at the arrival
instance of the request is achieved. The Greedy algorithm can
thus be concisely described with the following pseudo-code:

1) Initialization
• Set initial time slot: i=1.
• Set initial size of remaining file: r = f .

2) If maxflow(Gi, s, d, r) ≤ ti+1 − ti (i.e., all the remain-
ing file can be transferred during the current time slot)
then,
Exit step:

• Update Wi by subtracting the used bandwidth from
every link in the new flow and, if the file transfer
of the new flow completes before ti+1, create a
new event ti+1 corresponding to the end of the
connection.

• Exit procedure.
3) Else,

Non-exit step:
• Update Wi by subtracting the used bandwidth from

every link in the new flow.
• r = r−r×(ti+1−ti)/maxflow(Gi, s, d, r) (update

size of remaining file).
• i = i+ 1 (advance to the next time slot).
• Go back to step 2.

The complexity of this algorithm depends on the number
of slots examined before completely serving an arriving job.
Noting that at each one of the examined slots a run of maxflow
is carried out, this algorithm is expensive to implement in
practice since the number of slots can be very large, especially
at high load.

B. The Greedy shortest algorithm
The Greedy shortest algorithm is a variation of Greedy,

where only shortest paths (in terms of number of hops)
between the source s and destination d are utilized to route
data. To implement Greedy shortest, we employ exactly
the same procedure as in Greedy, except that we prune all the
links not belonging to one of the shortest paths using breadth
first search. Note that for a given source s and destination d,
the pruned links are the same for all the graphs Gi.

C. Inefficiency Results
We next constructively show that there exist certain arrival

patterns, for which the saturation throughput achieved by both
Greedy and Greedy shortest is significantly lower than
optimal. Specifically, we present cases where this measure for
Greedy and Greedy shortest is Ω(|V |) times smaller than
the optimal value.

Theorem 1: For any given vertex set with cardinality |V |,
there exists a graph G(V,E) such that the saturation through-
put of Greedy is |V |/2 times smaller than the optimal satu-
ration throughput.

(a)

2
1

|V|−1

|V|

(b) 2

1

Fig. 1. Examples of graph topologies for which greedy algorithms perform
far from optimal.

Proof: Consider the ring network shown in Fig. 1(a).
Suppose that every link is an undirected 1 Gb/s link and
requests arrive in the following order (we assume negligible
delay between arrivals of requests): 1Gb request from node 1
to node 2, 1Gb request from node 2 to node 3, 1Gb request
from node 3 to node 4, . . ., 1Gb request from node |V | to
node 1.

The Greedy algorithm will allocate the maximum flow to
each request, meaning that it will split the data flow to two
paths, half flowing directly along a one hop path, and half
flowing through the alternate path along the entire ring. Thus,
the first job requires 1/2 second for completion. Since the
first job occupies all network resources, the second job has to
wait until the completion of the first job before being served.
Likewise, each new request will have to wait for the previous
one to end, resulting in a completion time of |V |/2 seconds.

On the other hand, the optimal time is just one second using
the direct link between each pair of nodes. Assuming the above
pattern of requests repeats periodically, an optimal algorithm
can support up to one request per second between each pair of
neighboring nodes before reaching saturation, while Greedy

can support at most 2/|V | request per second between each
pair of nodes, hence proving the theorem. A similar proof can
be shown for directed graphs.

We next show that restricting routing to shortest paths does
not solve the inefficiency problem.

Theorem 2: For any given vertex set cardinality |V |, there
exists a graph G(V,E) such that the saturation throughput
of Greedy shortest (or any other algorithm using only
shortest path routing) is |V |−1 times smaller than the optimal
saturation throughput.

Proof: Consider the network depicted in Fig. 1(b), where
all requests are from node 1 to node 2, and only the direct path
is used by the algorithm. In this scenario, an optimal algorithm
would use all |V |−1 paths between nodes 1 and 2. Hence, the
optimal algorithm can achieve a saturation throughput |V |−1
times higher than Greedy shortest.

Both theorems imply that:
Corollary 3: There exist networks for which the delay of

each job is bounded using the optimal algorithm, but is
unbounded using either the Greedy or Greedy shortest

algorithm, even if the capacity of each link is multiplied by
|V |/2− 1.

V. THROUGHPUT-OPTIMAL ALGORITHMS

In this section, we present on-line, polynomial-time algo-
rithms based on the idea of deferred bandwidth allocation.

Thus, arriving requests are not assigned bandwidth as long as
transmissions go on in the network. Once existing transmis-
sions complete, pending requests are served altogether. The
proposed algorithms guarantee that the maximum delay expe-
rienced by any request in a network with augmented resources
lies within a finite multiplicative factor of the value achieved
with an optimal off-line algorithm (i.e., with full knowledge
of the future and unlimited computational resources) in the
original network. Hence, the proposed algorithms reach the
maximum throughput achievable in the sense that for any
network and any optimal algorithm that can support a list
of jobs with a bounded delay, the proposed algorithms also
guarantee a bounded delay at the price of augmenting the
capacity of each link by a multiplicative factor of (1 + ϵ),
for any arbitrarily small constant ϵ > 0. This result stands
in contrast to the results of Corollary 3, which indicates that,
even with high augmentation, the greedy approaches are not
competitive with the optimal algorithm.

A. The BatchAll Algorithm

Our first algorithm, called BatchAll, cumulatively per-
forms bandwidth allocation for a group of requests. The
group of all pending requests forms a batch that is served
once existing transmissions complete. Batches of jobs are not
predetermined since they are formed by on-line aggregation
of random arrivals. We denote by L the list of jobs assigned
to the next batch, by tc the end time of the currently running
batch of jobs, and by clk the value of the clock (initially set
to 0). BatchAll can then concisely be described as follows:

1) Set tc to 0.
2) When a request l = {s, d, f} arrives at clk = t, give

an immediate connection starting time and a connection
ending time of tc = t+ maxflow(G, l).

