
1

Asymptotically Optimal Data Dissemination in
Multi-Channel Wireless Sensor Networks:

Single Radios Suffice
David Starobinski∗ Weiyao Xiao∗

∗ Department of Electrical and Computer Engineering
Boston University, Boston, MA 02215

Email:{staro,weiyao}@bu.edu

Abstract—We analyze the performance limits of data dissem-
ination with multi-channel, single radio sensors under random
packet loss. We formulate the problem of minimizing the average
delay of data dissemination as a stochastic shortest path problem
and show that, for an arbitrary topology network, an optimal
control policy can be found in a finite number of steps, using value
iteration or Dijkstra’s algorithm. However, the computational
complexity of this solution is generally prohibitive. We thus focus
on two special classes of network topologies of practical interest,
namely single-hop clusters and multi-hop cluster chains. For
these topologies, we derive the structure of policies that achieve
an asymptotically optimal average delay, in networks with large
number of nodes. Our analysis reveals that a single radio in each
node suffices to achieve performance gain directly proportional
to the total number of channels available. Through simulation,
we show that the derived policies perform close to optimal even
for networks with small and moderate numbers of nodes and
can be implemented with limited overhead.

Index Terms—Broadcast, Over-the-Air Programming, Delay
Minimization, Scheduling, Stochastic Shortest Path, Extreme
Value Theory.

I. INTRODUCTION

Recent technological improvements in micro-electro-
mechanical systems (MEMS) have made the deployment of
large scale wireless sensor networks a reality. Wireless sensor
networks usually consist of many small size, inexpensive,
distributed sensor nodes. These sensor nodes are able to sense,
compute and communicate wirelessly.

A wide variety of fundamental sensor networking services,
such as routing and over-the-air programming, rely upon
efficient data dissemination [2]–[4]. However, since sensor
networks tend to be dense, data dissemination without careful
management can easily cause significant problems, such as
the well-known “broadcast storm” [5] problem. Moreover,
traditional sensor limitations (e.g., limited battery life and
memory) joined with the complications of the wireless sensor
broadcast channel (e.g., lossy channel, narrow bands, and
energy-expensive communication) make it extremely difficult
to implement efficient dissemination algorithms.

Fortunately, wireless sensor radios currently on the market
do enjoy at least one currently under-utilized feature: they
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are able to communicate on any one of multiple (narrow)
channels [6]–[10]. Thus, for example, MICA2 sensor motes
operating in the 900 Mhz range can communicate on any one
of more than 25 non-overlapping channels. Ideally, network
traffic would be evenly split onto all the channels available,
leading to a drastic improvement in the efficiency and scala-
bility of data dissemination in sensor networks.

The main challenge, however, is that sensor nodes are
equipped with a single radio interface and, thus, can operate
on only one of these channels at a time. The main effort of
this work is to demonstrate, through theoretical analysis and
simulation, that the multi-channel transceiving capability of
sensor motes can nevertheless be exploited for major efficiency
gains.

Specifically, we propose a theoretical framework to evaluate
the performance limits of data dissemination with multi-
channel, single radio sensors, using expected delay (com-
pletion time) with respect to the probability distribution of
packet loss as the primary optimization metric. Within this
framework, we show how to model the problem of data
dissemination as an instance of the stochastic shortest path
problem [11]. This framework permits us to find an optimal
dissemination policy for an arbitrary topology in a finite
amount of time using value iteration or Dijkstra’s algorithm.
However, the computational complexity for deriving the opti-
mal policy is generally prohibitive as it grows exponentially
with the system parameters.

The optimal solutions are typically very complicated and
nonintuitive. As such, we focus on two specific classes of
topologies of practical interest: single-hop clusters and multi-
hop cluster chains [12], [13]. For large size networks with
these topologies, we derive the structure of policies that exhibit
asymptotically optimal expected delay, in networks with large
number of nodes. These policies make use of a round robin
strategy applied both at the packet and channel levels. We,
thus, refer to them as packet-channel round robin (PCRR)
policies. One of our main theoretical contributions is to show
that, with C channels available, the expected delay achieved
with PCRR approaches a value that is C times smaller than
the optimal expected delay with a single channel policy.
Thus, a single radio interface in each node suffices to achieve
performance gain proportional to the total number of channels
available. Our results are validated by simulation, showing
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that PCRR policies are nearly optimal even for small and
moderately-sized networks.

Our work provides a first step in rigorously characterizing
the performance limits of multi-channel, single radio wire-
less sensor networks. Although control overhead and channel
switching latencies are not explicitly captured in the theoretical
model, we show that the PCRR policy is implementable in
practice and propose a protocol design to this effect. We
evaluate the performance of the protocol with TOSSIM, a bit-
level simulator designed specifically for TinyOS-based sensor
networks [14]. The simulations show that as few as two
channels suffice for PCRR to widely outperform a baseline
data dissemination protocol operating on a single channel.

The rest of this paper is organized as follows. In Section II,
we describe work related to our research. In Section III,
we first present our model. Next, we formalize our opti-
mization problem, analyze its computational complexity, and
show how it can (theoretically) be solved in finite time. In
Section IV, we analyze the problem of data dissemination
in single cluster topologies. We introduce the PCRR policy
and prove its asymptotical optimality in networks with large
number of nodes. In Section V, we generalize our results
to multi-hop cluster chains topologies. Numerical results are
presented in Section VI. We describe and evaluate a practical
implementation of the PCRR policy in Section VII and provide
concluding remarks in Section VIII.

II. RELATED WORK

Data dissemination has many applications in wireless sensor
networks. Over-the-Air Programming (OAP) is one of the
most important. Considerable research has been conducted
on designing low-delay OAP protocols for disseminating a
new program to an entire network, see, e.g., Deluge [2] and
MNP [4]. These protocols, however, communicate only over
a single channel. Recently, a number of contributions have
suggested to exploit the multi-channel resources available in
sensor nodes to speed-up OAP [6]–[8]. However, none of them
provide any form of theoretical guarantees on the completion
time of data dissemination.

Several MAC and routing protocols for wireless nodes
equipped with multi-channel single radios have been proposed
in the literature, e.g., in [15]–[19]. However they are not
directly applicable to our setting because they focus on unicast
communication and do not aim at minimizing the completion
time of data dissemination.

The work in [20] analyzes the delay performance of a
multi-channel MAC protocol in a point-to-multipoint wireless
network. Contrary to our setting, this paper assumes that
the base station can communicate over multiple channels
simultaneously and that each channel is used for unicast
communication.

Reference [21] conducts an analysis on the capacity of
multi-channel wireless networks. The paper studies how the
number of radios and channels available in each node affects
the capacity of the network. Our work, on the other hand,
focuses on the delay performance of broadcasting data packets
from one or a few sources to the whole network using multi-
channel single radio nodes.

