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Abstract—This paper characterizes the outcomes of secondary
spectrum markets when multiple providers compete for sec-
ondary demand. We study a competition model in which each
provider aims to enhance its revenue by opportunistically serv-
ing a price dependent secondary demand, while also serving
dedicated primary demand. We consider two methodologies for
sharing spectrum between primary and secondary demand: In
coordinated access, spectrum providers have the option to decline
a secondary access request if that helps enhance their revenue. We
explicitly characterize a break-even price such that profitability
of secondary access provision is guaranteed if secondary access
is priced above the break-even price, regardless of the volume of
secondary demand. Consequently, we establish that competition
among providers that employ optimal coordinated access leads
to a price war, as a result of which the provider with the lowest
break-even price captures the entire market. This result holds for
arbitrary secondary demand functions. In uncoordinated access,
primary and secondary users share spectrum on equal basis,
akin to ISM bands. Under this policy, we characterize a market
sharing price which determines a provider’s willingness to share
the market. We show an instance where the market sharing
price is strictly greater than the break-even price, indicating that
market equilibrium in an uncoordinated access setting can be
fundamentally different as it opens up the possibility of providers
sharing the market at higher prices.

I. INTRODUCTION

Recent initiatives by government agencies extend the reach
of spectrum management policies that license holders (e.g.,
network providers) are entitled to pursue [3, 6, 9–11, 27]. In
particular, the Federal Communications Commission (FCC)
introduced a new spectrum access policy model known as
Private Commons to support fast time-scale spectrum trans-
actions [1, 8]. Under this model, ownership of spectrum re-
mains with the license holder providing service to its primary
users, but this provider may also provide spectrum access to
secondary users for a fee.

As pointed out in FCC’s report on secondary spectrum
markets, control of secondary access in private commons can
be implemented in several different ways [1]. In one possible
implementation identified in [8], access to the spectrum by sec-
ondary users may be coordinated by the provider, via signals
that determine when or how such access is allowed. A notable
coordinated policy is the so-called threshold (reservation)
policy, whereby secondary spectrum access is permitted as
long as the number of channels occupied in a given spectrum
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band is below a certain threshold. Theoretical properties of the
threshold policy, including optimality in certain settings, have
been extensively studied in the literature (cf. [22, 29–31, 34]
and references therein). Access to a band may also possibly
be uncoordinated, in which case primary and secondary users
share access to the band on an equal basis, in a way similar
to ISM bands [8].

Since cellular networks are generally over-provisioned to
cope with short-term spikes, it might be possible to increase
spectrum utilization through private commons. Studies indeed
indicate that the majority of base stations in heavily populated
areas, such as city centers, remain under-loaded at all times,
suggesting that providing secondary services on licensed spec-
trum might increase operating revenues [2, 28].

Realizing the potential of private commons entails a number
of challenges for a provider. One such challenge concerns pric-
ing of secondary spectrum access in the face of uncertainty of
demand response to the advertised price: Providing secondary
access at a price returns an immediate revenue for the provider,
but it also incurs an opportunity cost due to lost primary
revenue as spectrum is fundamentally a finite resource. The
balance between these two effects determines profitability of
secondary spectrum provision, and it may possibly depend not
only on the secondary price but also on the secondary demand.
The relationship between secondary price and demand, also
known as the demand function, is difficult to characterize
explicitly, however, and may also be time-varying.

This issue is further aggravated in competitive situations in
which multiple network providers compete for the same pool
of secondary demand. In such situations, a provider may opt
to beat the price of competitors, thereby winning the entire
secondary market, or may opt to match competitors’ price
thereby serving part of the market at a higher price. It is not
readily clear which alternative is favorable, especially under
the alluded uncertainty in the price-demand relationship.

In this paper we seek to analyze and underline the differ-
ences between the outcomes of a price competition between
multiple providers implementing coordinated and uncoordi-
nated access policies in private commons, as illustrated in
Fig 1(a). We consider a game theoretic setting and identify
equilibrium outcomes in term of Nash equilibria. In revenue
calculations, we adopt a model that explicitly captures the
random nature of spectrum access requests of both primary
and secondary users.

