
TeaCP: a Toolkit for Evaluation and Analysis of

Collection Protocols in Wireless Sensor Networks

Wei Si*, Morteza Hashemi*, Idan Warsawski*, Moshe Laifenfeld†

David Starobinski*, and Ari Trachtenberg*

*Dept. of Electrical and Computer Engineering, Boston University, USA

{weisi, mhashemi, idan, staro, trachten}@bu.edu
†Wireless Enablers Group, GM Advanced Technical Center, Israel

moshe.laifenfeld@gm.com

Abstract—Several collection protocols have been developed to

achieve efficient gathering of data in Wireless Sensor Networks

(WSN) including intra-car WSN. Though there exist WSN

tools capable of controlling, monitoring, and displaying sensor

data, there is still a need for a general benchmarking tool

capable of visualizing, evaluating, and comparing the network

layer performance of these protocols. In an effort to fill this

gap, we present TeaCP, a prototype Toolkit for the evaluation

and analysis of Collection Protocols in both simulation and

experimental environments. Through simulation of an intra-car

WSN and real lab experiments, we demonstrate the functionality

of TeaCP for comparing the performance of two prominent

collection protocols, the Collection Tree Protocol (CTP) and the

Backpressure Collection Protocol (BCP).

I. INTRODUCTION

Data collection is intrinsic to numerous applications in
Wireless Sensor Networks (WSN), ranging from intra-car
monitoring [8] to environmental data gathering [1] and military
surveillance [2]. In a data collection network, sensor readings
of wireless motes are routed towards a root1 (sink). Though
WSN routing protocols can accomplish the goal of delivering
data to the root, another set of protocols, known as collection
protocols, has emerged to support the specific needs of data
collection. Typical requirements include:

• reliability: a high fraction (e.g., 90% or above) of the
packets generated by the sources should be delivered to
the root;

• Quality of Service: high throughput and low packet

latency should be achieved;

• robustness: high reliability and QoS should be main-

tained even under stress conditions such as dynamic
links.

Different applications may have different requirements. For
instance, intra-car monitoring may emphasize robustness to
wireless interferences (WiFi, Bluetooth, etc.), while military
applications may also strive for low packet latency. Thus, in
order to select the most suitable collection protocol for a given
application, one should be able to evaluate the performance of
different collection protocols in the same operating environ-
ment. In addition, the ability to visualize a network, including
its topology and routes used by packets, is essential for

1Though data collection can also be used in multi-root scenarios, we frame

our discussion for the single root case for sake of simplicity.

understanding and troubleshooting the behavior of collection
protocols, especially under stress.
Background: Many collection protocols have been proposed

in the literature [3, 4, 6, 7, 12] and several of them have also

been implemented. However, a common platform to visualize,
analyze and compare their performance is still needed. Such
a toolkit should not only enable the evaluation of multiple
collection protocols in intra-car WSN, but also help to visualize
the behavior of the collection protocols.
Though there already exist several visualization tools for

WSN, most of them concentrate on controlling, monitoring and
displaying sensor data rather than on analyzing the underlying
network protocol. Some tools such as Mote-View [13] show
packet loss statistics but these statistics are collected through
the underlying collection protocol itself, possibly perturbing
the ongoing test. Some of the tools are tailored for a specific
collection protocol, in which case testers need to understand
the tool and possibly write a significant amount of new
code in order to test a different collection protocol. Besides,

existing evaluations of collection protocols (Octopus [9] and
SpyGlass [5]) sometimes resort to approximate calculations
or only include partial aspects of the performance for sake
of practical implementation. Though evaluation and analysis
of collection protocols have been a common practice in this
research area, none of the analysis tools have been published
or made publicly available to the best of our knowledge.
It is within this context that we have designed and imple-

mented TeaCP, an open-source benchmarking Toolkit for the
evaluation and analysis of Collection Protocols in wireless
sensor networks. TeaCP provides generic configurations for
testing protocols, including packet generation rate and trans-
mission power, and functions for post-test analysis. TeaCP can
be used for both experiments with real data and simulation
in TOSSIM [11]. For experiments, TeaCP utilizes out-of-
band communication for logging data at all nodes, so that

network events and packet information are captured regardless
of network conditions. For simulations, TeaCP provides the
convenience of testing the performance of collection protocols
over a wide range of conditions. The post-experiment analysis
functionalities allow evaluation of standard metrics, including
reliability, throughput, and delay (which have been used for
evaluating protocols in most previous works). TeaCP also
permits visualization of the dynamics of the network topology
and packet routes, illustrating the network layer behavior of



Fig. 1. Format of log message.