A number of papers have studied the problem of optimizing
multi-channel broadcast schedules in single-hop networks, see,
e.g., [22], [23]. The model considered in these papers is dif-
ferent from ours. It assumes that clients continuously request
items stored at the base station. The goal is to determine the
optimal schedule of transmissions by the base station, based
on the degree of popularity of the items, such that the average
access time (i.e., the time between a request and its response)
is minimized.

The problem of minimizing the delay of file dissemination
in single chain and multi-chain wireless network topologies is
considered in [24]. The multi-hop model of that paper differs
from ours because it assume that links are lossless and that
only one node is present at each hop. That said, the scheduling
policies of [24] form the basis of the first stage of the multi-
hop PCRR policy described in Section V and in the Appendix.

Reference [25] analyzes the benefit of exploiting multi-
channel communication for reliable multicast in wireline net-
works. The paper derives a numerical expression for the ex-
pected number of transmissions needed for all the receivers to
receive a single packet correctly. In our paper, we consider the
case where several packets must be received by all the nodes
and provide explicit, analytical expressions on the expected
delay, when the number of receivers is large.

Round-robin policies resembling the PCRR policy have
been studied in high-speed and optical networks [26]–[29].
One of the main contributions of our work is to provide
stochastic bounds on the delay performance of the PCRR
policy and prove its asymptotical optimality within the context
of data dissemination in sensor networks.

III. MODEL AND PROBLEM FORMULATION

A. Model

We consider the problem of disseminating a file consisting
of M packets from a set of S sources (e.g., base stations) to
N nodes in an arbitrary topology network, with C orthogonal
channels available for communication. Each source has a copy
of the entire file. The time axis is slotted and each packet
transmission takes one time slot. Each node is equipped with
a single, half-duplex radio. Thus, during a time slot, a node
can either transmit or receive (but not both) on one of the C
channels. To simplify exposition, we assume that packets do
not need to be received in order at the various nodes for a file
to be properly reconstructed although our results hold without
this assumption (see discussion at the end of Section IV). Note
that several data dissemination protocols in wireless sensor
networks, such as Deluge [2], do not require that packets be
received in order.

At each time slot, a control (action) u specifies for each
node whether it transmits or not and the channel to which
it tunes. Packets are not only transmitted by sources but
possibly also by other nodes that have received some of the
packets and serve as relays. Communications take place over
a wireless broadcast channel, whose losses are independent
and identically distributed at each time slot. As such, we can
associate a probability pij(u) of a packet transmission from
node i to j being corrupted; this probability is a function
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of the control u because the packet loss is dependent on all
simultaneous transmissions on the same channel.

Finally, we will denote by T the random variable repre-
senting the time (delay) until all nodes receive all packets.
Our goal is thus to determine a control policy that minimizes
the expected value of T (denoted T̄ ).

B. Problem Formulation for General Networks

We next formalize our optimization problem and provide
a computational methodology to solve it by casting it as a
stochastic shortest path (SSP) problem [11]. In our specific
case, this problem can be solved deterministically in bounded
time using value iteration or Dijkstra’s algorithm [30].

a) SSP problem: The SSP problem is a generalization of
the deterministic shortest path problem in a graph. Specifically,
in the stochastic version, a path from a source to destination is
determined probabilistically, meaning that one may transition
from a vertex to any other vertex according to a given
distribution (which, in turn, is determined by a chosen control).
Each vertex corresponds to a different state. The shortest
path, in this context, corresponds to the choice of controls
at each vertex that minimize the expected cost to a given
destination (or termination state in the literature). Clearly, the
deterministic version of the problem thus corresponds to a case
in which, controls from any given vertex assign a probability
1 for reaching some vertex and 0 for reaching all others.

b) Formulation: In our case, we build a graph of |V | =
2NM vertices, each of which correspond to an N ×M binary
matrix representing a possible configuration of the network in
the middle of a data dissemination process. Specifically, the
(n,m)-th entry of any such matrix is 1 if and only if node n
has received packet m in the corresponding configuration. For
simplicity, we order the states so that the initial state i = 1
and last state i = |V | correspond to the all zero and all one
matrices respectively.

To complete the model, we assume a set of possible controls
U(i) for each state i, and define a corresponding transition
probability qij(u) corresponding to the probability of reaching
state j from state i if transmissions are enacted according to
control u ∈ U(i). Our goal is then to determine an optimal
control π(i) ∈ U(i) at every state so as to minimize the
expected delay from state 1 to the termination state |V |. The
optimal control policy π is guaranteed to be stationary because
the channel is assumed to be i.i.d.

c) Solution: We use the random variable T ∗DP (i) to
denote the time to reach the termination state starting from
state i, using the optimal policy. Its expected value, T̄ ∗DP (i),
is solved using dynamic programming. One of the main results
for the SSP problem is that it has a unique solution satisfying
Bellman’s equations [11], [31]:

T̄ ∗DP (i) = min
u∈U(i)


1 +

|V |∑

j=1

qij(u)T̄ ∗DP (j)


 , i = 1, . . . , |V |.

(1)
For each state i, the optimal control π(i) corresponds to the

argument that achieves the minimum in the right-hand side of
Eq. 1. To simplify notation, we will use T̄ ∗ to represent the

optimal expected delay starting from initial state 1. Traditional
approaches to this solution include value iteration, the most
commonly used approach that generally requires an infinite
number of iterations for convergence, and policy iteration,
which is more computationally expensive at each step but
terminates in finite time [11].

The special structure of our problem allows for an especially
efficient value iteration solution satisfying (1). Specifically,
our graph has acyclic transition probabilities, in that a path
can never visit the same state twice, except for self-transitions
(which can be eliminated [11, Vol. 2: p. 97]); this is because
nodes cannot lose packets that they correctly received and
decoded. As such, value iteration is guaranteed to converge
within |V | iterations, where V is the state space. Since each
iteration involves |V |2|U | operations, where |U | is the size of
the control space, the optimal solution can be computed with at
most |V |3|U | operations. The following theorem summarizes
this result.

Theorem 1: The optimal dissemination of an M -packet file
to a network with N nodes, S sources, and C channels
can be computed using value iteration with at most |V |3|U |
operations, where |V | = 2NM and |U | = 2(N+S)C .

We further note that the optimal policy must be consistently
improving, meaning that

qij(π(i)) > 0 ⇒ T̄ ∗DP (i) > T̄ ∗DP (j).

We can then use Dijkstra’s algorithm or any label-based
shortest path algorithms to compute the optimal policy and
optimal expected delays [11, Vol. 2: p. 135]. However, the
worst-case computational complexity of the problem remains
the same as stated by Theorem 1.

C. Problem Formulation for Single Clusters and Cluster
Chains

As discussed above, in general, the derivation of an optimal
policy for our problem is computationally prohibitive for
large numbers of nodes, packets, or channels. As such, the
remainder of this work focuses on analytical approaches for
some specific topologies of practical interest, such as single-
hop clusters and (multi-hop) cluster chains. Even in such cases,
the optimal policies can be quite involved, but we are able to
derive asymptotically optimal policies, as N →∞.