Our first contribution is to characterize and then prove the
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(a) Illustration of provider competition over the secondary
users in a private commons setting
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(b) Two providers each with a capacity Ci, i = 1, 2, compete
for secondary demand σ(p) while also serving their respective
dedicated (primary) demand λi .

Fig. 1: An illustration and an abstraction of the market model considered.

existence of a break-even price for each provider under an
optimal coordinated access policy. This break-even price is
the lower limit to the price values for which a provider’s
profitability is guaranteed. The paper explicitly characterizes
the break-even price, which is independent of the parameters
of other providers and possesses the fundamental property of
being insensitive to the demand function of secondary users.
The analysis further reveals that the break-even price directly
relates to the fraction of lost primary users (in the absence
of secondary users), which can be expressed using the well-
studied Erlang-B function. The break-even price thus inherits
all the mathematical properties of this function.

Our next contribution is to show that market sharing be-
tween providers can not be an equilibrium outcome under
optimal coordinated access. We prove this claim by deriving
the best response of each provider, where we show that a
provider always opts to underbid its competitors, leading to
a price war. The proof hinges on structural properties of the
revenue function that hold irrespective of the specific relation
between the price and the secondary demand. We formally
establish the strictly dominating strategy of each provider and
list all the possible market outcomes (i.e., Nash equilibria),
which this price war can lead to. We demonstrate that the
provider with the lowest break-even price wins the market.
Depending on the elasticity of the secondary demand, the
winner’s equilibrium price may be significantly lower than the
break-even prices of the competitors’. In contrast to the break-
even price, this equilibrium price cannot be identified without
explicit knowledge of the secondary demand function. We note
that if multiple providers share the same break-even price, they
are coerced into an equilibrium in which no provider makes a
profit.

As our last contribution, we show that market equilibria
under uncoordinated secondary access may be drastically
different than those under coordinated access. We introduce
another price threshold, the market sharing price pMS , that
determines a provider’s incentive to share the market. We
prove that the break-even price is lower than the market shar-

ing price under uncoordinated access and inelastic demand,
thereby establishing the existence of a price interval on which
a provider is both profitable and willing to share the market.

The rest of the paper is organized as follows. In Section II,
we survey previous work. In Section III, we present the
network model used to conduct our analysis. In Section IV, we
analyze profitability conditions, establish market dynamics and
competition outcomes under an optimal coordinated access
policy. We compare and contrast these results to the unco-
ordinated access case and provide an analysis in Section V.
We conclude the paper in Section VI.

II. RELATED WORK

In this section, we briefly survey related work on competi-
tion and spectrum pricing for secondary markets and highlight
the differing contributions of our paper.

Network providers in spectrum markets may face com-
petition at two different levels. The first level consists of
competition between secondary network providers to lease
spectrum from a primary provider (or the government) that
holds a spectrum license. The second level of competition is
between network providers holding a spectrum license or lease
and competing to offer their services to end-users.

Many papers in the literature consider the first level of
competition, while our paper addresses the second one. For
instance, in the works by Jagannathan et. al.[15], Kasbekar
and Sarkar [19], Duan et. al. [12], Ren et. al. [35], Niyato
and Hossain [32], Sengupta and Chatterjee [36] and Xing et.
al. [39], game theoretic approaches to spectrum auctioning
and leasing are analyzed. The set-up of all these papers (i.e.,
competition between providers to lease spectrum) is different
from ours (i.e., competition between providers to lure users).

Several papers study the problem of ensuring profitability in
secondary spectrum markets. Niyato and Hossain [32] derive
market equilibria pricing by taking into consideration the
demand and supply dynamics of spectrum auctions. However,
the model uses a very specific secondary demand based on
the utility from owning the spectrum and how much it costs
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to lease the spectrum. Moreover, secondary users have the
option to lease parts of their spectrum from different spectrum
owners. On the end-user side, Alanyali et. al. [4, 5] establish
a pricing policy which guarantees profitability for the network
provider as long as a demand is generated. However, these
papers assume a monopolistic framework, while ours considers
an competitive oligopoly. Furthermore, [4, 5] consider a multi-
cell setting with a single frequency band in each cell, while our
paper focuses on an isolated cell offering multiple frequency
bands.

