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Abstract—We consider the problem of providing opportunistic
spectrum access to secondary users in wireless cellular networks.
From the standpoint of spectrum license holders, achieving
benefits of secondary access entails balancing the revenue from
such access and its impact on the primary service of the license
holder. While dynamic optimization is a natural framework to
pursue such a balance, spatial constraints due to interference and
uncertain demand characteristics render exact solutions difficult.
In this paper, we study guiding principles for spectrum license
holders to accommodate secondary users via reservation-based
admission policies. Using notions of dynamic optimization, we
first develop the concept of average implied cost for establishing
a connection in an isolated locality. The formula of the cost
provides an explicit characterization of the value of spectrum
access. We then generalize this concept to arbitrary topologies
of interference relations and show that the generalization is
justified under an analogue of the reduced load approximation
judiciously adapted from the wireline to the wireless setting.
An explicit characterization of this quantity demonstrates the
localized nature of the relationship between overall network
revenue and reservation parameters. Based on this relationship,
we develop an online distributed algorithm for computing optimal
reservation parameters. The performance of the algorithm is
verified through a numerical study.

I. INTRODUCTION

The hike in the demand for wireless communications, along
with reported inefficiencies in radio spectrum utilization, have
recently led to a global effort to reform legacy spectrum
regulations [1–4]. One aspect of these reforms is to grant
spectrum license holders extended property rights that allow
trading of spectrum in secondary markets. From the standpoint
of spectrum regulators, such markets help improve spectrum
utilization. From the standpoint of license holders, secondary
markets provide a novel opportunity to increase revenue by
expanding their subscriber pools.

In this work, we focus on wireless cellular networks and
devise guiding principles for license holders to maximize their
revenue under secondary market agreements. In particular,
we differentiate between two types of network users. The
first represents primary, or original, users of the cellular
network. The second type represents users who seek network
access on opportunistic basis under short term agreements.
While revenue maximization can be readily studied within the
framework of dynamic programming, it is well-known that

the complexity of such approach becomes prohibitive for even
smallest nontrivial networks [5]. In particular, in a wireless set-
ting, the effect of interference from an established connection
in one cell extends beyond that cell and indirectly affects all
cells in the network. For example, a connection in progress
leads to a temporal reduction in utilization in its immediate
neighborhood, which may in turn help accommodate more
connections in the second-tier cells around it. Thus, an optimal
dynamic solution for the problem typically entails making
admission decisions based on the current state of the whole
network (i.e., channel occupancy in each cell), and therefore
its implementation is rather impractical.

We seek in this work a practical and scalable admission
policy for accommodating secondary users where decisions
are based on local information on the base stations without
requiring a central authority to carry off highly complex
computations. While admission control for cellular networks is
a well studied topic, see [6] for a recent survey, we consider the
problem for general network topologies under full realization
of the effect of interference. Our main contribution is to
provide guiding principles for spectrum license holders to
accommodate secondary users via reservation-based admission
policies. Under such policies, admission of a call request by a
secondary user is granted only if the total interference at each
cell stays below a fixed threshold, typically taken to be less
than the capacity of the cell. This way, part of the capacity of
each cell is reserved exclusively for primary traffic which has
more priority and is more rewarding as well.

The choice of reservation policies is motivated by their
optimality for the isolated cell [7–9]. Thus, we consider first
the isolated cell for which the “average implied cost” of an
established connection can be explicitly determined. Then we
extend this concept to general topologies and adapt the so-
called reduced load approximation (RLA) [10], widely used
in the analysis of circuit-switched networks, to compute certain
network performance measures in the wireless setting and
provide analytical insight. The premise behind the RLA is
to assume that a decision to admit/reject a call is based on
independent decisions at the different cells. This allows ap-
proximated values of call blocking probabilities to be directly
calculated.