1) Single Clusters: In this model, the network consists of a
a single-hop topology (shown in Figure 1), where every node
is within one-hop communication range of every other node.
On each channel, to avoid packets collision, only one node
can transmit (broadcast) in each time slot. For each receiver,
the packet loss probability is p, independently of any other
events (e.g., reception of the packet by other nodes).

2) Cluster Chains: This model corresponds to a collection
of clusters organized along W chains (see Figure 2). It is
a special case of tree structure, where each cluster has at
most one child cluster. Similar topologies have previously
been considered in the literature. For instance, the PEGASIS
protocol [13] arranges sensor nodes along a chain to achieve
energy-efficient data aggregation in a sensor network.

We index the chains using the variable w, where 1 ≤ w ≤
W . We use the tuple (w, d) to refer to a cluster along the
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Source: Has a full copy of the file from the beginning

Node: Can become source after receiving packets

Fig. 1. Single cluster topology.

D

(0,0)

...

… …… ...

(1,1) (W,1)

(1,D) (2,D) (W,D)

Source: Has a full copy of the file from the beginning

Node: Can become source after receiving packets

Fig. 2. Cluster chains topology.

w-th chain that is d hops away from the root cluster (0, 0).
Define D(w) to be the length (in terms of number of hops)
of chain w and D = max1≤w≤W D(w) be the length of the
longest chain. For the purpose of our asymptotic analysis, we
assume that the number of nodes in each cluster (w, d) scales
linearly with the total number of nodes in the network, i.e.,
Nwd = αwdN , where

∑W
w=1

∑D
d=1 αwd = 1. Note that if

d > D(w) then, by definition, αwd = 0.
We assume that the root cluster contains one or more

sources. All other clusters may or may not contain sources.
The total number of sources is S. A node in a cluster can
communicate directly with all the other nodes in the same
cluster as well as with nodes belonging to a direct parent or
child cluster. We assume a 2-hop interference model. Thus,
if a node transmits on a certain channel, then all the nodes
belonging to any ancestor or descendant clusters within a
distance of two hops and operating on the same channel must
remain quiet to avoid packet collision. We also assume that
clusters belonging to different chains do not interfere with
each other. As earlier, the packet loss probability is fixed
to p for each pair of source and destination. In this paper,
we do not enter into detail on how to decompose a network
into clusters. We refer the interested reader to [32]–[34] for
possible approaches.

IV. ANALYSIS OF SINGLE CLUSTERS

In this section, we analyze the single cluster model de-
scribed in Section III-C. We first consider the single channel
case. We determine optimal policy and derive tight bounds
on the optimal expected delay. We then consider the multi-
channel case. We first derive a lower bound on the optimal
expected delay and then determine a policy that is asymp-
totically optimal as N → ∞, while keeping all the other

parameters constant. These results are first proven for the
case when the number of sources is larger or equal to the
number of channels, i.e., S ≥ C, and then extended to the case
S < C. In the following, we denote by T ∗N (C) the random
variable representing the completion time using the optimal
policy in a cluster of N nodes with C channels available for
communication. Our model implicitly assumes the existence
of a control channel through which a source is notified when
all the receivers have received a given packet. The impact of
this control overhead is evaluated in VII, where we describe a
practical protocol implementation of the PCRR policy together
with TOSSIM simulations.

Before proceeding with the analysis, we first recall two
standard asymptotic notations that will be used to characterize
the asymptotic growth of the expected delay [30]:
• Θ-notation: For two given functions f(n) and g(n), we

say that f(n) = Θ(g(n)) if there exist positive constants
c1, c2, and n0 such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)
for all n ≥ n0.

• o-notation: For given functions f(n) and g(n), we say
that f(n) = o(g(n)) if for any positive constant ε there
exists a constant n0(ε) such that 0 ≤ f(n) < εg(n) for
all n ≥ n0(ε).

A. Single Channel

With a single channel, only one source can transmit in any
time slot. Denote by Tm

n the number of slots needed for user
n to receive packet m. Under the assumption of a packet
dropping probability p, Tm

n has a geometric distribution with
mean 1/(1− p). Thus, because of the broadcast nature of the
channel, the number of slots needed for all the users to receive
packet m is Tm = maxn=1,...,N Tm

n . The minimum number
of time slots to complete the transmission of all the packets
is thus T ∗N (1) =

∑M
m=1 Tm. The order in which the source

transmits the packets is arbitrary. Thus, any transmission
policy in which, in each time slot, the source transmits a
packet needed by at least one of the N nodes in the network
is optimal.

We next provide an asymptotic expression for the optimal
expected delay in the case where only a single channel is
available.

Proposition 1: Consider a single cluster topology with C =
1 channel. Then, as N →∞,

T̄ ∗N (1) = Mλ−1 log(N) + Θ(1),

where λ = log(1/p).
Proof: For the random variables Tm

n , we have Pr{Tm
n =

i} = pi−1(1 − p) and Pr{Tm
n ≥ i} =

∑∞
j=i pj−1(1 − p) =

pi−1, i ≥ 1. Consider an equivalent continuous random vari-
able Xm

n , where Xm
n has the pdf fXm

n
(x) =

∑∞
i=1 pi−1(1 −

p)δ(x− i), where δ(x) is the Dirac’s delta function. The ccdf
of Xm

n is F̄Xm
n

(x) = pbxc, for x ≥ 0.
We now define the random variables Y m

n and Zm
n = Y m

n +1
where F̄Y m

n
(x) = px and F̄Zm

n
(x) = min(1, px−1). We

note that Y m
n are independent exponential random variables

with parameter λ = log( 1
p ). Clearly, we have F̄Y m

n
(x) ≤

F̄Xm
n

(x) ≤ F̄Zm
n

(x). Therefore, Y m
n ≤st Xm

n ≤st Zm
n , where
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the notation Y ≤st X means that the random variable Y is
stochastically smaller than the random variable X [35, p. 404].
Using properties of stochastic ordering, we then obtain

E max
n=1,...,N

Y m
n ≤ E max

n=1,...,N
Xm

n ≤ E max
n=1,...,N

Zm
n . (2)

Since Y m
n are independent exponential random variables,

from [36, p. 73], we have

E max
n=1,...,N

Y m
n =

N∑
n=1

1
nλ

. (3)

Using known bounds on the harmonic sum [37], as N →∞,
we have,

N∑
n=1

1
n
≤ log(N) +

1
2N

+ γ (4)

and
N∑

n=1

1
n
≥ log(N) +

1
2(N + 1)

+ γ, (5)

where γ ≈ 0.577215 is the Euler’s constant.
Since Zm

n = Y m
n + 1, from Eqs. (2), (4) and (5), we obtain

E max
n=1,...,N

Xm
n = λ−1 log(N) + Θ(1). (6)

Since ETm = Emaxn=1,...,N Xm
n , we deduce from Eq. (6)

T̄ ∗N (1) = METm

= Mλ−1 log(N) + MΘ(1) (7)
= Mλ−1 log(N) + Θ(1). (8)

The transition from Eq. (7) to Eq. (8) is justified by the fact
that M = Θ(1), since M is kept constant while N →∞. ¥

B. Multiple Channels

We now address the case where C > 1. In general, the
structure of the optimal policy appears to be quite intricate.
One exception is the unconstrained channel case, that is,
C ≥ M , in which a distinct channel can be dedicated to the
transmission of each packet. Note that when the number of
channels C is greater or equal to the number of packets M ,
then T ∗N (C) = T ∗N (M).