Mutlu et al. [30] also consider a monopolistic framework
and derive an optimal coordinated access policy under which
revenue from secondary users is maximized. The results of that
paper show that a threshold policy is optimal for coordinated
access in an isolated cell, assuming that a provider advertises a
fixed price (i.e., the price does not depend on the instantaneous
channel occupancy).

In Ileri et al.’s work [14], a comprehensive model including
both the auction and the end-user sides of the competition
is studied. Different from our paper, this model focuses on
the auctioning side of the competition where the revenue
generated by secondary users is used to compensate for the
costs of auctioning. In our model, we assume that providers
own spectrum or have already leased it for a certain amount
of time and need only to consider the revenue brought in by
the primary and secondary users.

The works by Maille and Tuffin [25] and Maille et al. [26]
use a model where both the auction side and the service
side of the competition are considered. The work in [25]
specifically focuses on the competition between two different
but substitute technologies while [26] models a three level
competition, where spectrum owners, lessees and users each
make their own separate decisions. These decisions include
the use of different technologies. In our model, we assume
that providers offer the same type of services and therefore
cannot influence the secondary users’ preferences beside the
price advertised. A related work by Ren et al. [35] studies
and compare the market outcome achieved by respectively
enforcing cooperation or competition among providers. While
such external interventions might be useful in analyzing hypo-
thetical outcomes, our model refrains from such enforcements
as it aims to characterize a natural competition. In a work
by Kim et al. [21], competition between two providers is
analyzed where network preemption allows for primary users
to evict secondary users from the system. Unlike our paper, the
network model is not a finite capacity multichannel network
but rather a spatial distribution of channels that turn on and
off, and the analysis relies on an approximation.

None of the previous work surveyed here considers com-
petition among network providers implementing optimal co-
ordinated access and facing secondary demand governed by a
general demand function. The characterization of the market
equilibrium and demonstration of a price war won by the
provider(s) with the lowest break-even price as well as the
possibility of market sharing equilibria under uncoordinated
access policies are unique contributions of our paper.

III. NETWORK & MARKET MODEL

In this section we introduce the network and market models
considered and the accompanying notation. For convenience
of exposition we present here a model with two providers, and
later extend it to an arbitrary number of competing providers:
Each provider i = 1, 2 has a finite number of channels Ci,
and a dedicated primary-user base whose traffic generation
rate (i.e., the average number of requests per unit time) is
represented with λi > 0. For each primary user serviced,
provider i collects a reward of Ki units.

The providers compete for an additional secondary demand,
which is raised through offering secondary service at a fixed
access price for the duration of a contract period. The contract
period is long enough (relative to inter-arrival and holding
times of calls) to allow an equilibrium analysis. In the course
of the contract period, neither the pricing nor the users
preferences change.

If provider i charges pi units per secondary access then the
intensity of secondary demand is σ(pi). Here σ(·) is the well-
known demand function and it is assumed to be continuous
and non-increasing. We denote the maximum value of the
secondary demand by σmax = σ(0).

We shall assume that each demand type (primary and
secondary) consists of a random sequence of request arrivals
that occur according to independent Poisson processes. We
also assume that, if granted, each request holds a single
channel for a random duration that is generally distributed
with unit mean, independently of other requests and arrival
times. We shall assume that the channel holding statistics
are identical for primary and secondary requests. Such an
assumption is valid when both types of traffic are generated
by similar applications.

The general form of aggregate secondary demand σ(p)
captures the heterogeneity of customer preferences. Indeed,
the demand function implicitly represents the fraction of users
(user types) that find each price value acceptable. The gener-
ality of the demand function allows consideration of different
user types. The separation between primary and secondary
users and the random nature of service times capture additional
levels of heterogeneity in our model.