Our second contribution is to devise an adaptive mecha-
nism for implementing the reservation-based admission policy.
Namely, we provide an online algorithm that updates capacity
reservation parameters in light of fluctuations in traffic rates.
We exploit the fact that sensitivity of the revenue to a unit
change of the reservation parameter for a certain cell can
be locally evaluated by the base station using measurements
and localized message passing techniques. We use this fact to
propose an online distributed algorithm that computes optimal
reservation parameters in the network. Since unimodality of
the revenue function is not guaranteed in the generality of
topologies, we suggest an implementation akin to simulated
annealing that probabilistically improves the revenue in each
step of the process. Finally, we provide a numerical study in
support of the theoretical results.

The rest of this paper is organized as follows: In Section II,
we present an operational model for cellular networks under a
reservation-based admission policy. We suggest an analytical
framework to capture the network-wide effect of interference
and use the RLA to compute blocking probabilities. In Sec-
tion III, we derive an exact expression for the implied cost in
the special case of the isolated cell and then give formulas
for general topologies based on the RLA. In Section IV,
we present the revenue-maximizing distributed algorithm. We
present a numerical study in Section V and finally conclude
the paper in Section VI.

II. ANALYTICAL FRAMEWORK

A cellular network is considered under the following tele-
traffic conditions: At each cell i, connection requests of type
m = 1, 2 arrive independently as a Poisson process with rate
λ(m)

i . Here, type 1 refers to requests by primary users and type
2 to those by secondary users. Once established, a connection
lasts for an exponentially distributed time with unit mean,
independently of the history prior to the request arrival.

We model a cellular network as a weighted graph G =
(N, E) where N denotes the collection of cells and edge
weight wij ≥ 0 is the interference bandwidth required from
cell j by a connection established at cell i. Since a connection
may generate interference on other connections in the same
cell, the modeled physical situation typically implies that
wii > 0 for each cell i. A connection can be sustained only if it
experiences admissible interference, and that a new connection
request cannot be honored if it leads to premature termination
of another connection that is already in progress.

To formalize this condition, let ni denote the number of
connections in progress at each cell i so that

∑

i∈N niwij is
the total interference acting on cell j. Given an interference
parameter κj for j, a network load n = (ni : i ∈ N) is
feasible if

∑

i∈N

niwij ≤ κj for each j. (1)

Furthermore, network load evolves as a time-homogeneous
Markov process with state space S = {n ∈ ZN

+ :
n is feasible}.

Identifying wij values depends on the underlying spectrum
access mechanism employed in the network. For example, in
narrowband networks, frequency band is divided into non-
overlapping channels and the operational constraints under the
applied frequency reuse pattern, prohibit the same channel to
be assigned simultaneously to connections in the same cell or
in any neighboring cells. Thus, condition (1) dictates that wij

is the total number of channels a connection established at
cell i would lock at cell j. In wideband networks, connections
share the whole frequency band and wij can be characterized
by the strength of electromagnetic coupling between connec-
tions at the different cells. One approach to compute such
values is via providing guarantees on the signal to interference
ratios at the cells. See for example [12] and [13] for an indepth
discussion on identifying such values in wideband networks.

Now consider a reservation-based admission policies. Each
such policy will be represented by a vector R = (Ri : i ∈ N)
where 0 ≤ Ri ≤ κi refers to a reservation parameter at cell
i. Under such policies, a type 1 connection is admitted if its
inclusion preserves condition (1), while a type 2 connection
is admitted at a cell j only if its inclusion preserves the total
interference, from type 1 and type 2 connections, at each cell i
below Ri. This way, the policy guarantees priority for type 1
connections by reserving (κi−Ri) of the interference capacity
of each cell exclusively for type 1 connections.

Assume that the license holder charges an admitted type 1
connection r(1) units currency and charges an admitted type 2
connection r(2) units. Given a reservation policy R, let B(m)

i
denote the blocking probability of type m connections at cell
i. The long-term revenue rate under policy R can be expressed
as

W (R) =
∑

i∈N

∑

m=1,2

r(m)λ(m)
i (1−B(m)

i ). (2)

Note that W (.) depends also on (λ(1)
i , λ(2)

i ). This dependence
is suppressed in the sequel for notational convenience.