We will exploit the results obtained for the single channel
and unconstrained channel cases to provide bounds on the
optimal expected delay for the case 1 < C < M . Using these
bounds, we will show that, as N → ∞, a simple schedul-
ing policy, called Packet-Channel Round-Robin, achieves an
asymptotically optimal expected delay. The results in this
section are first derived for the case when the number of
sources is larger or equal to the number of channels, i.e.,
S ≥ C, or S ≥ M in the case where C ≥ M since the
system never needs to use more than M channels. At the end
of the section, we show how they can be easily extended to
the case S < C.

a) Unconstrained channels: Suppose C ≥ M . Then,
a different packet can be continuously transmitted on each
channel, e.g., packet 1 on channel 1, packet 2 on channel 2, etc.

As in the single channel case, the number of slots needed for
user n to receive packet m, denoted by Tm

n , is geometrically
distributed with parameter p. However, this time, as soon as
user n receives packet m, it can switch to another channel
to receive the next packet it needs, and so on until all the
packets are received. The time needed for user n to receive
all the packets is, thus, Tn =

∑M
m=1 Tm

n and the completion
time for all the nodes is T ∗N (M) = maxn=1,...,N Tn. Any
control policy is optimal as long as nodes tune to channels on
which they can receive a new packet.

We next provide an expression for the optimal expected
delay. First we note that being the sum of independent geo-
metric random variables, Tn is a Pascal (or negative binomial)
random variable with parameters p and M . We can then use a
procedure similar to the proof of Theorem 1. We replace Tn

by an equivalent continuous random variable and stochastically
bound it. We then obtain the following result:

Proposition 2: Consider a single cluster topology with C ≥
M channels and S ≥ M sources. Then, as N →∞,

T̄ ∗N (M) = λ−1[log(N) + (M − 1) log log(N)] + Θ(1),

where λ = log(1/p).
Proof: Similar to the proof in Proposition 1, we use

the same random variables Xm
n , Y m

n and Zm
n . Let Xn =∑M

m=1 Xm
n , Yn =

∑M
m=1 Y m

n and Zn =
∑M

m=1 Zm
n . Using

stochastic ordering properties, we have

F̄Yn(x) ≤ F̄Xn(x) ≤ F̄Zn(x).

Therefore, Emaxi=1,...,N Yi ≤ T̄ ∗N (M) ≤
Emaxi=1,...,N Zi. As the sum of M i.i.d. exponential
random variables, Yn is an Erlang random variable. From
extreme value theory results on the convergence in probability
of the maximum of independent Erlang random variables
[38] and result on moments convergence [39], we have, as
N →∞,

E max
i=1,...,N

Yi = λ−1[log(N) + (M − 1) log log(N)] + Θ(1).

Since Emaxi=1,...,N Zi = Emaxi=1,...,N Yi+M , the result
follows. ¥

b) Constrained channels: Assume now C ≤ M . We next
show that, for the optimal control policies, the completion
time with C channels is always stochastically larger than the
completion time in a single channel system running C times
faster.

Theorem 2: Consider a single-hop cluster with C ≤ M
channels. Then T ∗N (C) ≥st

1
C T ∗N (1).

Proof: We prove this result using a sample path argument
(coupling) [35, p. 409]. Consider an arbitrary time slot in
the system with C channels, denoted by SYSC , assuming
packet mi is transmitted in channel i, i = 1, .., C. Denote an
equivalent single channel system by SYS1 evolving over C
time slots. Each event in SYSC is mapped to SYS1 by having
packet mi being sent in time slot i, i = 1, .., C. Since we
have single radio, a node in SYSC can listen on one channel
only, says channel j. In SYS1, the same node listens only
during slot j but is forced not to listen during all the other
slots. Clearly, given the same starting state, SYS1 using C
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1Channel 1

Channel 2

1

3 2 1 3 2 1 3 2
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2 3 5
Time Line

6 7 8 94

Fig. 3. Illustration of the PCRR policy for M = 3 packets and C = 2
channels. The number shown in each block corresponds to the index of the
packet being transmitted.

time slots is equivalent to SYSC using one time slot. The
optimal policy using a single channel will always perform at
least as well as SYS1, since, in practice, nodes are allowed
to listen to packet transmissions in each time slot. Therefore,
CT ∗N (C) ≥st T ∗N (1), and the theorem follows. ¥

We now introduce a simple control policy called Packet-
Channel Round-Robin (PCRR). We will show that this policy
is asymptotically optimal, as N →∞. To explain the policy,
we introduce a few notations. We use the variable c to
index channels, i.e., c = 1, 2 . . . , C, the variable m to index
packets, i.e., m = 1, . . . ,M , and the variable t to index time
slots, i.e., t = 1, 2, . . . , TPCRR. The random variable TPCRR

represents the final time slot, that is, the time slot at which
all the nodes have completed receiving all the packets. The
PCRR transmission policy states that at time slot t, packet
[(C(t − 1) + c − 1) mod (M) + 1] should be transmitted
on channel c. A pseudo-code for the algorithm is shown in
Algorithm 1. An illustration of the policy for the case C = 2
and M = 3 is given in Fig. 3.

The reception policy of PCRR is as follows. At each time
slot, a destination node should select a channel on which
a missing packet is being transmitted. If multiple missing
packets are transmitted concurrently on different channels,
then a node should listen to the channel on which the packet
with the smallest index number is being transmitted.

Algorithm 1 Packet Channel Round Robin: PCRR(M ,C)
Input:

Number of packets need to be disseminated, M ;
Number of channels available, C;

Output:
Completion time, TPCRR;

1: t ← 1;
2: repeat
3: for c = 1 to C do
4: Transmit packet mc(t) on channel c at time t,

where
mc(t) = [(C(t− 1) + c− 1) mod (M) + 1];

5: end for
6: t = t + 1;
7: until all the nodes have received all the packets
8: return TPCRR = t;

We next provide a stochastic relation between the com-
pletion time of the PCRR policy using C channels, denoted
by TPCRR(C), and the completion time in the unconstrained
channel case using the optimal policy, T ∗N (M).

Theorem 3: Consider a single-hop cluster with C ≤ M
channels. Then TPCRR(C) ≤st

M
C T ∗N (M) + 1.