Fig. 2. Format of data message.

collection protocols over time.
As a case in point, TeaCP can be used to conveniently

evaluate and compare intra-car collection protocols, using the
TOSSIM simulator. To emulate a real vehicular environment,
TeaCP is run using RSSI traces collected from actual mea-
surements in a car. One can then evaluate the performance
of protocols under different network configurations in a time-
efficient manner.
In summary, the main features of TeaCP are the following:

• Generality: TeaCP is a general toolkit optimized to
conveniently plug in various collection protocols and
analyze their performance through post-experiment anal-
ysis.

• Configurability: With TeaCP, one can easily configure
tests for evaluating a data collection protocol, run the
tests and analyze the underlying performance (e.g., reli-
ability, throughput, and delay) via both real experiments

and simulations.

• Visualization: TeaCP provides visualization of packet

routes, network topology and other statistics, that can
be used for understanding, analyzing and diagnosing the
behavior of collection protocols.

The rest of this paper is organized as follows. In Section
II, we describe the design and implementation of TeaCP.
Thereafter, in Section III we demonstrate how TeaCP is used
to analyze, compare, and troubleshoot collection protocols.
Finally Section IV concludes the paper.

II. TEACP IMPLEMENTATION

In this section, we present the design and implementation of
our TeaCP toolkit. We then highlight the convenience of using
TeaCP to test different data collection protocols.

A. TeaCP Structure

The structure of TeaCP is as follows. Configurable test
parameters include packet generation interval, radio power and

radio channel of the network. Radio power and channel settings
are applied to the radio component of hardware. The packet
generation interval is applied to a periodic timer, whose firing
signal invokes the packet generator to generate a new packet,
drive the log generator to output a log message, and transfer the
packet to the network layer, which moves it to the root using
a collection protocol. Since the collection protocol may use
multihop routing to accomplish the delivery, the packet will
be received by intermediate nodes and the root. No matter
whether the node is a client or the root, the network layer

would notify the packet reception handler when it receives
a packet from other sensors. The packet reception handler
prepares the information needed by the log generator, which
outputs log message to storage through serial communication.
Finally, as described before, post-experiment analysis is done
based on data saved in storage.
The only interactions between the application layer and the

network layer are two necessary processes: (1) the packet
generator transfers the packet to the network layer; (2) when
a packet is received, the network layer notifies the packet

reception handler on the application layer. The two processes
correspond to two types of network event: (1) packet arrival at
the source node; (2) packet arrival at the destination node or
an intermediate node. Log messages related to these events are
sufficient for computation of packet routes and other statistics.

B. Message formats

A log message is generated whenever a network event
happens2. Hence, for each event, there is an associated packet
and a recording log message.
As shown in Fig 1, the log message contains 7 fields: type,

cur_node_id, src_node_id, last_node_id,
packet_id, time and hop_count. The field type de-
notes whether this log message is generated at packet gener-
ation or packet reception, and cur_node_id is the ID of
the current node where the log message is generated. The
field time records the time when the event happened and
src_node_id is the ID of source node that generates the
packet. The field packet_id equals to the value of packet
counter at the source node when it is generated. The field
last_node_id denotes the node ID of the packet’s last

hop. If the log message is generated upon packet reception,
last_node_id is the ID of the node that sends the packet
to the current node. If the log message is upon packet gen-
eration, then last_node_id is not important and set to be
src_node_id. The field hop_count denotes the number
of hops that the packet has experienced.
The data message shown in Fig. 2 has four fields:

src_node_id, last_node_id, packet_id and
hop_count, which have the same meanings with the log
message fields.
TeaCP manipulates data messages and generates log mes-

sages as follows:

2In the nesC code, packet arrival at source node, the root and

intermediate nodes correspond to command Send.send(), event

Receive.receive() and event Intercept.forward(), respec-

tively.



• When a sensor node generates a packet, it sets the
data message’s src_node_id to its TOS_NODE_ID.
last_node_id is set to its ID as well. packet_id

is set to the node-unique counter of how many packets
have been sent. hop_count is initialized to 0. All the
fields of the data message are copied to corresponding
fields of log message.