3) Set L← null
4) While clk < tc,

• If a request l = {s, d, f} arrives when clk = t:
– Set L ← L ∪ l (i.e. add the job to the waiting

batch)
– Mark tc as its connection starting time

5) At time clk = tc,
• If L is empty (i.e., there is no pending request) go

back to step 2.
• Else assign a connection ending time tc = tc +
maxflow(G,L) to all requests in the batch L and
go back to step 3.

As an example, one can verify that BatchAll achieves
optimal throughput for the scenarios used in the proofs of
Theorems 1 and 2, which showed the inefficiency of greedy
algorithms.

Next, we compare the delay performance of the BatchAll

algorithm in an augmented network to that of the optimal
off-line algorithm in the original network. The augmented
network is similar to the original network, other than each
link e has capacity (1+ε)C(e) instead of C(e), where ε > 0.
Alternatively, one may compare the performance of BatchAll
to that of the optimal off-line algorithm in a lower capacity

network, allowing the maximum rate of only (1 + ε)−1C(e)
for each link e.

Theorem 4: Suppose that we augment the resources of a
network such that every edge has (1 + ε) times its original
capacity, for any ε > 0. Then, for all requests arriving up
to any time t∗ in such a network, the maximum delay using
BatchAll is no more than 2/ε times the maximum delay for
all requests arriving up to t∗ using the optimal algorithm in
the original network.

Proof: Consider the augmented resource network. Take
the maximum length batch, say i, that accommodates requests
arriving before time t∗ and mark its length by T . Since the
batch before this one was of length at most T , and all requests
in batch i were received during the execution of previous
batch, denoted by i− 1, then the total waiting time of each of
these requests was at most 2T . Thus, 2T is an upper bound on
the maximum delay in the augmented network achieved using
BatchAll up to time t∗. Since BatchAll uses a maximum
concurrent flow procedure to allocate bandwidth in each batch,
the total time for handling all requests received during the
execution of batch i − 1 must have been at least T in the
augmented network, or (1+ε)T in the original network. Since
all of these requests arrived during a time interval of length
at most T and the completion time for all of them together
is at least T + εT , one of them must have waited at least
εT until job completion under the optimal algorithm. Thus,
the maximum delay in the original network using an optimal
offline algorithm up to any time t∗ is at least εT . Therefore,
the ratio between the maximum waiting time is at most 2/ε.

The throughput-optimality of BatchAll immediately fol-
lows from the previous theorem:

Corollary 5: For any given network, the saturation through-
put of BatchAll is identical to that of the offline optimal
algorithm because, for any arbitrarily small ϵ > 0, the delay of
any request is guaranteed to be, at worse, a finite multiplicative
factor larger than the maximum delay of the optimal algorithm
in the reduced resources network.

B. The BatchAll+ algorithm

We propose next a simple modification of BatchAll to
improve its delay performance. The main idea is as follows.
Whenever a job request arrives, we first check if we can
allocate it to the current batch without affecting the completion
time of the batch. If yes, we immediately allocate bandwidth
to the job. If no, we proceed as in BatchAll, and add the
current job to the list of jobs waiting for the next batch. To
implement this idea, we keep track of the available bandwidth
on each link of the graph during the current batch. We
denote the resulting graph by G′. When a request arrives, we
run maxflow over G′ to examine whether the network can
immediately accommodate the new job without disturbing the
completion time of currently running jobs. Thus, BatchAll+
modifies step 4 of BatchAll as follows:

• While clk < tc,
– If request l = {s, d, f} arrives when clk = t:
∗ If maxflow(G′, l) ≤ tc − t′ then,

· Add the job to the running batch such that
it completes simultaneously with the rest of
running jobs.
· Deduct all bandwidth assigned to l from G′.

∗ Otherwise,
· Set L← L ∪ l (i.e. add it to the waiting batch)
· Mark tc as its connection starting time

Note that G′ must also be updated in step 2 and step 5 in
the BatchAll pseudo-code, after maxflow is run on G, to
reflect the available bandwidth on each link. Since computing
maxflow is feasible in polynomial time, the computation com-
plexity per request remains polynomial after this modification.
It is not difficult to realize that Theorem 4 continues to hold
after the modification. Therefore, BatchAll+ also achieves
optimal saturation throughput.

C. The BatchLim Algorithm

The BatchAll and BatchAll+ algorithms return the start-
ing time of a connection at the time of the request but
the completion time is computed only when the connection
actually starts. We next present another algorithm, called
BatchLim, with a slightly larger delay ratio guarantee but
which always returns the completion time at the arrival time of
the request. Note that since the delay ratio guarantee remains
finite, BatchLim is also throughput-optimal.

For each arriving request, the algorithm maintains a list
of times, ti, i = 1, . . . , n where t1 = t (the time at which
the current request is placed) and each time interval [ti, ti+1]
correspond to a batch of previously allocated jobs, which are
either currently running (for the case i = 1) or scheduled to
start in the future (for i > 1). When a new request between a
source s and a destination d arrives at time t, two cases may
happen: (i) if all previous jobs have completed, a new interval
[t, t+M] where M = maxflow(G, s, d, f) is created and the
job is assigned to it; (ii) otherwise, attempts are made to add
the job to one of the scheduled time intervals [ti, ti+1], where
2 ≤ i ≤ n − 1, by using a multicommodity flow calculation.
If the attempts fail, a new interval [tn,max(2tn− t, tn +M)]
is appended to the time list and the job is assigned to this
interval.

We next provide a detailed description of how the algorithm
handles a new request arriving at time t. We use the tupple
l = {s, d, f} to denote the job request and the list Li to denote
the set of jobs already assigned to interval [ti, ti+1]:

1) If no job is currently running, then:
• Set M = maxflow(G, l).
• Set t2 = t+M .
• Assign job l to interval [t1, t2] and exit.