Secondary demand is assumed to be attracted to the provider
charging the lowest price. This behavior can be explained by
price aversion, a concept employed in marketing management
[38]. When both providers charge the same price, the resulting
secondary demand splits between the two providers according
to a static probability vector [α1, α2] such that α1 + α2 = 1
and α1, α2 > 0. Namely, each provider i receives a secondary
demand of volume αiσ(pi) every time market prices are equal.

Each provider i also has the choice of admitting or rejecting
secondary requests according to an access policy, which we
denote by Ai. We assume that actions taken by Ai depend only
on the number of each class of users (primary and secondary)
in the system. Thus, Ai belongs to the class of occupancy-
based policies, the performance of which are insensitive to
the call length distribution except through the mean [31].
Hence, without loss of generality, we can assume exponentially
distributed service times for the purpose of analysis in the rest
of this paper.
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Since providers have a finite number of channels to provide
service with, they cannot accommodate new requests if all of
the channels are occupied. This results in some requests being
blocked. We define Bi,j(λi, σ, Ai) as the blocking probability
for class j users (j = 1 for primary and 2 for secondary) when
secondary demand is σ and the access policy is Ai.

The goal of each provider is to maximize the total revenue
collected. The revenue rate of provider i when it services
secondary demand of σ units is given by:

Wi(pi, σ, Ai) = (1−Bi,2(λi, σ, Ai))σpi

+(1−Bi,1(λi, σ, Ai))λiKi. (1)

Here the first and the second terms are respectively the
revenue generated by primary and secondary requests that are
admitted by the provider. Each term represents the expected
long time rates per unit time.

Since the secondary demand a provider receives depends on
prices of both providers, so does the revenue of the provider.
We define the reward Ri(pi, p−i) of provider i as its revenue
when provider i and its competitor −i charge secondary access
pi and p−i units respectively. Namely,

Ri(pi, p−i) =

 Wi(pi, σ(pi), Ai) if pi < p−i
Wi(pi, αiσ(pi), Ai) if pi = p−i
Wi(pi, 0, Ai) if pi > p−i.

(2)

Hence the reward is affected by the amount of secondary
demand provider i captures through the relationship between
its own price pi and the price of the other provider p−i.
Once the prices determine the secondary demand for each
provider, the rewards are further shaped by the providers’
access policies. Each provider has full information on its own
network parameters and can observe the prices advertised by
its competitors.

IV. OPTIMAL COORDINATED ACCESS POLICY

A. Profitability

For a given secondary demand σ and secondary price p, let
A∗(p, σ) denote a coordinated access policy that maximizes
the revenue rate for a provider (for analyses in which we
consider a single provider, we will drop index i from our
notation for the sake of simplicity). We refer to A∗(p, σ) as the
optimal coordinated access policy. We represent the resulting
maximal revenue W ∗(p, σ) as follows:

W ∗(p, σ) = W (p, σ,A∗(p, σ)) = max
A

W (p, σ,A). (3)

One can formulate the provider’s optimization problem
using a Markov decision process (MDP), where the state is
the total number of users in the network. Note that primary
and secondary users have identical channel holding statistics,
hence once admitted to the network they are indistinguishable.
At every state, the provider needs to make a decision whether
to admit or reject a secondary user arrival in order to maximize
its expected revenue. MDPs can be solved with dynamic pro-
gramming (DP) techniques [7]. Under the given assumptions,
it is well-known that the coordinated access policy that yields
the optimal solution to our DP problem is a threshold (reserva-
tion) policy: Secondary users are admitted by a provider when

the channel occupancy of the provider is below a threshold
T ≥ 0 and they are blocked otherwise [22, 29, 31, 34]. The
optimal threshold value depends on all parameters of the
provider including intensity of the secondary demand. We let
the notation A = T correspond to the implementation of a
threshold policy with the specific threshold value being equal
to T .