Proof: The proof is again based on a sample path ar-
gument. Consider an unconstrained system with M channels,
denoted by SYSM . Without loss of generality, assume packet i
is always transmitted on channel i and nodes receive packets in
increasing order, namely, a node starts trying to receive packet
(i + 1) only if it has already received packets 1, 2, . . . , i . As
earlier, we use the notation Tn to represent the completion
time of node n.

Denote by SYS′PCRR, a system with C channels im-
plementing the PCRR transmission policy, but with some
additional restrictions on the reception policy of the nodes
as detailed below. Thus, if in SYSM packet i is transmitted
at time t, then in SYS′PCRR, the same packet is transmitted
on channel

(
[(t− 1)M − Cb (t−1)M

C c+ i− 1] mod C + 1
)

at time d (t−1)M+i
C e, i = 1, ..,M , in accordance with the

packet-channel round-robin schedule.
We next describe the reception policy of SYS′PCRR. Con-

sider an arbitrary realization in SYSM and suppose that
node n listens to packet mn(t) during time slot t, where
n = 1, .., N , t = 1, .., Tn, and mn(t) ∈ [1,M ]. In
SYS′PCRR, this event is mapped by having node n listen
to packet mn(t) during time slot d (t−1)M+mn(t)

C e on chan-
nel

(
[(t− 1)M − Cb (t−1)M

C c+ mn(t)− 1] mod C + 1
)

. In
addition, SYS′PCRR prohibits node n to listen to packets
transmissions during other time slots that do not follow this
mapping.

We next prove the feasibility of the above mapping by
showing that each node in SYS′PCRR is required to listen
to at most one packet during every time slot. Suppose in
SYSM , node n listens, respectively, to packet mn(t) and
mn(t+1) at time t and t+1. Correspondingly, in SYS′PCRR,
node n listens to packets mn(t) and mn(t + 1) at time
d (t−1)M+mn(t)

C e and d tM+mn(t+1)
C e, respectively. Since nodes

receive packets in increasing order in SYSM , we know that
mn(t + 1) ≥ mn(t). Furthermore, since C ≤ M , we have
d tM+mn(t+1)

C e > d (t−1)M+mn(t)
C e, which means that node n

is required to listen to at most one packet during any time
slot. Thus, SYS′PCRR using dTM

C e time slots is equivalent to
SYSM using T time slots.

Now consider system SYSPCRR employing the original
PCRR policy without forcing nodes not to listen packets
during certain time slots. We recall that nodes attempt to
receive missing packets in increasing order. Thus, if node n
has not received packet mn(t) by time slot d (t−1)M+mn(t)

C e,
it will listen to the transmission of this packet in that slot,
that is, it behaves the same as it would in SYS′PCRR.
Otherwise, if it did receive packet mn(t) before time slot
d (t−1)M+mn(t)

C e ≤ d tM+mn(t)
C e, then it definitely would have

received all the packets up to packet mn(t) before SYS′PCRR.
Therefore, for any sample path in SYSM completing in T time
slots, SYSPCRR is guaranteed to complete its sample path in
no more than dTM

C e slots and the theorem follows. ¥
We now prove the main result of this section, namely that

the PCRR policy is asymptotically optimal, as N →∞.
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Theorem 4: Consider a single-hop cluster with C ≤ M
channels. Then

lim
N→∞

T̄PCRR(C)
T̄ ∗N (C)

= 1.

Proof: From Theorems 2 and 3, we have

1
C

T ∗N (1) ≤st T ∗N (C) ≤st TPCRR(C) ≤st
M

C
T ∗N (M) + 1.

From stochastic ordering properties, similar inequalities apply
for the expectations of the random variables. Using the results
of Propositions 1 and 2, we thus have

1
C

T̄ ∗N (1) =
M

C
λ−1 log(N) + Θ(1), (9)

and
M

C
T̄ ∗N (M)+1 =

M

C
λ−1[log(N)+(M−1) log log(N)]+Θ(1).

(10)
Therefore

lim
N→∞

M
C T̄ ∗N (M) + 1

1
C T̄ ∗N (1)

= 1,

and the theorem follows. ¥
From Theorem 4, we observe that, as N →∞, the expected

delay using the PCRR policy with C ≤ M channels achieves
a value that is C times smaller than the optimal expected delay
with a single channel. This result holds even though each node
is only equipped with a single radio.

We also note that the performance of the PCRR policy can
be improved by letting it skip the transmissions of packets
already received by all the nodes. We can then easily prove that
PCRR is optimal in the single channel and the unconstrained
channel cases. However, all the results obtained for the PCRR
policy in this section hold without this requirement.

c) The case S < C: We now show that the previous
results apply also to the case S < C. To prove this, let the
control policy consist of two stages. During stage 1, packets
will be sent out in a round-robin fashion over a single channel.
Once at least (C−S) nodes have received all M packets, then
stage 2 starts, during which PCRR is employed. Let the time
the system spends in stage 1 be Ts1(N).

We now show that T̄s1(N) = Θ(1) = o(log(N)). Consider
a policy that selects a priori (C − S) out of N nodes, then
use a single channel policy to transmit the M packets to each
of these nodes. The expected time for these nodes to receive
all packets is T̄ ∗(C−S)(1) = Θ(1). In practice, obviously
T̄s1(N) ≤ T̄ ∗(C−S)(1), thanks to the broadcast property of the
wireless channel. Thus, T̄s1(N) = o(log(N)).

d) In-order packet delivery: The results of this section,
as well as that of Section V, can easily be generalized to the
case where in-order packet delivery is required. For the single
channel case, Proposition 1 continues to hold if the source
transmits packets in order, i.e, the source starts transmitting
packet i + 1 only after all the nodes received packet i, for
all i ≥ 1. Similarly, for the unconstrained channel case,
Proposition 2 holds without changes.

Now, consider the constrained channel case. Denote by
T̂ ∗N (C) the completion time using the optimal in-order packet

delivery policy, for a cluster of N nodes with C channels.
Clearly, T̂ ∗N (C) ≥st T ∗N (C), since the control space of in-
order packet delivery is a subset of the control space of out-of-
order packet delivery. Thus, Theorem 2 still holds. Theorem 3
continues to hold as well, since an in-order PCRR policy
cannot perform worse (on a sample path basis) than the PCRR
policy applied to the SYS′PCRR system, where nodes also
receive packets in order. It follows that Theorem 4 is valid
for in-order packet delivery as well.

V. ANALYSIS OF MULTI-HOP CLUSTER CHAINS

We next analyze the cluster chains model introduced in
Section III-C. We start with the computation of a lower
bound on the optimal expected delay. Then, we derive an
asymptotically optimal policy, for the case where N tends to
∞. In the sequel, we will denote by T̄ ∗CL(C), the minimum
expected time to completion of the optimal policy for a
cluster chains topology with C channels available. The results
presented in this section are for the case 1 ≤ C ≤ M . The
case C > M can be treated analogously.