2) Else check if job l can be assigned to an existing interval:
• Set i = 2.
• While i ≤ n− 1:

– If l can be fitted into interval [ti, ti+1] (i.e.
multicomm(G,Li ∪ l, ti+1 − ti) = true) then
assign job l to [ti, ti+1] and exit.

– Else set i = i+ 1.
3) Else create new interval:

• Set M = maxflow(G, l).
• If tn − t < M , then tn+1 = tn +M .
• Else tn+1 = 2tn − t.
• Assign job l to interval [tn, tn+1] and exit.

Fig. 2 illustrates runs of the BatchAll and BatchLim

algorithms for the same set of requests.
The following lemma shows that the delay of any request

arriving at some time t and for which a new interval [tn, tn+1]
is created is at most twice the length of that interval.

Lemma 6: For any n ≥ 1, (tn+1−t) ≤ 2(tn+1−tn), where
t is the time at which the interval [tn, tn+1] is formed.

Proof: Suppose a request l = {s, d, f} arrives at time t
and is assigned a new interval [tn, tn+1]. Then, by definition
tn+1 − tn = max(M, tn − t) where M = maxflow(G, l).
Thus tn − t ≤ tn+1 − tn. Adding tn+1 − tn to each side of
the previous inequality, we derive the lemma.
The following lemma states that the delay experienced by any
request is at most twice the length of the interval to which it
is allocated.

Lemma 7: Suppose a request arrives at time t and is
assigned to interval [ti, ti+1], where i = 1, 2, . . . , n. Then
(ti+1 − t) ≤ 2(ti+1 − ti).

Proof: Suppose first that the request, call it l, is assigned
to a new interval [tn, tn+1], then the proof follows directly
from Lemma 6. Next suppose that request l is assigned to an
existing interval [ti, ti+1], where i < n. Then, it must be that
request l arrived after the request, call it l′, for which this
interval was formed. Thus, the delay of request l is smaller
than the delay of request l′ and the proof follows again from
Lemma 6.

The next theorem provides a guarantee on the maximum
delay ratio of BatchLim in an (1 + ϵ)-augmented network
versus the optimal delay in the original network. The theorem
implies that BatchLim is also throughput-optimal.

Theorem 8: Suppose that we augment the resources of a
network such that every edge has capacity (1 + ε) times the
original capacity, for any ε > 0. Then for requests arriving up
to any time t∗ in such a network, the maximum delay for a
request using BatchLim is at most 4/ε times the maximum
delay for requests arriving up to t∗ using the optimal algorithm
in the original network.

Proof: Consider the maximum length time interval
formed up to t∗ by BatchLim in the (1 + ε) augmented
network. Suppose that this interval was created at time t and
denote it [tn, tn+1]. When creating this interval there are two
possibilities:

1) tn+1 = tn +M , where M is the minimum time for the
new job completion. In this case, the minimum delay
using any algorithm in the original network would have
been (1 + ε)M . By Lemma 7, the total delay for any
job using BatchLim is at most 2M , and therefore the
ratio of waiting times is 2/(1 + ε) < 4/ε.

2) tn+1 = tn + (tn − t). Consider the previous interval
[tn−1, tn], which was formed at some time t′ < t
when another request arrived that could not be fitted
into any previous intervals. By the algorithm definition
tn ≥ tn−1 + (tn−1 − t′). By maximality of [tn, tn+1] it
follows that tn+1 − tn = tn − t ≥ tn − tn−1, and thus,

CA B

1 2,3
1 8 9BatchAll

BatchLim

2,3,4
1:

00
1:

20
1:

35
1:

45

2:
30

4:
00

1 2 3 4 5 8

5,6,7

7
3:

30
6

2:
45

6,7 8

4:
00

9

6:
00

9

5:
00

6:
00

7:
00

8:
00

9:
00

3:
00

2:
00

1:
00

7:
30

5:
45

4:
15

4,5

Fig. 2. Illustration of the batching process by the algorithms BatchAll
and BatchLim over a simple network topology consisting of three nodes A,
B and C connected via links of identical capacity. Connection requests are
depicted by arrows and their arrival time. The odd numbered jobs request
transmission between nodes A and B and the even numbered jobs request
for transmission between B and C. Each file size corresponds to one hour of
transmission at full link capacity. In BatchAll, a new batch is created for all
requests arriving during the running of a previous batch. In BatchLim, for
each new request an attempt is made to add it to one of the existing windows,
and if it fails, a new window is appended at the end.

t ≤ tn−1. Note that not all the requests arriving during
the interval [t′, t] (including the request arriving at time
t, which initiated the creation of interval [tn, tn+1])
could have been completed during the interval [tn−1, tn]
or otherwise the new interval [tn, tn+1] would not have
been created at time t. Thus, the requests arriving during
the interval [t′, t] require a time of at least tn− tn−1 for
all to complete according to the multicommodity flow
calculation. Thus, the time it would take to complete all
jobs that arrived in [t′, t] under any possible algorithm
is at least tn − tn−1 in the augmented network, and
therefore, at least (1 + ϵ)(tn − tn−1) in the original
network. Since no job can start before time t′, the ending
time for all these jobs in the original network must
be at least t′ + (1 + ϵ)(tn − tn−1) ≥ t′ + (tn−1 −
t′) + ϵ(tn − tn−1) = tn−1 + ϵ(tn − tn−1). Since the
requests have arrived between [t′, t], the last request has
arrived at time t ≤ tn−1 at the latest. Thus, one of
the requests in this batch must have waited for at least
tn−1 + ϵ(tn − tn−1) − tn−1 = ϵ(tn − tn−1). In other
words, the maximum delay using the optimal algorithm
in the original network is at least ϵ(tn − tn−1). On
the other hand, according to Lemma 7, the maximum
delay of any request in the augmented network using
BatchLim is at most 2(tn+1− tn). Since by assumption
tn+1 − tn = tn − t and since tn − t ≤ tn − t′ ≤
2(tn − tn−1), where the last inequality follows from
Lemma 6, then the maximum delay of any request
in the augmented network using BatchLim is at most
4(tn−tn−1). Therefore, the ratio of the maximum delays
is at most 4/ε.