In the competitive setting considered in this paper it will
be important to identify conditions under which an optimal
policy A∗(p, σ) ever accepts a secondary request. Under
such conditions the secondary price-demand pair (p, σ) yields
profit relative to serving primary demand only; in turn (p, σ)
represents an economically viable situation for a provider.
The issue is closely related with the opportunity cost of
accepting a secondary request: On the one hand such a request
brings an immediate revenue of p, on the other hand it may
cause rejecting future requests, possibly with higher immediate
revenue, due to the channel that it holds temporally. To identify
the profitability of admitting a secondary user, we utilize a
policy improvement technique based on [4, 22]. Specifically,
we identify a price condition for which there exists a policy
that yields a better revenue than a policy that flatly rejects all
secondary arrivals. This determines the sign of the balance
in the trade-off when making a control decision to admit
a secondary user or not. We state our main result on this
profitability condition in the following theorem:

Theorem IV.1 For σ > 0 there exists a break-even price pBE

given by:
pBE = KE(λ,C), (4)

where E(λ,C) =
λC/C!∑C
k=0 λ

k/k!
is the Erlang-B formula. such

that:
(a) W ∗(p, σ) > W ∗(p, 0) if p > pBE ,
(b) W ∗(p, σ) = W ∗(p, 0) if p ≤ pBE .

Proof: In order to calculate for which prices it is profitable
to admit secondary users, we model the optimization problem
as an MDP. Thus, we set up an infinite horizon average
cost dynamic programming problem and identify the prices at
which the optimal policy allows for the admission of secondary
users into the network at some states. To do so, we take the
total number of users in the network (i.e., occupancy) denoted
by y as the state of the system, J̄ as the time-average reward
and h(y) as the differential reward function [7]. J̄ can be
interpreted as the average reward collected from incoming
arrivals over a period of time which length goes to infinity,
whereas the differential reward function h(y) characterizes the
expected difference when we start the process from a particular
state y instead of an arbitrary state y′ which we take as the
reference such that h(y′) = 0. In our case, and without any
loss of generality, we set y′ = 0.

We uniformize the process with the maximum possible
transition rate out of any state, which we denote by ν ,
λ+σ+C. Since the service rate is the same for both primary
and secondary users, they are indistinguishable once in the
system. Following this observation, at state {y : 0 ≤ y ≤ C}
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a user (either primary or secondary) will leave the system
with probability y

ν . With probability λ
ν a primary user will

arrive, with probability σ
ν a secondary user will arrive, and

with probability C−y
ν the state will remain the same (i.e.,

nothing happens). Note that an arrival of either kind to a full
network is not admitted and thus no reward is collected. Then
the well established Bellman equations for the average reward
problem can be formulated as follows:

J̄ + h∗(y) =
1

ν
{ yh∗(y − 1) + (C − y)h∗(y)

+ λ(K + h∗(y + 1))

+ σmax (p+ h∗(y + 1), h∗(y))}, (5)

for 0 < y ≤ C − 1. The last term on the right hand side of
the equation reflects the admission choice to be made, that is
either admit an incoming secondary user and collect a reward
of p while increment the state or reject the arrival and preserve
the state.

We also consider the two special cases, first when the
network is full:

J̄ + h∗(C) =
1

ν
{Ch∗(C − 1) + (λ+ σ)h∗(C)},

and next when the network is empty:

J̄ + h∗(0) =
1

ν
{Ch∗(0) + λ(K + h∗(1))

+ σmax (p+ h∗(1), h∗(0))}.

Let us define the lock-out policy as an access policy
where all secondary users are rejected, regardless of network
occupancy. We will approach this pricing decision problem
by determining when the lock-out policy on secondary users
stops being optimal. Assuming a lock-out policy, which we
denote by the use of the superscript LO, Eq. (5) reduces to:

J̄ + hLO(y) =
1

ν
{ yhLO(y − 1) + (C − y)hLO(y)

+ λ(K + hLO(y + 1)) + σhLO(y)}. (6)

From the last argument of Eq. (5), it is clear that when the
state of the network is y, a lock-out policy is optimal if and
only if max

(
p+ hLO(y + 1), hLO(y)

)
= hLO(y) or:

p ≤ hLO(y)− hLO(y + 1). (7)

Therefore if p ≥ hLO(y)−hLO(y+1), a lock-out policy is no
longer optimal, which is equivalent to starting to admit some
secondary users. We shall next obtain an analytical expression
of the quantity H(y) , hLO(y)− hLO(y + 1).