A major difficulty in computing the equilibrium distribution
of cell occupancies and hence blocking probabilities arises
due to the need to compute large normalizing constants.
However, even in cases where such computation is possible,
the results give little insight on the relationship between the
overall revenue and individual reservation parameters. Such a
relationship can be alternatively pursued by adapting the RLA
to the situation in hand [11].

Our starting point is to consider an isolated cell with
capacity κ, reservation parameter R, and arrival rate vector
λ = (λ(1), λ(2)). Assume that an established connection
requires one unit capacity from the cell. Also let n denote the
total number of connections in progress in the cell. The state
diagram of the cell occupancy process is shown in Figure 1.
The steady state probability of having a total of n connections
in progress can be directly obtained by solving the detailed
balance equations. Hence

πλ(n) =

{

(λ(1)+λ(2))n

n! Z if 0 ≤ n < R
(λ(1)+λ(2))R(λ(1))n−R

n! Z if R ≤ n ≤ κ,
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Fig. 1. State transition diagram of the occupancy process for the isolated
cell under a reservation policy with parameter R.

where Z is a normalizing constant such that
∑κ

n=0 πλ(n) = 1.
Furthermore, blocking probabilities for type 1 and 2 are given
respectively by

B(1)(λ, κ, R) .= πλ(κ) (3)

B(2)(λ, κ, R) .=
κ

∑

n=R

πλ(n). (4)

For general topologies, we approximate the blocking prob-
ability for type m in cell i, B(m)

i , by the quantity

B̂(m)
i = 1−

∏

j∈N

(1− b(m)
j )wij , (5)

where {b(m)
j : j ∈ N} satisfy the fixed point relation

b(m)
j = B(m) (

ρj , κj , Rj
)

, (6)

with ρj = (ρ(1)
j , ρ(2)

j ) and

ρ(m)
j = (1− b(m)

j )−1
∑

i∈N

wijλ
(m)
i

∏

l∈N

(1− b(m)
l )wil . (7)

The rational behind this analogous formula of the RLA is
that any connection request is subject to independent ad-
mission/rejection decision for each unit of interference that
it generates at each cell. Namely, a connection request is
admitted if all units interference “sub-requests” are admitted
independently at all cells. Under the reservation policy, a unit
interference by a type 2 connection is admitted at cell j if the
total interference at the cell is below Rj . Equality (5) gives
the blocking probability of a (full) type m connection request
at cell i, provided that each cell j admits a unit interference
with probability 1− b(m)

j . In view of the exact analysis of the
isolated cell, equalities (6) and (7) are consistency conditions
that should be satisfied by the probabilities {b(m)

j : j ∈ N}.

III. IMPLIED COST

Subjecting a given cell to an additional unit of interference
affects blocking at all the cells in the network, at various
extents. For example, during the holding time of a connection,
the interference generated by that connection can cause rejec-
tion of new connections arriving at neighboring cells, which
may in turn open up room for admitting new connections in
other cells. Here the concept of implied cost that captures such
effects of acceptance/rejection decisions is discussed.

A. Isolated Cell

Consider the isolated cell example and let σR(n) denote
the reduction in the long-term revenue rate if the system is

started with n+1 instead of n connections. Hence, σR(n) can
be interpreted as the implied cost of admitting a connection
when the cell occupancy is n. A reservation parameter R is
optimal if it dictates admission of a type m connection when
r(m) > σR(n), i.e., when the immediate reward exceeds the
implied cost of admission.