VI. BOUNDING PATH DISPERSION

The algorithms presented in the previous sections do not
limit the path dispersion, that is, the number of paths simul-
taneously used by a connection. In practice, it is desirable to

2

... ...

... ...

1

Fig. 3. A network demonstrating the optimality of Lemma 9. The edges
incident to nodes 1 and 2 have infinite capacity, all other edges have capacity
1.

minimize the number of such paths due to the cost of setting
up many paths and the need to split a connection into many
low capacity channels. The following suggests a method of
achieving this goal.

Lemma 9: In every flow of bandwidth F between two
nodes on a directed graph G(V,E) there exists a path of
bandwidth at least F/|E| between these nodes.

Proof: Remove all edges carrying flow with bandwidth
strictly less than F/|E| from the graph. The total flow carried
by these edges is smaller than F/|E| × |E| = F . By the
Max-Flow–Min-Cut theorem, the maximum flow equals the
minimum cut in the network, which is of capacity at least F .
Therefore, since the flow bandwidth is F , there must remain at
least one path between the nodes after the removal. All edges
in this path have flow bandwidth of at least F/|E|. Therefore,
the path bandwidth is at least F/|E|.

Lemma 9 is asymptotically tight in order of both |E| and
|V | as can be seen for the network shown in Fig. 3. In this
network each path amounts for only O(|E|−1) = O(|V |−2)
of the total flow between nodes 1 and 2. Therefore, to obtain a
flow that consists of a given fraction of the maximum flow at
least O(|E|) = O(|V |2) of paths must be used. If multigraphs
are allowed, the lemma is exactly tight for a graph with 2
nodes and |E| equal capacity edges between them.

The following theorem establishes the maximum number of
paths needed to achieve a throughput with a constant factor
of that achieved by the original flow.

Theorem 10: For every flow of bandwidth F between two
nodes on a directed graph G(V,E) and for every integer n ≤
|E| there exists a set of at most n paths achieving a flow of
bandwidth at least nF/|E|.

Proof: We prove by induction on n. For n = 1, there
exists, by Lemma 9, a path of capacity at least F/|E|. Take
the edge (i, j) with minimum capacity of the path and decrease
the flow through all edges in the path by its weight wij . Now,
the flow at at least one edge is decreased to zero, and this edge
may be removed without affecting the residual flow. Thus, we
are left with a graph with flow F − wij and with at most
|E| − 1 edges.

Now assume that by using n paths one can achieve a flow
of fn ≥ nF/|E|. The residual flow if F −fn, and the number
of edges left is at most |E| − n. The flow of the widest left
path, pn, is, by Lemma 9, at least pn ≥ (F − fn)/(|E| − n).

Thus the total flow captured in the first n+ 1 paths is

fn + pn ≥ fn +
F − fn
|E| − n

=
(|E| − n− 1)fn + F

|E| − n

≥
(|E| − n− 1)n F

|E| + F

|E| − n

=
(|E| − n)(n+ 1)F

|E|(|E| − n)
=

n+ 1

|E|
F .

This completes the induction.
Theorem 10 provides both an algorithm for reducing the

number of paths and a bound on the throughput loss. To
approximate the flow using a limited number of paths, consider
only links carrying flow with bandwidth greater than F/|E|
and find a path p among those (if multiple paths are available,
select the widest). Suppose path p carries a flow f , then
remove the bandwidth used by flow f from all the links on path
p and iteratively repeat the same procedure until a satisfactory
approximation of the flow is obtained. Note that the maximum
number of paths needed to achieve an approximation of the
flow to within a constant factor is linear in |E| and the number
of paths needed to obtain the full flow is exactly |E|, while
the number of possible paths may be exponential in |E|.
Again, this theorem is asymptotically tight, and exactly tight
for multigraphs.

We illustrate the bounding path dispersion procedure with a
simple example. Figure 4 shows the maximum flow from node
10 to node 3 on an 11-node topology. Links are assumed to be
full duplex and link capacities are represented by surrounded
numbers next to each link. The maximum flow calculated
using a maxflow formulation from node 10 to node 3 is
F = 20 Gb/s. Since the total number of edges is |E| = 28 in
this graph, we have F/|E| = 0.71 Gb/s.1 Therefore, at the first
step, the algorithm only considers links 10-1, 1-2, 2-3, 10-9, 9-
8, 8-7, 7-3 and 8-2 carrying a flow greater than 0.71 Gb/s and
ignore all other links. Among the considered links, there exists
three different paths between node 10 and 3, marked as P1, P2
and P3, and carrying flows of bandwidth 10, 5 and 5 Gb/s
respectively. The algorithm selects the widest path P1 first.
Subtracting the flow of path P1 from F , the remaining flow
is 10 Gb/s. The links 10-1 and 1-2 are now saturated. Thus
we are left with a residual flow of F = 20 − 10 = 10 Gb/s
and a remaining |E| = 26 non saturated edges. We repeat the
procedure and get F/|E| = 0.38 Gb/s. This time, only links
2-3, 10-9, 9-8, 8-7, 7-3 and 8-2 are considered. The algorithm
can select either P2 or P3. Thus, with a bound of at most two
paths per connection we can carry 75% of the full flow from
node 10 to node 3 using paths P1 and P2 (or P1 and P3). If
the bound is relaxed to three paths, then we can route the entire
flow between the given nodes. Our simulation results in section
VII-B reveals that with this topology, bounding flows with at
most 3 paths per connection does indeed closely approximate
full flow on average.

Using the above flow approximation in conjunction with the
competitive algorithms, we can devise two new algorithms
BatchAllDisp and BatchLimDisp, based upon BatchAll

1In fact, the entire flow can be routed through 8 directed edges. Thus, one
can also use |E| = 8 and obtain F/|E| = 2.5 Gb/s.