A. Lower Bound

Proposition 3: Consider a cluster chains network with C
channels, where 1 ≤ C ≤ M . Then, as N →∞,

T̄ ∗CL(C) ≥ M

C
λ−1 log(N) + Θ(1),

where λ = log(1/p).
Proof: Consider the expected time to send all M packets

to all the nodes belonging to cluster (1, 1). This quantity
obviously represents a lower bound on the expected time
to transmit all the packets to all the nodes in the network.
Since cluster (1, 1) contains α11N nodes, it will take at
least T̄ ∗α11N (C) slots to complete data dissemination to all
the nodes belonging this cluster (we recall that the notation
T̄ ∗N (C) represents the optimal expected delay to disseminate
M packets in a single-hop cluster of N nodes). The result
then follows from a direct application of Theorem 2 and
Proposition 1. ¥

B. Upper Bound: The MPCRR Policy

We next propose an asymptotically optimal policy, called
Multi-hop Packet-Channel Round-Robin (MPCRR). This pol-
icy proceeds in two stages. In stage 1, we ensure that at least
C nodes in each cluster receive all the M packets. In stage 2,
clusters are carefully grouped together so that packets can be
transmitted in parallel to nodes in each group without causing
collision. Thus, for each group, a subset of the nodes having
received all the packets in stage 1 are selected to serve as
sources. These nodes follow the PCRR transmission policy
described in Section IV-B.

1) MPCRR policy stage 1: Our goal in stage 1 is to ensure
that each cluster has enough nodes qualified to act as sources
in stage 2. There exist many heuristics that can accomplish this
process in Θ(1) time slots, on average. For example, consider a
policy that selects a priori C nodes in each cluster and operates
as follows. First, a source node belonging to the root cluster
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sources

Fig. 4. Illustration of the MPCRR S2 grouping algorithm.

transmits according to the single channel PCRR policy until all
the selected nodes in each level 1 cluster receive the M packets
(a level i cluster is a cluster that is i hops away from the root
cluster). Then, in each level 1 cluster, one node is selected as
a source and transmits according to the single channel PCRR
policy to the selected nodes of its child cluster at level 2, and
so forth. The expected time spent in stage 1 in this example is
bounded by W ·D · T̄ ∗C(1) = Θ(1) (recall that W is the total
number of cluster chains and D is the length of the longest
chain). In practice, this policy is not very efficient as it does
not take advantage of pipelining, that is, the possibility of
having multiple packets being transmitted in parallel on each
chain. It is also unnecessary to select a priori which nodes
will serve as sources. In the Appendix, we describe a more
efficient heuristic for stage 1.

2) MPCRR policy stage 2: According to the 2-hop in-
terference model, to avoid packet collisions, the minimum
distance between two nodes transmitting simultaneously on
the same channel must be three hops. Thus, the MPCRR S2
algorithm, which implements stage 2 of the MPCRR policy,
organizes clusters into groups (cf. Algorithm 2). For cluster
chains of length divisible by three, MPCRR S2 gathers every
three consecutive clusters into a group. For cluster chains of
length not divisible by three, MPCRR S2 makes that sure that
the groups at the two boundaries of the chain have at least
two clusters and that the other groups contain three clusters.
Figure 4 illustrates how MPCRR S2 groups the clusters.

For each group, transmissions are performed by sources
all belonging to the same cluster, which is referred to as a
source cluster. Since source clusters are at least three hops
away one from another and since every node can hear the
sources of the group to which it belongs, the PCRR policy
can be run simultaneously in each group. This fact guarantees
that the completion time of MPCRR S2 is smaller or equal (in
a stochastic ordering sense) to the completion time of PCRR
in a single cluster containing N nodes.

C. Asymptotic Optimality

Denote the expected completion time using the MPCRR
policy with C channels by T̄MPCRR(C). The follow-
ing proposition characterizes the asymptotic behavior of
T̄MPCRR(C).

Proposition 4: Consider a cluster chains network with C

Algorithm 2 Multi-hop Packet Channel Round Robin Stage 2
Input:

The number of channels available, C;
Output:

Completion time, TMPCRR S2;

1: for Each cluster chain w do
2: Let D(w) be the number of clusters in the current

cluster chain, excluding the root cluster;
3: Index the clusters 1, 2, .., D(w);
4: if D(w) mod 3 == 1 or D(w) mod 3 == 2 then
5: Group the first two clusters together, and let

cluster 1 be a source cluster;
6: else
7: Group the first three clusters together, and let

cluster 2 be a source cluster;
8: end if
9: Continue to group the rest of the clusters into groups

of three clusters, except for the last group which may
have two or three clusters. For each group, the cluster
located three hops away from the source cluster of
the previous group is designated as the source cluster;

10: In each source cluster, select C nodes possessing all
the packets to act as sources.

11: end for
12: Implement the PCRR(M, C) policy in each group using

the selected source nodes until all the nodes have received
all the packets.

channels, where 1 ≤ C ≤ M . Then, as N →∞,

T̄MPCRR(C) ≤ M

C
λ−1[log(N)+(M−1) log log(N)]+Θ(1),

where λ = log(1/p).
Proof: The result follows directly from the fact that stage

1 of MPCRR completes on average in Θ(1) time slots and
that stage 2 completes on average at least as fast as the PCRR
policy applied to a single-hop network of N nodes. ¥

The following theorem states the asymptotic optimality of
the MPCRR policy. Its proof directly follows from Proposi-
tions 3 and 4.

Theorem 5: Consider a cluster chains network with C chan-
nels with 1 ≤ C ≤ M . Then

lim
N→∞

T̄MPCRR(C)
T̄ ∗Cl(C)

= 1.

VI. NUMERICAL RESULTS

We next present numerical results to evaluate the perfor-
mance of the PCRR policy in networks of finite size. Our
simulation experiments focus on the following aspects: (i) the
gain achieved by PCRR when exploiting multiple channel re-
sources in single cluster and cluster chains topologies; (ii) the
performance of PCRR compared to that of the optimal policy;
and (iii) the performance of PCRR under heterogeneous packet
loss. The results represent an average over 1000 identical
simulations.
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A. Multi-channel Gain

1) Single Clusters: We consider the case of disseminating a
file consisting of M = 20 packets, when employing the PCRR
transmission policy on a single cluster topology with packet
loss probability p = 0.3.

In the first set of simulations, we assume S ≥ C. Figure 5
depicts the average completion time of PCRR as a function
of the number of nodes in the network, for the cases C =
1, 2, 5, 10. As expected, in each case, the average completion
time increases logarithmically with N (note that the x-axis in
the figure is on a logarithmic scale). The figure shows that
significant reduction in the average completion time can be
achieved with only two channels. Through a linear regression,
we observe that the slope of the curves corresponding to C > 1
channels are about C times smaller than that corresponding to
a single channel, as predicted by the asymptotic analysis.