The quantity σR(n) is explicitly identified in [14] for the
isolated cell where for 0 ≤ n < R:

σR(n) =
r(1)λ(1)B(1)(λ, κ, R) + r(2)λ(2)B(2)(λ, κ, R)

(λ(1) + λ(2))B(1)(λ, n, n)
(8)

and for R ≤ n ≤ κ:

σR(n) =
r(1)λ(1)B(1)(λ, κ, R)

λ(1)B(1)(λ, n, R)

+
r(2)λ(2)

(

B(2)(λ, κ, R)−B(2)(λ, n, R)
)

λ(1)B(1)(λ, n, R)
.(9)

Now let

π(1)
o (n) =

{ πλ(n)
∑κ−1

i=0
πλ(i)

if 0 ≤ n ≤ κ− 1

0 otherwise
(10)

denote the system occupancy distribution seen by an admitted
type 1 connection. Also let

π(2)
o (n) =

{ πλ(n)
∑R−1

i=0
πλ(i)

if 0 ≤ n ≤ R− 1

0 otherwise
(11)

be the same distribution seen by an admitted type 2 connection.
The average implied cost c(m) of admitting a connection of
type m can be obtained by averaging σR(n) over the system
occupancy distribution; i.e.,

c(m) =
κ−1
∑

n=0

π(m)
o (n)σR(n), m = 1, 2. (12)

In the following theorem, we compute the average implied
cost in an isolated cell based on formula (12). In particular,

Theorem III.1. (Average Implied Cost in an Isolated Cell):
For m = 1, 2

c(m) =
(

1−B(m)(λ, κ, R)
)−1 ∑

k=1,2

r(k)λ(k) ∂B(k)(λ, κ, R)
∂λ(m) .

(13)

Proof: The proof of the theorem follows from using the
expressions (8,9,10,11) in formula (12).

In view of Theorem III.1, the average implied cost in an
isolated cell can be exactly and directly computed. However,
it will be important in the subsequent discussion of general
topologies to consider an insightful form of (13). Namely,
associate with each type m a flow of fictitious connection
requests with rate λ̂(m) and reward per connection r̂(m) such
that λ̂(m) = r̂(m) = 0. Thus, the long-term revenue rate as
given by (2) remains unchanged. Furthermore, the average
implied cost in an isolated cell can be readily written in the



equivalent form

c(m) = −
(

1−B(m)(λ, κ, R)
)−1 d

dλ̂(m)
W (R). (14)

B. General Topologies

An extension of Theorem III.1 to general topologies can be
pursued under the RLA. Namely, each blocking probability
B(m)

j is approximated by the quantity B̂(m)
j as given in

expressions (5,6,7). In this case, the long-term revenue rate (2)
can be approximated by

Ŵ (R) .=
∑

j∈N

∑

m=1,2

r(m)λ(m)
j (1− B̂(m)

j ), (15)

by replacing B(m)
j with B̂(m)

j . The definition of fictitious flows
can be extended to the present context so that for any cell i,
the fictitious flow of type m is such that λ̂(m)

i = r̂(m)
i = 0,

wii = 1, and wij = 0 for i 6= j. Expression (15) can be used
as a proxy to W (R) and, by mimicking (14), the average
implied cost of type m connections at cell j is defined as

c(m)
j

.= −(1− B̂(m)
j )−1 d

dλ̂(m)
j

Ŵ (R).

Proofs of Theorem III.2 and Theorem III.3 below follow
the broad lines of [11, Theorem 2.2 and Theorem 2.3],
respectively, yet the theorems here amount to a nontrivial
extension of the analysis of [11] to those cases where the
parameters wij ’s are not restricted to values taken from the
set {0, 1}.

Theorem III.2. : For m = 1, 2 and j ∈ N

c(m)
j = (1 − b(m)

j )−1
∑

k=1,2

∂B(k)(ρj , κj, Rj)

∂ρ(m)
j

×

∑

i∈N

ρ(k)
ij



r(k) − (wij − 1)c(k)
j −

∑

l∈N−j

wilc
(k)
l



 ,

(16)

where

ρ(k)
ij = (1− b(k)

j )−1wijλ
(k)
i

∏

l∈N

(1− b(k)
l )wil . (17)

In Theorem III.2, ρ(k)
ij represents the intensity of type k

interference from cell i to cell j, after being thinned at other
cells in the network. The total arrival rate of interference to
cell j in (7) can be verified to satisfy ρ(k)

j =
∑

i∈N ρ(k)
ij .