10

10
10

20

10
5

10
5

20

5

10

10

P1

P2 P3

10

0

 9

1

8

2

4

7

6

5

10

3

Fig. 4. Illustration of the path dispersion bounding procedure. Links are
assumed to be full duplex and link bandwidths are displayed by surrounded
numbers next to each link. The three paths connecting node 10 to node 3
are marked by P1, P2 and P3 with flow bandwidth of 10, 5 and 5 Gb/s
respectively.

(a) 8 node

 9
7

8

6

5

3

4

10
1 2

0

(b) 11 node LambdaRail

Fig. 5. Simulation topologies.

and BatchLim respectively. These algorithms perform simi-
larly to BatchAll and BatchLim, in terms of the batching
process. However, after filling each batch, the algorithms will
limit the dispersion of each flow, and approximate the flow.
To achieve a partial flow, each time we select the widest path
from remaining edges and reserve the total path bandwidth.
We repeat this procedure until either the desired number of
paths is reached or the entire flow is routed.

VII. SIMULATIONS

In this section, we present simulation results illustrating
the performance of the algorithms described in this paper.
While the emphasis of the previous sections was on the
throughput optimality (or competitiveness) of the proposed
algorithms, here we are also interested in evaluating their
delay performance. The main points of interest are as follows:
(i) how do the competitive algorithms fare with respect to each
other and the capacity bound of section III-B? (ii) what value
of path dispersion is needed to ensure good performance?

A. Simulation Set-Up

We have developed our own simulator in C++. The simula-
tor uses the COIN-OR Linear Program Solver (CLP) library
[33] to solve multicommodity optimization problems and
allows evaluating our algorithms under various topological
settings and traffic conditions. The main simulation parameters
are as follows:

• Topology: our simulator supports arbitrary topologies. In
this paper, we consider the two topologies depicted in
Figure 5. One is a fully connected graph (clique) of eight

nodes and the other is an 11-node topology, similar to the
National LambdaRail testbed [34]. Each link on these
graphs is full-duplex and assumed to have a capacity of
20 Gb/s.

• Arrival process: we assume that the aggregated arrival of
requests to the network forms a Poisson process (this can
easily be changed, if desired). The mean rate of arrivals
is adjustable. Our delay measurements are carried out at
different request arrival rates in units of requests per hour.

• File size distribution: We consider two models for the file
size distribution:

1) Pareto:

F (x) = 1−
(

xm

x− γ

)β

, where x ≥ xm + γ.

In the simulations, we consider two cases: i) β =
2.5, xm = 1.48 TB (terabyte) and γ = 6.25 ∗
10−3 TB; and ii) β = 2, xm = 1.23 TB and
γ = 6.25 ∗ 10−3 TB. In both cases, the average
file size is 2.475 TB.

2) Exponential:

F (x) = exp(−δx), where x ≥ 0.

In the simulations, 1/δ = 2.475 TB.

• Source and Destination: for each request, the source and
destination are selected uniformly at random, except that
they must be different nodes.

Each simulation point represents an average taken over at least
106 measurements.
Performance Metrics. Our simulations report results for two
metrics related to the delay experienced by requests. The first
is the average delay. The second is the probability that the
delay of a request exceeds a certain threshold. We refer to
this metric as tail probability [35].

Note that the average delay is defined only if β > 2.
For the special case of a graph consisting of a single link,
the performance of BatchAll is identical to that of a gated
M/G/1 queue [36]. Denote by λ the mean arrival rate of
requests, by E[S] and E[S2] the first and second moments of
the service time (the service time is the file size divided by the
link capacity), and by ρ = λE[S] the link utilization. Then,
the mean waiting time E[W] of a job from the point that it
arrives till the start of its batch is [36, Eq. 16]:

E[W] =
λE[S2]

2(1− ρ2)
.

As in the standard M/G/1 queue, the mean waiting time
is bounded only if the second moment of the service time
distribution (or equivalently that of the file size distribution)
is finite. The same result holds also in general networks. Since
measurements [37–40] have shown that the distribution of the
size of Internet files has infinite variance, we also provide
simulation results for power-law parameter β = 2 using tail
probability as the performance metric.

0 50 100 150 200
0

15

30

45

60

75

85

request arrival rate (requests/hour)

av
er

ag
e

de
la

y
(h

ou
rs

)

BatchAllDisp1

BatchAllDisp3

BatchAllDisp5

BatchLim

BatchAll

Fluid bound

Fig. 6. Average delay performance evaluation of algorithms BatchAll,
BatchLim and BatchAllDisp for the 8-node clique topology and expo-
nentially distributed file size. Algorithm BatchAllDisp is plotted with path
dispersion bounds of 1, 3 and 5 paths per connection.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

request arrival rate (requests/hour)

av
er

ag
 d

el
ay

 (
ho

ur
s)

BatchAllDisp1

BatchAllDisp2

BatchAllDisp3

BatchLim

BatchAll

Fluid bound

Fig. 7. Average delay performance evaluation of algorithms BatchAll,
BatchLim and BatchAllDisp for the 11-node topology and Pareto dis-
tributed file size with β = 2.5. Algorithm BatchAllDisp is plotted with
path dispersion bounds of 1, 2 and 3 paths per connection.

B. Average Delay Performance

In this section, we use average delay as the performance
metric. When considering the Pareto distribution, we assume
β = 2.5. We first compare the performance of BatchAll,
BatchAllDisp and BatchLim algorithms in Figures 6 and 7.
Both figures show BatchAllDisp with multiple bounds on
path dispersion. The capacity bounds are also depicted in
dashed lines as a performance benchmark for each scenario.
Figure 6 corresponds to the 8-node clique topology with
exponentially distributed file sizes and Figure 7 corresponds
to the 11-node topology of Figure 5(b) with Pareto distributed
file sizes.