• When a sensor node receives another sensor node’s
packet, first the data message’s field values are copied
to the generated log message. Then the data message’s
last_node_id is updated to the current node ID and
hop_count is incremented.

• When the root node receives a packet, it increments the
packet’s hop_count and outputs the associating log
message.

C. Post-experiment analysis

Post-experiment analysis functions of TeaCP include visu-
alization of packet routes and network evolution over time.
TeaCP also evaluates reliability, throughput and delay per-
formance of the network. Here we provide details of these
functionalities.
For a packet with specific source node ID and packet ID,

TeaCP calculates the route of this packet based on collected
data. last_node_id and cur_node_id of an event re-
lated to the packet represents a directed edge on the packet
route. If the packet has only one copy in the network, then
TeaCP links these directed edges together and generates the
packet route:

routes[src_node_id][packet_id]= [ID of hop 0,

ID of hop 1, ID of hop 2, ...]

If the packet has duplicates that go through different
routes, TeaCP detects this scenario and generates all the route
branches:

routes[src_node_id][packet_id]= {

duplicate1:[ID of hop 0, ID of hop 1, ...],

duplicate2:[ID of hop 0, ID of hop 1, ...],

...}

To visualize the network topology, first all packets in the
network are divided into equal-size windows according to
their packet IDs. In a window, based on the routes of the
packets, TeaCP calculates the number of packets that traverse
along each edge and presents a directed graph representing
the network topology. For each window of packets, TeaCP
generates a network topology with edge weights. Then the
generated time-windowed topologies are combined together
and converted into a movie to demonstrate the topology

evolution over time. We will show some sample graphs of
the visual topology in Section III.
For evaluation purposes, we use the most widely used per-

formance metrics, namely delivery rate, throughput, goodput,
and delay.

D. TeaCP working with CTP and BCP

CTP and BCP are two main collection protocols imple-
mented in TinyOS. Here we explain how TeaCP works with
these two protocols. Some protocols are developed as variants
of CTP and BCP so they can be directly used with TeaCP.

Our only requirements for collection protocol implementa-
tions are: (1) the collection protocol should provide function
for the TeaCP to inject a packet into the network layer;

(2) the collection protocol should notify TeaCP when the
network layer receives a packet. In the nesC code, TeaCP is
implemented as a module named TestBenchC, which uses
the interfaces Send, Receive and Intercept. Commands
and events of these interfaces (refer to [10] for nesC basics) are
defined in TinyOS. The interface Send is used for injecting
packets into the network layer. The interfaces Receive

and Intercept signal events to the interface user when
a packet is received. The difference between the two is that
Receive is specified for packet reception by the destination
while Intercept is for packet reception by intermediate
nodes. Since TeaCP uses Send, Receive and Intercept,
collection protocol implementations are required to provide
these three interfaces if they wish to interact with our toolkit.
The CTP implementation satisfies the requirements. Hence

TeaCP could be used directly for CTP. The BCP im-

plementation, however, only provides interfaces Send and
Receive. Thus to use TeaCP with BCP, we added the
interface Intercept in some components and signaling of
event Intercept.forward(message_t *msg) in the
forwarding engine to BCP. Another difference of BCP imple-
mentation from CTP is that it uses interface BcpDebugIF

for protocol debugging and then in TestBenchC we just
provided the interface BcpDebugIF and implemented its
commands with empty functions.
After these changes, TeaCP can test, analyze and evaluate

BCP. In total, we modified about 13 lines of code in order to
adapt TeaCP to the BCP implementation (around 2500 lines of
code). The adaptation of TeaCP for BCP also suggests that for
other protocols, only small amount of code writing is needed
to make TeaCP work.

III.PERFORMANCE EVALUATION

This section illustrates functionalities of TeaCP, through
evaluation and analysis of CTP and BCP which serve as
representatives of two different categories of protocols.