Note that the relation (16) is linear in the implied costs; hence
{c(k)

j : k = 1, 2, j ∈ N} can be computed via matrix inversion
methods.

Now for each cell j and a given function H(R), let ∆−
j H

denote the left derivative of H(R) in the jth entry. That is,
∆−

j H(R) is the amount by which H(R) increases when the
Rj is decreased by 1

∆−
j H = H |Rj −H |Rj−1. (18)

Also let ∆+
j H denote the right derivative

∆+
j H = H |Rj+1 −H |Rj . (19)

The following theorem identifies the sensitivity of Ŵ (R) to
individual reservation parameter values in terms of the average
implied costs. The theorem forms the basis of the adaptive
admission control algorithms studied in the next section.

Theorem III.3. : For j ∈ N ,

∆±
j Ŵ (R) =

∑

k=1,2

∆±
j B(k)(ρj , κj , Rj)

∑

i∈N

ρ(k)
ij ×



r(k) − (wij − 1)c(k)
j −

∑

l∈N−j

wilc
(k)
l



 .

(20)

IV. REVENUE MAXIMIZATION VIA ADAPTIVE

RESERVATION

A guiding principle for revenue maximization involves
updating the reservation parameters to improve Ŵ (R) based
on the increments/decrements ∆±

j Ŵ (R). A straightforward
implementation of this principle may have two pitfalls:

1) Unimodality of Ŵ (R) cannot be guaranteed in light of
the generality of considered topologies; hence classical
techniques based on steepest ascent may lead to local
maxima of Ŵ (R).

2) Computation of ∆±
j Ŵ (R) needs to be local for the

maximization procedure to scale gracefully to large
networks.

In this section, the first issue is addressed by resorting to
algorithms based on simulated annealing; a generic method for
global optimization and widely used in problems that involve
discrete state spaces [15]. The second issue is addressed by
exploiting expressions (16) and (20) which are of particular
interest from the standpoint of distributed implementation.

Note the local properties of both expressions: Apart from
the numbers b(m)

j ’s and c(m)
j ’s, the rest of the quantities can

be either measured or computed locally at the base stations.
Note that quantities such as the intensity of interference ρ(m)

ij ,
practically, cannot be measured by the base station of cell j.
However, if each cell i passes the quantity λ(m)

i
∏

l∈N (1 −
b(m)
l )wil to its neighboring cells; i.e., cells that are affected by

interference from that cell, then cell j will be able to compute
ρ(m)

ij based on formula (17). Now given that interference is
practically effective around a local neighborhood of the cell,
any suggested message passing technique will be localized
around the cell, perhaps across the first and second tiers of
neighboring cells.

Still, computing the quantities ∆±
j Ŵ (R) by each cell

requires obtaining first b(m)
j by solving the system of fixed

point equations (6), and second the corresponding implied cost
values c(m)

j that solve the system (16). Thus, given a vector
x = (x(m)

j : m = 1, 2; j ∈ N), define first the following



linear mapping using formula (6)

f (m) : R2|N | → R|N |, f (m) = (f (m)
1 , f (m)

2 , · · · , f (m)
|N | ), (21)

where

f (m)
j (x) .= B(m) (

ρj(x), κj , Rj
)

, j ∈ N.

Here ρj(x) = (ρ(1)
j (x), ρ(2)

j (x)) is defined as in (7) so that

ρ(m)
j (x) .= (1 − x(m)

j )−1
∑

i∈N

wijλ
(m)
i

∏

l∈N

(1 − x(m)
l )wil .

Define also the mapping

g(m) : R2|N | → R|N |, g(m) = (g(m)
1 , g(m)

2 , · · · , g(m)
|N | ), (22)

based on formula (16). Namely, for a given vector y = (y(m)
j :

m = 1, 2; j ∈ N),

g(m)
j (y) .=(1− b(m)

j )−1
∑

k=1,2

∂B(k)(ρj , κj , Rj)

∂ρ(m)
j

×

∑

i∈N

ρ(k)
ij



r(k) − (wij − 1)y(k)
j −

∑

l∈N−j

wily
(k)
l



.