According to Figure 6, BatchAll approaches the capacity
bound at a reasonably low average delay value. Interestingly, a
path dispersion of at most five per connection (corresponding
to α = 0.089) is sufficient for BatchAllDisp to closely
approximate BatchAll. It is worth mentioning that, in this
topology, there exist 1957 possible paths between any two
nodes. Thus, with five paths, BatchAllDisp uses only 0.25%
of the total paths possible. The figure also demonstrates the

0 50 100 150 200
0

5

10

15

20

25

30

35

request arrival rate (requests/hour)

av
er

ag
e

de
la

y
(h

ou
rs

)

BatchAll

BatchAll+

Fluid bound

Fig. 8. Average delay performance comparison of algorithms BatchAll
and BatchAll+ for the 8-node clique and Pareto file size distribution with
β = 2.5.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

request arrival rate (requests/hour)

av
er

ag
e

de
la

y
(h

ou
rs

)

BatchAll
BatchAll+
Fluid bound

Fig. 9. Average delay performance comparison of algorithms BatchAll and
BatchAll+ for the 11-node topology and Pareto file size distribution with
β = 2.5.

importance of multi-path routing: the performance achieved
using a single path per connections is far worse. Figure 6
also shows that BatchLim is less efficient than BatchAll in
terms of average delay, especially at low load. This result is
somewhat expected given that BatchLim uses a less efficient
batching process and its delay ratio guarantee is looser.

Figure 7 depicts the performance of the various algorithms
and the capacity bound for the 11-node topology of Fig-
ure 5(b). In this case, we observe that BatchAllDisp with
as few as 3 paths per connection (or α = 0.107) approximates
BatchAll very closely. Since this network is sparser than the
previous one, it is reasonable to obtain good performance with
a smaller path dispersion. In this scenario with Pareto file
size distribution, BatchLim performs significantly worse than
BatchAll for the load range illustrated. We suspect that the
performance of BatchLim is more sensitive to the file size
distribution than BatchAll, because the batches formed by
BatchLim are limited in time duration compared to those of
BatchAll.

Figures 8 and 9 compare the performance of BatchAll

and BatchAll+ for the 8-node and 11-node topologies
BatchAll+, with Pareto file size distribution. The figures
show the superiority of BatchAll+ over BatchAll in both
cases, which is due to optimization in Step 4 of the algorithm.

20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

request arrival rate (requests/hour)

ta
il

pr
ob

ab
ili

ty

BatchAllDisp1

BatchAllDisp3

BatchAllDisp5

BatchAll

Fig. 10. Tail probability performance of algorithms BatchAll and
BatchAllDisp for the 8-node topology, Pareto distributed file size with
β = 2, and delay threshold of 48 hours. Algorithm BatchAllDisp is plotted
with path dispersion bounds of 1, 3, and 5 paths per connection.

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

request arrival rate (requests/hour)

ta
il

pr
ob

ab
ili

ty

BatchAllDisp1

BatchAllDisp3

BatchAll

Fig. 11. Tail probability performance of algorithms BatchAll and
BatchAllDisp for the 11-node topology, Pareto distributed file size with
β = 2, and delay threshold of 24 hours. Algorithm BatchAllDisp is plotted
with path dispersion bounds of 1 and 3 paths per connection.

C. Tail Probability Performance

In this section, we use the tail probability of the delay as
the performance metric. All our simulations assume Pareto
distributed file sizes with β = 2. Due to the high variability
of the delay experienced by different requests, each simulation
point in the following graphs represents an average taken over
seven iterations, where each iteration is run for 4∗106 requests.
The graphs also plot 95% confidence intervals.

Figure 10 shows the probability that the delay of a request
exceeds 48 hours, in the 8-node topology, as a function of the
arrival rate of requests. We observe that the performance of
BatchAllDisp with 5 paths per connection is close to that
of BatchAll. Next, Figure 11 shows the probability that the
delay of a request exceeds 24 hours, in the 11-node topology,
as a function of the the arrival rate of requests. In that case the
performance of BatchAllDisp with 3 paths per connection is
virtually identical to that of BatchAll. Overall, the results are
qualitatively similar to those obtained in the previous section.

VIII. CONCLUSION

In this paper, we considered the problem of devising
throughput-optimal and throughput-competitive algorithms for
networking architectures supporting advance reservation, a
problem of particular relevance to modern grid and cloud com-
puting applications. After showing the limitations of greedy
approaches, we proposed two new on-line algorithms for
advance reservation, called BatchAll and BatchLim, that
are guaranteed to achieve optimal throughput performance.
Specifically, we proved that both algorithms bounds the ratio
of the maximum delay of any request in 1 + ε bandwidth
augmented networks to the maximum delay of any request
in the original network using the optimal off-line algorithm.
While BatchLim has a slightly looser delay ratio guarantee
than that of BatchAll (i.e., 4/ϵ instead of 2/ϵ) and, based
on our simulations, inferior average delay performance, it has
the distinct advantage of returning the completion time of a
connection immediately as a request is placed.

We observed that path dispersion is essential to achieve
full network utilization. However, splitting a transmission into
too many different paths may render a flow-based approach
inapplicable in many real-world environments. Thus, we pre-
sented a rigorous, theoretical approach to address the path
dispersion problem and presented a method for approximating
the maximum multicommodity flow using a limited number
of paths. Specifically, while the number of paths between two
nodes in a network scales exponentially with the number of
edges, we showed that throughput competitiveness up to any
desired ratio factor can be achieved with a number of paths
scaling linearly with the total number of edges. In practice,
our simulations indicate that three paths (in sparse graphs) to
five paths (in dense graphs) should be sufficient.

We also provided a simple and practical mechanism
for enhancing the delay performance of our main algo-
rithm, BatchAll. Specifically, the enhanced version, called
BatchAll+, attempts at adding any arriving request to the
current batch of running requests pending that the completion
time of the batch remains unchanged. Such an improvement
can also be applied to the algorithm with bounded path
dispersion, BatchAllDisp.