A. TeaCP evaluation of intra-car collection protocol on

TOSSIM

TeaCP can evaluate collection protocols through simulations,
which is convenient and fast. For the simulations on TOSSIM,
we used real RSSI traces of intra-car wireless sensor network.
The RSSI traces were measured in real intra-car experiments,
recording the RSSI (in dBm) between different motes at
different time. The network consists of 15 nodes, in which the
root is on the driver seat, three sensors are placed in the engine
compartment, four sensors are respectively attached to the four
wheels, three sensors are placed on passenger seats and the rest

placed on the chassis. In the simulation, these sensors periodi-
cally generate packets and forward them towards the root. The
sensor model used in the simulation is MICAz. After running
on TOSSIM, TeaCP outputs the network performance statistics
such as delivery rate, throughput/goodput, and latency.
Figures 3, 4 and 5 respectively compare the delivery rate,

average delay, and throughput/goodput performance of CTP
and BCP (both FIFO and LIFO implementations) based on
the real RSSI traces. From these simulation results, we observe
that CTP outperforms BCP-FIFO in terms of delay, but BCP



1 2 3 4 5 6 7 8 10 20 50 100
0

20

40

60

80

100

Packet generation rate (pkts/sec per node)

D
e
liv

e
ry

 r
a
te

 (
%

)

 

 

CTP
BCP−FIFO
BCP−LIFO

Fig. 3. CTP and BCP delivery rate vs. packet generation rate.

1 2 3 4 5 6 7 8 10 20 50 100
0

1

2

3

4

5

6

7

8

9

10

Packet generation rate (pkts/sec per node)

A
v
e
ra

g
e
 d

e
la

y
 (

s
)

 

 

CTP

BCP−FIFO

BCP−LIFO

Fig. 4. CTP and BCP average delay vs. packet generation rate.

1 2 3 4 5 6 7 8 10 20 50 100
0

50

100

150

Packet generation rate (pkts/sec per node)

T
h
ro

u
g
h
p
u

t 
(p

k
ts

/s
e
c
)

 

 

Throughput of CTP

Goodput of CTP

Throughput of BCP−FIFO
Goodput of BCP−FIFO

Throughput of BCP−LIFO

Goodput of BCP−LIFO

Fig. 5. CTP and BCP throughput/goodput vs. packet generation rate.

improves the throughput/goodput and delivery rate, especially
under high load conditions. Furthermore, BCP-LIFO achieves
much better (lower) delay performance than BCP-FIFO. We
also note that the difference between throughput and goodput
is negligible for these protocols. The root receives a duplicate
packet when the root has already received the packet but the

Fig. 6. Placement of the 9 sensor nodes, the root (Node 0) and the activator

in the experiment.

sender has not successfully received the acknowledgement.

The difference between throughput and goodput is small
because duplicates are mostly removed due to the duplicate
suppression mechanism in the protocols and only duplicates
at the last hop are considered in throughput.
These results obtained by TeaCP depict a wholistic picture

for CTP and BCP, from which one can compare these two
protocols and analyze their advantages and disadvantages. For
TOSSIM simulation (running one out of 8 cores of Intel Core
i7-2600 CPU@3.40GHz) of one root and 39 sensor motes,
with each sensor mote generating 5000 packets at rate of 1
pkts/sec, the total simulation time is around 10 minutes.

B. TeaCP performance in real experiments

TeaCP provides other analysis functions for visualization

of the topology evolution over time, per-node statistics, and
complete characterization of network edges and packet routes.
The outputs of this toolkit include detailed statistics for each
node showing latency histogram, packet loss rate, and route
branches due to packet duplicates. Additionally, time-sliced
network topology and topology evolution over time can be
displayed.
In our experiments, we set up a network consisting of 9

sensor nodes periodically generating packets and forwarding
them to a single root (node 0). The sensor motes and the
root are IEEE 802.15.4-based Tmote Sky working on 2.4 GHz
frequency band. The transmission power is configured to −20

dBm for all experiments and the packet generation rate is set
to be either 2 or 4 pkts/sec per node. Our devices are located
in a computer lab and the positions of the motes are shown
in Fig. 6. The motes are connected to PCs through a USB

port for the purposes of logging messages and statistics. In
the testing environment, there exists WiFi interference and
some foot traffic, which may change during a test. Each test
is initialized by a central activator node sending a broadcast
message containing test configurations. After the initialization
step, each experiment runs for 20 to 30 minutes. Our current
experimental setup (e.g., small scale network compared with
real-world applications) can be viewed as a proof of TeaCP
functionality concept in experimental domain for evaluation
and diagnosis purposes.