Note that {b(m)
j : m = 1, 2; j ∈ N} and {c(m)

j : m =
1, 2; j ∈ N} are fixed points of the mappings (f (1), f (2)),
and (g(1), g(2)), respectively. Repeated substitution can be
employed here to compute the fixed points, starting with
arbitrary initial values. Each cell can iterate based on local
measurements and passed messages. We suggest the iterations
to be performed on different time scales so that the map-
ping (21) iterates faster and hence the numbers {b(m)

j : m =
1, 2; j ∈ N} can be obtained before an iteration is triggered
for the mapping (22). Note that the mapping (21) requires
also the knowledge of the implied costs, c(k)

l , estimated
on the neighboring cells. This can be achieved by letting
each cell periodically broadcast its implied cost value to its
neighboring cells. This way, each cell j can therefore estimate
the quantities ∆±

j Ŵ (R).

Distributed Simulated Annealing:

Now let each cell j update its reservation parameter Rj

at rate γj . In particular, for a given Rj define the set of
neighboring states {Rj − 1, Rj + 1 : 0 ≤ Rj ± 1 ≤ κj}.
When an internal clock ticks, the cell chooses a neighboring
state R′

j according to a certain probability distribution. The
cell then computes the corresponding value ∆±

j Ŵ (R) based
on the conventions in (18) and (19); that is, it computes

∆−
j Ŵ (R) if R′

j = Rj − 1 case (1)
∆+

j Ŵ (R) if R′
j = Rj + 1 case (2).

The cell adopts R′
j as a new reservation parameter if

∆−
j Ŵ (R) < 0 in case (1) or if ∆+

j Ŵ (R) > 0 in case (2).
If neither of these conditions holds, then R′

j is adopted with

probability exp
(

−∆−

j Ŵ (R)
sj t

)

, or exp
(

∆+
j Ŵ (R)

sj t

)

, based on

Distributed Simulated Annealing Algorithm

1. Initialize Rjstart
2. Rj ← Rjstart
3. With rate γj

3.1 Choose a neighboring state R′
j ∈ {Rj − 1, Rj + 1}

with probability pj

3.2 If R′
j = Rj − 1

3.2.1 If min {1, exp
(

−∆−

j W (R)
sjt

)

} > random[0, 1)

Rj ← R′
j

3.3 If R′ = Rj + 1

3.3.1 If min {1, exp
(

∆+
j W (R)

sjt

)

} > random[0, 1)

Rj ← R′
j

3.4 t← t + 1.

the case. Here, sjt represents a time decreasing temperature
schedule at the cell such that sjt goes to 0 as time t → ∞.
This way algorithm avoids local maxima of the function
Ŵ (.). A pseudo-code for the distributed algorithm is given
as follows:

The algorithm can be seen as a distributed version of
the simulated annealing algorithm. It can adapt to traffic
fluctuations due to the time-of-day use of the network. In
particular, when traffic rate changes at a certain cell, it triggers
new values for the mappings (21) and (22), and then cells
update their reservation parameters according to the algorithm.
Thus, in effect, there are three separated time scales that
govern network computations, listed as follows from smaller
to larger:

1) Time scale 1: Cells compute {b(m)
j : m = 1, 2; j ∈ N}

2) Time scale 2: Cells compute {c(m)
j : m = 1, 2; j ∈ N}

3) Time scale 3: Cells update their reservation parameters
{Rj : j ∈ N}.