The algorithms proposed in this paper can be either run in a
centralized fashion (a reasonable solution in small networks)
or using link-state routing and distributed signaling mecha-
nism, such as enhanced versions of GMPLS [41]. Distributed
approximations of the multicommodity flow have also been
discussed in the literature [42]. An important research area
open for future work will be to carefully investigate these
implementation issues.

We conclude by noting that advance reservation architec-
tures relying on flow (circuit) switching may provide an ad-
ditional benefit by saving energy [43]. Indeed, flow switching
avoids the need of managing each packet individually [44].
Quantifying the potential energy gain of advance reservation
architectures represents an important topic for future research.

ACKNOWLEDGMENT

This research was supported in part by the US Department
of Energy under ECPI grant DE-FG02-04ER25605 and the

US National Science Foundation under CAREER grant ANI-
0132802 and grant CCF-0729158.

REFERENCES

[1] C. Guok, D. Robertson, E. Chianotakis, M. Thompson, W. Johnston,
and B. Tierney, “A User Driven Dynamic Circuit Implementation,” in
Proceedings of IEEE GLOBECOM, December 2008, New Orleans, LA,
USA.

[2] N. Rao, W. Wing, S. Carter, and Q. Wu, “UltraScience Net: network
testbed for large-scale science applications,” IEEE Communications
Magazine, vol. 43, pp. 12–17, 2005.

[3] R. Cohen, N. Fazlollahi, and D. Starobinski, “Path switching and grading
algorithms for advance channel reservation architectures,” IEEE/ACM
Transactions on Networking (TON), vol. 17, no. 5, pp. 1684–1695,
October 2009.

[4] “On-demand secure circuits and advanced reservation systems,”
http://www.es.net/oscars/index.html.

[5] W. Johnston, “ESnet: advanced networking for science,” SciDAC review,
2007.

[6] C. Guok, J. Lee, and K. Berket, “Improving the bulk data transfer
experience,” Internation Journal of Internet Protocol Technology, vol. 3,
no. 1, pp. 46–53, 2008.

[7] L. Burchard, “Networks with advance reservations: Applications, archi-
tecture, and performance,” Journal of Network and Systems Manage-
ment, vol. 13, pp. 429–449, 2005.

[8] H. Lee, M. Veeraraghavan, H. Li, and E. Chong, “Lambda scheduling
algorithm for file transfers on high-speed optical circuit,” in IEEE
International Symposium on Cluster Computing and the Grid (CCGrid
2004), April 2004, chicago, USA.

[9] A. Banerjee, N. Singhal, J. Zhang, D. Ghosal, C.-N. Chuah, and
B. Mukherjee, “A Time-Path Scheduling Problem (TPSP) for aggre-
gating large data files from distributed databases using an optical burst-
switched network,” in Proc. ICC, 2004, Paris, France.

[10] A. Banerjee, W. Feng, B. Mukherjee, and D. Ghosal, “Routing and
scheduling large file transfers over lambda grids,” in Proc. of the 3rd
International Workshop on Protocols for Fast Long-Distance Networks
(PFLDnet’05), February 2005, Lyon, France.

[11] R. Guerin and A. Orda, “Networks with advance reservations: the routing
perspective,” in Proceedings of INFOCOM’00, March 2000, Tel-Aviv,
Israel.

[12] V. Chan, G. Weinchenberg, and M. Médard, “Optical flow switching,”
in Proc. 3rd International Conference on Broadband Communications,
Networks and Systems, October 2006, pp. 1–8, San Jose, USA.

[13] B. Ganguly, “Implementation and modeling of a scheduled optical flow
switching (ofs) network,” Ph.D. dissertation, Massachusetts Institute of
Technology, 2008.

[14] J. Zheng and H. T. Mouftah, “Routing and wavelength assignment for
advance reservation in wavelength-routed WDM optical networks,” in
Proc. IEEE ICC, vol. 5, 2002, pp. 2722–2726.

[15] S. Figueira, N. Kaushik, S. Naiksatam, S. Chiappari, and N. Bhatnagar,
“Advance reservation of lightpaths in optical-network based grids,” in
Proc. ICST/IEEE Gridnets, October 2004, San Jose, USA.

[16] N. Kaushik and S. Figueira, “A dynamically adaptive hybrid algo-
rithm for scheduling lightpaths in lambda-grids,” in Proc. IEEE/ACM
CCGRID/GAN’05-Workshop on Grid and Advanced Networks, May
2005, Cardiff, UK.

[17] A. Goel, M. Henzinger, S. Plotkin, and E. Tardos, “Scheduling data
transfers in a network and the set scheduling problem,” in Proc. of the
31st Annual ACM Symposium on the Theory of Computing, 1999, pp.
189–199.

[18] L. Lewin-Eytan, J. Naor, and A. Orda, “Admission control in networks
with advance reservations,” Algorithmica, vol. 40, pp. 293–304, 2004.

[19] T. Erlebach, “Call admission control for advance reservation requests
with alternatives,” ETH, Zurich, Tech. Rep. 142, 2002.

[20] M. Andrews, A. Fernandez, A. Goel, and L. Zhang, “Source routing and
scheduling in packet networks,” Journal of the ACM (JACM), vol. 52,
no. 4, pp. 582–601, July 2005.

[21] Y. Azar, J. Naor and R. Rom, “Routing Strategies in Fast Networks,”
IEEE Transactions on Computers, vol. 45, no. 2, pp. 165–173, February
1996.

[22] B. Awerbuch, Y. Azar, A. Fiat, S. Leonardi, and A. Rosen, “On-
line competitive algorithms for call admission in optical networks,”
Algorithmica, vol. 31, no. 1, pp. 29–43, 2001.

[23] S. A. Plotkin, “Competitive routing of virtual circuits in ATM networks,”
IEEE J. on Selected Areas in Communication (JSAC), vol. 13, no. 6, pp.
1128–1136, 1995.