Fig. 7. Latency histograms by node for CTP and BCP. Though the delay

distribution of BCP and CTP are similar, average delay of BCP is much higher

than CTP.

Fig. 8. Topology sample of CTP at 10 packets per image. The topologies

are drawn based on packets with ID from 160 to 190 from every source node.

1) Latency histograms

CTP and BCP experimental delay performance are shown
in Fig. 7. The per-node histograms give detailed statistics
of latency of packets generated in the network. Overall, the
histograms of two protocols look quite similar. The high
average packet delay performance of BCP can be explained
by the fact that a few packets are experiencing huge delays,
as high as 30 seconds. These results suggest that the average
packet delay of BCP could be significantly reduced if this issue

were resolved.

2) Network topology evolution

TeaCP provides time-sliced topologies and network evolu-
tion over time. Fig. 8 shows CTP topology evolution over time
with a window size of 10 packets per each caption. In the
first caption, with packets ID 160 to 170, node 5 transmits

packets directly to the root. In the second caption, node 5
starts to choose node 3 as a relay node. In the last caption,
node 5 transmits 5 packets to node 7 among the ten packets

it generates. The network topology transition indicates change
of quality of links, probably due to walking of testers during
the experiment. This showcases that TeaCP can be used to
investigate the behavior of collection protocols under dynamic
scenarios and their ability to adapt the routes according to
environmental conditions.
The topology information can also be potentially used for

the selection of the root node. For instance, in one of our tests
of CTP (not shown, due to space limitation), we observed that
one of sensor nodes carries a large portion of the traffic. In this
scenario, it may be worth testing what would happen if this
node were to fail or go offline and perform power consumption
analysis to determine the battery lifespan of such a high-traffic
node.

IV.CONCLUSION

We have developed TeaCP, a toolkit that focuses on vi-
sualization and analysis of network layer collection protocol
performance. We showed how our toolkit may be utilized to
compare the performance of two dominant protocols, CTP and
BCP, though it is also designed for simple evaluation and
analysis of new collection protocols following a typical mold.
With some straightforward modifications, TeaCP can be also
adapted to multiple-root collection protocols and any-to-any
routing protocols, and we leave these as future directions.

ACKNOWLEDGEMENTS

This work was supported in part by NSF under grant
CCF-0916892 and by a grant from General Motors.

REFERENCES

[1] http://greenorbs.org/.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless

sensor networks: a survey. Computer Networks, 38(4):393 – 422, 2002.

[3] M. H. Alizai, O. Landsiedel, J. A. B. Link, S. Götz, and K. Wehrle.

Bursty traffic over bursty links. In SenSys, 2009.

[4] M. Alresaini, M. Sathiamoorthy, B. Krishnamachari, and M. J. Neely.

Backpressure with Adaptive Redundancy (BWAR). In IEEE INFO-

COM, 2012.

[5] C. Buschmann, D. Pfisterer, S. Fischer, S. P. Fekete, and A. Kröller.

Spyglass: a wireless sensor network visualizer. SIGBED Rev., 2(1):1–6,

Jan. 2005.

[6] R. Fonseca, O. Gnawali, K. Jamieson, S. Kim, P. Levis, and A. Woo.

The collection tree protocol (TEP 123). http://www.tinyos.net/tinyos-

2.x/doc/.

[7] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collection

tree protocol. In SenSys, 2009.

[8] M. Hashemi, W. Si, M. Laifenfeld, D. Starobinski, and A. Trachtenberg.

Intra-car Wireless Sensors Data Aggregation: A Multi-hop Approach.

In VTC, 2013.

[9] R. Jurdak, A. G. Ruzzelli, A. Barbirato, and S. Boivineau. Octopus:

monitoring, visualization, and control of sensor networks. Wirel.

Commun. Mob. Comput., 11(8):1073–1091, Aug. 2011.

[10] P. Levis and D. Gay. TinyOS Programming. Cambridge University

Press, New York, NY, USA, 1st edition, 2009.

[11] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: accurate and scalable

simulation of entire tinyos applications. In SenSys, 2003.

[12] S. Moeller, A. Sridharan, B. Krishnamachari, and O. Gnawali. Routing

without routes: the backpressure collection protocol. In IPSN, 2010.

[13] M. Turon. MOTE-VIEW: A Sensor Network Monitoring and Manage-

ment Tool. In EmNetS-II, 2005.