V. NUMERICAL EXAMPLE

In this section, we give a numerical example for applying
the proposed algorithm and show its adaptivity to fluctuations
in traffic rates. In particular, consider a 7-cell lattice topology
with a graph representation shown in Figure 2. Assume that an
established connection at a given cell generates interference in
that cell and every other cell that it shares a boundary with.
Thus, interference between cells that share no boundary will be
neglected. The example is based on a wideband system with
the following parameters: channel bandwidth = 1.25 MHz,
data rate = 64.4 kbps, activity factor = 0.4, and path loss
exponent = 4.0. We compute wij and κi using the approach
detailed in [13] with mobile terminals taken to be uniformly
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Fig. 2. Network graph of a 7-cell hexagonal lattice topology used for the
numerical example of section V.

distributed in the cells. Namely, we obtain:
{

wii = 15.0
wij = 1.0 if i and j are neighbors,

and κi = 54.0 for all i.
Now assume that the license holder opens cell 1 for type 2

traffic; i.e., λ(2)
i = 0 for i = 2, · · · , 7. Let r(1) and r(2)

be 1.0 and 0.75, respectively. Assume also that each cell
updates its reservation parameter using a Poisson clock with
rate γi = 1.0. Once the clock ticks, the cell chooses a
neighboring state R′

i = Ri ± 1 with probability 0.5. The
cell then computes ∆+Ŵj(R), or ∆−Ŵj(R), and updates
its reservation parameter if necessary. To obtain values of
∆±Ŵj(R), we first solve equations (6) and (16) iteratively
via repeated substitution. In this experiment, we do not use a
temperature schedule at the cells as it is not the purpose of
the example to verify local maxima avoidance techniques.

Figure 3(a) shows the trajectories of updating the reservation
parameters at the different cells. For the first 1000 steps, λ(1)

i

for i = 1, · · · , 7 are taken to be 1.0 and λ(2)
1 is 5.0. The

algorithm starts with each cell having a reservation parameter
Ri = 25. As each cell updates its parameter according to
its own Poisson clock rate, the cells converge to the value
R∗

i = 52 for all i. In the second part of the experiment, we
change the traffic rates so that for the rest of the experiment
λ(1)

i = 1.5 for all i and λ(2)
1 = 4.0. The result shows that all

the cells adapt their reservation parameters and converge fast
to the values R∗

1 = 51 and R∗
i = 50 for i = 2, · · · , 7.

Figure 3(b) shows the rate of revenue from the network
at the different time steps of implementing the algorithm.
For the first 1000 steps and while λ(2)

1 = 1.0, the revenue
rate increases gracefully to the value 8.11. When traffic rates
change, the algorithm adapts and the revenue improves and
converges to the new value 10.99.

Verifying optimality of algorithm performance requires an
exhaustive search over all the possible reservation parameters.
This task is computationally intense. However, the previous
results show that the achieved polices are symmetric and have

at most two distinct reservation parameter values; one for cell 1
and one for cells 2 − 7. In this context, we limit our search
to a sub-domain that covers all reservation parameter vectors
R which have at most two distinct entry values. For each set
of parameters, we compute revenue rate under the RLA. The
maximum rate is found to be 8.11, achieved at the same set of
parameters obtained by the algorithm. In the same manner, the
results of the second part of the experiment have been verified.

VI. CONCLUSION

In this paper, we have considered an admission control
problem for wireless cellular networks under the objective of
revenue maximization. The problem involved service measures
which favor primary users by reserving part of the capacity
of each cell for their exclusive use. We have developed an
analytical framework that captures the average implied cost of
establishing a connection in the network. An important value
of this work lies in the fact that it develops concepts from
wireline to wireless telephony and proves their usefulness. We
have used simplified reasoning in explaining these concepts
and making them appeal to readers who are more interested
in the practical side of the problem. In this respect, and starting
with an isolated cell, we have exactly and explicitly charac-
terized the average implied cost of establishing a connection
by using notions from dynamic programming. An extension
of this result to general topologies has been pursued under
the reduced load approximation and led to guiding principles
for updating reservation parameters at the cells. Given the
complexity of implementing a reservation-based policy in a
centralized fashion, we have suggested a distributed online
algorithm that can be employed at the base stations and can
adapt to fluctuations in traffic rates.
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