Next, we consider the scenario where there is initially only
one source that possesses all the packets. In this case, PCRR
is applied using C ′ channels, where C ′ = min(S, C, M) is a
variable that is updated in real time. Whenever a nodes finishes
receiving all the M packets, the value of S increases and so
does that of C ′ until S equals C or M .

Figure 6 illustrates this scenario. As expected from our
analysis, the performance of PCRR in this case is similar to
the case where S ≥ C. Interestingly, when C > 1, we find
that the expected completion time does not always increase
monotonically with the number of nodes. This is because
on the one hand, it takes more time to disseminate the file
to a larger number of nodes, but on the other hand, with
more nodes present, it takes less time to find nodes that have
received all the packets and can serve as sources.

In Figure 7, we evaluate the effect of the packet loss
probability p on the completion time of the PCRR policy, for
different number of channels. Specifically we set N = 1000,
M = 40, C = 1, 2, 5, 10, and S ≥ C while p varies
from 0.001 to 0.5. The simulation results indicate that the
absolute gain achieved using multiple channels becomes more
significant as p increases. This result is expected since the
completion time always takes exactly M time slots when
p = 0.

2) Cluster Chain: Figure 8 evaluates the performance of the
MPCRR policy on a cluster chain topology with parameters
D = 10, W = 1 and αwd = 1

WD . That is, the network
is a composed of a single 10-hop cluster chain, where each
cluster contains the same number of nodes. We assume S ≥ C,
M = 20, and p = 0.3. Stage 1 of the MPCRR policy is
implemented using the MPCRR S1 algorithm described in the
Appendix.

The figure shows that MPCRR fully exploits the multiple
channels resources of the nodes, with a reduction in the
average delay roughly proportional to the number of channels
available. Comparing Figure 5 with Figure 8, we notice that
although these figures correspond to different network topolo-
gies, the expected completion times are close for networks of
same size. This is due to the fact that stage 2 of the MPCRR
policy dominates the average completion time in a cluster
chain network, which we have shown to be asymptotically
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equivalent to the average completion time in a single cluster
network of the same size.

B. Comparison with the Optimal Policy

We next compare the performance of the PCRR policy with
the optimal policy obtained by solving Eq. (1). As discussed
in section III-B, solving the optimal policy is computationally
involved. We thus consider a small example where M =
3, C = 2, p = 0.3, N = 1..20. Even then, the state and
control spaces in the dynamic programming problem are huge.
Therefore, we consider the case for which in-order packet
delivery is required, which substantially reduces the size of the
state and control spaces. Figure 9 shows that the performance
of PCRR is close to that of the optimal policy. Although the
PCRR policy is proven to be asymptotically optimal only when
N is very large, it performs very well compared to the exact
optimal policy, even in small networks.

C. Heterogeneous Packet Loss Rates

Our analytical results apply to the case where the packet
loss probability is fixed. Yet, in practice, the rate of packet
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.

losses may differ from node to node due to various factors
(e.g. channel fading, antenna sensitivity, etc). It is therefore of
interest to evaluate the behavior of PCRR and MPCRR policies
under heterogeneous packet loss. We therefore run simulations
for the case where a different packet loss probability, chosen
uniformly at random between 0 and 0.4, is associated to each
node and kept fixed throughout the simulation.

Simulation results for a single cluster topology are shown
in Figure 10. The results resemble those obtained under ho-
mogeneous packet loss. The PCRR policy efficiently exploits
multi-channel resources and achieves a significant reduction
in completion time. Similar results are shown in Figure 11 for
MPCRR and a cluster chains topology. These results could be
inferred from Theorem 2 and Theorem 3, in which the sample
path arguments used for the proof apply to heterogeneous
packet loss probabilities as well.

VII. PRACTICAL IMPLEMENTATION OF THE PCRR POLICY

The main emphasis of this paper is on characterizing the
theoretical performance limits of data dissemination in sensor
networks. As such, practical considerations, such as control
overhead and channel switching latency, are not explicitly
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Fig. 12. Implementation the PCRR policy: time allocation in each frame.

captured in our analytical model. The goal of this section is
to show that the PCRR policy is nevertheless amenable to
practical implementation and able to yield significant perfor-
mance gains with respect to a single channel baseline protocol.
We outline a protocol implementation of the PCRR policy
for the case of a single-hop network and present simulation
results obtained with the TOSSIM simulator, a bit-level net-
work simulator designed specifically for TinyOS-based sensor
networks [14].

A. Protocol Design

Our protocol divides network nodes into three classes: (i) a
base node that periodically broadcasts coordination informa-
tion to all the nodes; (ii) source nodes that disseminate packets;
(iii) destination nodes that are packet recipients. Note that a
destination node may become a source node once it receives
all the packets.

The time axis is divided into frames of variable length.
Each frame consists of four stages, beacon, coordination,
transmission, and acknowledgment, as shown in Figure 12. At
the beginning of each frame, all the nodes listen to the same,
default channel. The base node sends a short beacon message
(preamble) to synchronize all the nodes. Next, the base node
sends a coordination message. This message contains the list
of source nodes and channels on which they should operate. It
also includes the number of time slots the PCRR policy will be
run on during the transmission stage (we explain below how
this number is determined). During the transmission stage,
the source nodes transmit packets on the channels assigned to
them. The destination nodes use the coordination information
sent by the base node to determine which packet will be
sent on which channel, according to the PCRR policy. The
protocol imposes a short latency between each transmission
to allow destination nodes to switch channels. Finally, in the
acknowledgment stage, all the nodes switch back to the default
channel. If a node is missing one or more packets, it triggers a
timer with a random expiration time. Once the timer expires,
the node broadcast a NACK message, which is a request vector
specifying which packets are needed.

To reduce the number of NACKs in the acknowledg-
ment stage, we borrow the suppression mechanism approach
from [2]. When overhearing a NACK request vector, a node
takes its union with all the other request vectors overheard
so far. Once the timer expires, the node compares the union
of the previous request vectors to its own request vector. If
this vector is a subset of the union, then the node suppresses
its NACK. Otherwise it broadcasts the NACK message as

scheduled. In order to take full advantage of this mechanism,
nodes requesting a large number packets are likely to be
assigned a shorter expiration time than those needing a small
number of packets. This is achieved by setting the timer value
to ttimer =

(
τ Mr

M + rand(ω)
)
tack, where Mr is the number

of packets that a node has received up to the current frame,
rand(ω) is a random number uniformly distributed between
0 and ω, and tack is the time length of the acknowledgment
stage.

The number of time slots that the PCRR policy should be
run on during the transmission stage of frame t corresponds to
the maximum number of packets (say Mt−1) requested by a
node (say node n) during the acknowledgment phase of frame
t− 1. This approach helps in reducing the overhead, since it
must take at least Mt−1 slots for node n to receive all of its
missing packets. The number of time slots in the first frame
of the transmission stage should be set to M .