Writing Eq. (6) for every state y and taking the difference
between every two consecutive states yields the following set
of equations:

(λ+ 1)H(0) = λH(1)
...

...
...

(λ+ y)H(y − 1) = λH(y) + (y − 1)H(y − 2)
...

...
...

(λ+ C)H(C − 1) = λK + (C − 1)H(C − 2)

The solution to this set of equations is

H(y) = K
E(λ,C)

E(λ, y)
for 0 ≤ y ≤ C − 1. (8)

Since we are specifically interested in finding the price p at
which it is optimal to admit at least one secondary user into
the network, through Eq. (7), we know that this price must be
greater than or equal to

min
0≤y≤C−1

H(y) = min
0≤y≤C−1

(
hLO(y)− hLO(y + 1)

)
.

By observing how Eq. (8) changes with respect to y, one
can come to the conclusion that H(y) is increasing in y, the
minimum value such a price p can take is:

pBE , H(0) = K
E(λ,C)

E(λ, 0)
= KE(λ,C). (9)

Therefore, as long as the price is greater than pBE , there exists
at least one state y (i.e., when the system is empty) at which
admitting secondary customers yields a better revenue rate
than the revenue rate under a lock-out policy.

Theorem IV.1(a) states that if the price exceeds pBE then
serving secondary demand yields strictly higher revenue for
a provider than not serving it. Conversely, part (b) of the
theorem states that secondary demand does not lead to any
revenue improvement otherwise, implying that rejecting the
entire secondary demand is optimal for such prices. In effect,
at pBE the immediate revenue balances the opportunity cost of
a secondary request. We therefore coin pBE as the break-even
price of a provider.

It is striking that the break-even price expression (9) does
not depend on the secondary demand. Namely, any price above
pBE strictly improves the revenue of a provider regardless
of how much secondary demand it generates. This result can
be intuitively understood as follows: The size of secondary
demand does not play a role in profitability, for any positive
secondary demand can be thinned down arbitrarily by the
coordinated access policy. We have shown that at the break-
even price the lock-out policy stops being optimal, which
is equivalent to stating that secondary access is profitable
when the network is empty. Since the profitability of the first
admitted secondary user depends on a network where there are
no other secondary users, secondary demand does not affect
the break-even price.

Figures 2(a) and 2(b) illustrate how the normalized break-
even price (i.e., pBE/K) changes with respect to relevant
network parameters, namely the system capacity C and the
network load λ/C. The normalized price is given by the
Erlang-B function, which has been well studied in teletraffic
theory. In particular upper and lower bounds are obtained in
[13, 17], and it is demonstrated in [16] that for a given arrival
load λ, the Erlang-B function (hence, the break-even price) is
a convex function of the capacity C, as can be observed from
Figure 2(a). It is also worth noting that as the network capacity
increases, the value of the break-even price at the critical load
where λ = C decreases as demonstrated in Figure 2(b).

Figure 2(b) shows that for an over-provisioned network
(in which primary load λ is below the capacity C by a
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Fig. 2: Behavior of break-even price as a function of network parameters.

significant margin), the break-even price is substantially lower
than the primary price. We observe that for C = 16 the
normalized break-even price is negligible compared to the
primary price for network loads below 40%, a number close
to the network utilization measurements reported in [2]. As
the network capacity increases, it takes even higher network
loads to observe the slightest increase in the break-even price,
almost as high as 80% when the capacity is increased to
C = 128. This result suggests that, in an over-provisioned
network, spectrum sharing at secondary prices that are low
relative to primary reward would result in net profit, regardless
of the secondary demand.

B. Best Response

In competing for and serving secondary demand, a
provider’s action consists of an advertised price for secondary
access and an access policy to coordinate secondary access.
For any price, and for any demand the price raises, each
provider’s revenue is highest under optimal coordination.
Hence optimal coordination is a dominating choice uniformly
for all situations. In this section we will assume all providers
implement optimal coordinated access. With this assumption
each provider’s strategic action reduces to a pricing decision.