[24] B. Awerbuch, D. Holmer, H. Rubens, and R. D. Kleinberg, “Provably
competitive adaptive routing,” in INFOCOM, 2005, pp. 631–641.

[25] A. Goel, M. R. Henzinger, and S. A. Plotkin, “An online throughput-
competitive algorithm for multicast routing and admission control.” J.
Algorithms, vol. 55, no. 1, pp. 1–20, 2005.

[26] Y. Ganjali, A. Keshavarzian, and D. Shah, “Input queued switches:
Cell switching vs. packet switching,” in Proceedings of INFOCOM’03,
March 2003, San-Fancisco, CA, USA.

[27] G. Weichenberg, V. Chan, and M. Médard, “On the capacity of optical
networks: A framework for comparing different transport architectures,”
IEEE J-SAC, vol. 25, pp. 84–101, 2007.

[28] E. Gustafsson and G. Karlsson, “A literature survey on traffic disper-
sion,” IEEE Network, vol. 11, no. 2, pp. 28–36, March-April 1997.

[29] J. Shen, J. Shi, and J. Crowcroft, “Proactive multi-path routing,” Lect.
Notes in Comp. Sci., vol. 2511, pp. 145–156, 2002.

[30] R. Chow, C. W. Lee, and J. Liu, “Traffic Dispersion Strategies for
Multimedia Streaming,” in Proceedings of the 8th IEEE Workshop on
Future Trends of Distributed Computing Systems, 2001, p. 18.

[31] F. Shahrokhi and D. W. Matula, “The maximum concurrent flow
problem,” Journal of the ACM (JACM), vol. 37, no. 2, April 1990.

[32] T. Leighton and S. Rao, “Multicommodity max-flow min-cut theorems
and their use in designing approximation algorithms,” Journal of the
ACM (JACM), vol. 46, no. 4, pp. 787 – 832, November 1999.

[33] “Coin-Or project,” http://www.coin-or.org/.
[34] “National LambdaRail Inc.” http://www.nlr.net/.
[35] W. Whitt, “The impact of a heavy-tailed service-time distribution upon

the M/GI/s waiting-time distribution,” Queueing Systems, vol. 36, no.
1/3, pp. 71–87, 2000.

[36] B. Avi-Itzhak and S. Halfin, “Response times in gated M/G/1 queues: the
processor-sharing case,” Queuing Systems, vol. 4, pp. 263–279, 1989.

[37] V. Paxson and S. Floyd, “Wide-area traffic: the failure of poisson
modelling,” IEEE/ACM Transactions on Networking, vol. 3, no. 3, pp.
226–244, June 1995.

[38] M. E. Crovella, M. S. Taqqu, and A. Bestavros, Heavy-Tailed Proba-
bility Distributions in the World Wide Web. Cambridge, MA, USA:
Birkhauser Boston Inc., 1998.

[39] M. F. Arlitt and C. L. Williamson, “Internet web servers: Workload char-
acterization and performance implications,” IEEE/ACM Transactions on
Networking, vol. 5, no. 5, pp. 631–645, 1997.

[40] A. Williams, M. Arlitt, C. Williamson, and K. Barker, Web Workload
Characterization: Ten Years Later. Springer, August 2005.

[41] “Dynamic resource allocation via GMPLS optical networks,”
http://dragon.maxgigapop.net.

[42] B. Awerbuch, R. Khandekar, and S. Rao, “Distributed algorithms
for multicommodity flow problems via approximate steepest descent
framework,” in Proceedings of the ACM-SIAM symposium on Discrete
Algorithms (SODA), 2007.

[43] J. Baliga, R. Ayre, K. Hinton, W. V. Sorin and R. S. Tucker, “Energy
consumption in optical IP networks,” Journal of Lightwave Technology,
vol. 27, no. 13, pp. 2391–2403, July 2009.

[44] M. Zukerman, “Back to the future,” IEEE Communications Magazine,
vol. 47, no. 11, pp. 36–38, 2009.

PLACE
PHOTO
HERE

Reuven Cohen Received his B.Sc. in Physics and
Computer Science and his Ph.D. in Physics from
Bar-Ilan University, Ramat-Gan, Israel. He was a
postdoctoral fellow in the Dept. of Mathematics
and Computer Science at the Weizmann Institute,
Rehovot, Israel and in the ECE department at Boston
University and in the Dept. of Physics at MIT. Since
October 2007 he has been at the Department of
Mathematics at Bar-Ilan University in Israel, where
he is an Assisant Professor. His research interests are
random graphs, distributed algorithms and network

stability.

PLACE
PHOTO
HERE

Niloofar Fazlollahi received her B.S. in Electrical
Engineering (2005) from the Sharif University of
Technology, Tehran, Iran. Since 2005, she has been a
Ph.D. student at Boston University under the super-
vision of Professor David Starobinski. In 2007, she
received her M.S. while being a Ph.D. candidate. Her
research interests are in the modeling and analysis of
joint scheduling and routing schemes in ultra high-
speed networks, and the application of identifying
codes in efficient sensor network monitoring.

PLACE
PHOTO
HERE

David Starobinski received his Ph.D. in Electrical
Engineering (1999) from the Technion-Israel Insti-
tute of Technology. In 1999-2000 he was a visiting
post-doctoral researcher in the EECS department
at UC Berkeley. In 2007-2008, he was an invited
Professor at EPFL (Switzerland). Since September
2000, he has been with Boston University, where he
is now an Associate Professor.

Dr. Starobinski received a CAREER Award from
the U.S. National Science Foundation (2002), an
Early Career Principal Investigator (ECPI) Award

from the U.S. Department of Energy (2004), the 2010 BU ECE Faculty
Award for Teaching Excellence, and the Best Paper Award at WiOpt 2010.
He is currently on the Editorial Board of the IEEE/ACM Transactions on
Networking. His research interests are in the modeling and performance
evaluation of high-speed, wireless, and sensor networks.