If a node finishes receiving all the packets and finds out
that some channels are not utilized because of a lack of source
nodes, then it sends a notification to the base node requesting
to become a source node. This notification message is sent in a
similar way to that of a NACK request vector. The notification
message is suppressed if a node finds out that the number of
source nodes is already large enough, i.e., S ≥ C.

We briefly outline how the above protocol can be extended
to cluster chains. First, C nodes are selected in each cluster
to serve as potential relaying sources. The M -packet file is
disseminated to these nodes, using a procedure similar to
those explained in Section V-B and in the Appendix. Once
all the potential sources in a cluster finish receiving all the
packets that they need, they use MPCRR S2 (see Algorithm 2)
to determine if they should transmit. If yes, they implement
the same PCRR protocol as described above for single-hop
networks.

B. TOSSIM Evaluation

The multi-channel PCRR protocol described in the previous
section involves two types of overhead absent in a single chan-
nel protocol, namely the coordination stage at the beginning
of each frame and the switching latency between channels.
The goal of this section is to evaluate whether the benefit
of exploiting multi-channel resources using the PCRR policy
prevails over the overhead associated with it.

The evaluation is performed using the TOSSIM simulator
based on the following parameters. The size of the file to be
disseminated is 10KB. This file is initially held only by the
base station. The file is divided into M = 20 packets of length
516 bytes each (512 bytes of data + 4 bytes of overhead). The
size of NACK packets is 16 bytes, including overhead. In each
frame, the beacon stage lasts for 0.1 sec, the coordination
stage lasts for 0.5 sec, and the acknowledgment stage lasts
for 2.0 sec. The channel switching latency is set to 50 msec,
based on our own measurements on MICA2 motes. Hence, at
each slot of the transmission stage, a source node must wait
this amount of time before starting to transmit. Similarly, the
acknowledgment stage starts only after a waiting period of
50 msec. The parameters of the random timer are τ = 0.5
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Fig. 13. Performance of the PCRR policy with the presence of control
overhead: M = 20, p = 0.3, S = 1.

and ω = 0.25. For the PCRR policy, simulation experiments
are run for the case of C = 1, 2, 5, 10 channels. We also
evaluate the performance of a baseline single channel protocol
that is similar to a single channel PCRR protocol, but without
coordination stage and channel switching latencies overhead.

The results of the experiments, depicting the average com-
pletion time as a function of the network size, are presented
in Figure 13. Each point in the figure represents an average
taken over 1000 identical experiments. As expected, for the
case C = 1, PCRR performs worse than the baseline protocol.
However, as soon as C ≥ 2, the PCRR protocol significantly
outperforms it. For instance, for the case of N = 100 nodes,
and C = 2, 5 and 10 channels, PCRR achieves a savings of
about 20%, 30%, and 40%, respectively, with respect to the
baseline protocol. The non-monotonic nature of the completion
time is due to the fact that the system starts with a single
source, as explained previously for Figure 6. In summary, the
results of our evaluation show that the PCRR policy is not only
asymptotic optimal under theoretical settings but also greatly
improves the performance and scalability of data dissemination
in practice.

VIII. CONCLUDING REMARKS

In this paper, we formalized the problem of data dissem-
ination in multi-channel single radio sensor networks with
random packet loss. We showed that, for an arbitrary topology,
the problem of minimizing the expected delay of data dis-
semination can be cast as a stochastic shortest path problem.
Interestingly, due to its special structure, this problem can be
related to a deterministic shortest path problem and solved
using any label-based algorithms, such as Dijkstra. However,
the computational burden necessary to derive the optimal
policy is generally too high to be practical.

Therefore, to obtain a more tractable and insightful solution,
we restricted our attention on two important classes of topolo-
gies, namely single hop clusters and multi-hop cluster chains,
and conducted a large network asymptotic analysis for these
topologies. Based on extreme-value theory and coupling argu-
ments, we proved the asymptotic optimality of a simple policy,
called Packet Channel Round Robin (PCRR), and its multi-hop

generalization, called Multi-hop Packet Channel Round Robin
(MPCRR). With C channels available, we showed that these
policies are capable of reducing the expected delay by a factor
of C, as if each node were equipped with C radios. Numerical
simulations confirmed the applicability of these findings to
small and moderately-sized networks.

The PCRR policy has the desirable property of not de-
pending on the network state (i.e., the specific set of packets
received by each node), contrarily to the optimal policy. To
demonstrate its practical use and benefit, we presented an
implementation and evaluation of this policy for a single-hop
cluster. Using the TOSSIM simulator, we showed that the
overhead associated with the implementation is limited and
scales with the network size. The simulations indicated that
the PCRR implementation significantly reduces the average
delay with respect to a single channel baseline protocol, e.g.,
by a margin of 30% when using 5 channels in a 100-node
network.

In summary, this paper shows that the multichannel
transceiving capability of single radio sensor nodes can be
exploited to achieve significant reduction in the delay of
data dissemination. The findings are expected to be useful to
other types of multi-channel single radio wireless networking
technologies, such as IEEE 802.11 wireless LANs. The pa-
per leaves many interesting problems for future work. This
includes extending the analysis to the case where clusters
belonging to different chains interfere as well as devising
asymptotically optimal policies for general topologies.
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APPENDIX

We describe here an efficient heuristic, denoted
MPCRR S1, to implement stage 1 of the MPCRR policy.
The basic rules of MPCRR S1 are the following: (i) packets
are transmitted in order; (ii) a parent cluster is tentatively
scheduled to send out a packet (say packet m) to its child
cluster(s), only if at least C nodes in the parent cluster already
possess packet 1, 2, . . . , m, and fewer than C nodes possess
these packets in one or more of the child clusters; (iii) among
the tentative transmissions scheduled by rule (ii), if there is a
channel contention, a descendant cluster is given priority over
an ancestor clusters if it scheduled to transmit a packet with
a lower index; otherwise the ancestor cluster is given priority
over the descendant cluster; (iv) When C > 1, clusters at
level 4n, 4n + 1 transmit on channel 1 and clusters at level
4n + 2, 4n + 3 transmit on channel 2, where n = 0, 1, 2, . . ..
This rule allows simultaneous transmissions by nodes that are
two-hops apart.

As N → ∞, it is straightforward to show that, with
probability one, it takes only one time slot for a packet to be
transmitted from all level l clusters to all level (l+1) clusters.
For the case C = 1, one can then show that the MPCRR S1
policy is identical to the optimal, deterministic scheduling
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policy for a lossless chain network with omnidirectional an-
tennas [24]. This policy completes in 3(M − 1) + D slots.
Similarly, for the case C > 1, MPCRR S1 policy is identical
to the optimal, deterministic scheduling policy for a lossless
chain network with directional antennas, which completes in
2(M − 1) + D time slots.
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