Before we move to establish market equilibrium, it is
beneficial to first establish the strictly dominated strategies for
both providers under optimal coordinated access. This allows
for the characterization of a provider’s best response strategy
for any price its competitor chooses. In the next theorem, we
state that the best response of a provider is to set its price
slightly lower than the competition in order to capture all of the
secondary demand rather than sharing the secondary demand
at that price. This can be formalized as follows:

Theorem IV.2 If p > pBE , for any given α ∈ [0, 1] there
exists a price p′ ∈ (pBE , p) such that:

W ∗(p′, σ(p′)) > W ∗(p, ασ(p)). (10)

Before we prove Theorem IV.2, it is beneficial to establish
the strictly dominated strategies for both providers under opti-
mal coordinated access. This allows for the characterization of
provider i’s best response strategy for any price it’s competitor
chooses. To do so we introduce two lemmas. In the first lemma
for two given secondary demand values of σ1 and σ2 such that
σ1 > σ2, we will demonstrate that the revenue rate when
facing higher secondary demand σ1 is never less than the
revenue rate when facing lower secondary demand σ2 (i.e.,
W ∗(pi, σ1) ≥W ∗(pi, σ2)).

Lemma IV.1 Let p > 0. For any σ1, σ2 such that σ1 > σ2:

W ∗(p, σ1) ≥W ∗(p, σ2).

Proof. Consider the optimal access policy A∗(p, σ2) which
yields a revenue rate of W ∗(p, σ2) for demand σ2. Now
consider a policy Â(p, σ1) for demand σ1, which does a
random thinning of the secondary demand and brings it to
σ2 (i.e., Â(p, σ1) accepts each arrival with probability σ2/σ1.
Note that the thinned arrival process is still Poisson [22]. Once
the secondary demand is reduced, access policy A∗(p, σ2) is
implemented. Hence Â(p, σ1) and A∗(p, σ2) generate the same
revenue rate, i.e., W (p, σ1, Â) = W ∗(p, σ2).

Since by definition A∗(p, σ1) is the optimal coordinated
access policy when secondary demand is σ1, we know that
it does not generate a revenue less than the revenue generated
by the policy we have just described. We can formulate this
conclusion as:

W ∗(p, σ1) ≥W (p, σ1, Â) = W ∗(p, σ2). (11)

�
In the previous lemma, we have demonstrated that an

increase in secondary demand does not result in a decrease
in the revenue rate of a provider. In the second lemma we
will build on the previous lemma to show that when the price
is set above the break-even price, an increase in secondary
demand translates into strict increase in the revenue rate.
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(a) Case 1: σT̂ /∈ [x, x+ ε)

 

(b) Case 2: σT̂ ∈ [x, x+ ε)

Fig. 3: Illustration of the two cases considered in the proof of Lemma IV.2

Lemma IV.2 Let p > pBE . For any σ1, σ2 such that σ1 > σ2:
W ∗(p, σ1) > W ∗(p, σ2).

Proof: We know that when the price is greater than the
break-even price (i.e., p > pBE), an optimal admission policy
will never choose the threshold value T = 0. Since in this
lemma we only consider such prices, we can formalize this
result through the formulation

max
0≤T≤C

W (p, σ, T ) = max
1≤T≤C

W (p, σ, T ).

In Mutlu et al.’s work [30], it is shown that for a fixed admis-
sion threshold value T > 0, W (p, σ, T ) is a unimodal function
with respect to σ for any p. In other words, W (p, σ, T ) is
strictly increasing until is reaches a certain maximum and
strictly decreasing afterwards. We define the value of σ at
which W (p, σ, T ) attains its maximum value over the interval
[0, σmax] for an admission control policy with fixed threshold
T by:

σT = argmax
σ∈[0,σmax]

W (p, σ, T ). (12)

We define d to be the minimum of the distances between any
two distinct maxima of W (p, σ, T ) for different values of T
so that

d = inf
m,n∈1,2,...,C

|σm − σn|, σm 6= σn.

Since there are a finite number of possible threshold poli-
cies, the infimum is achieved (i.e., inf = min) and d > 0.
Having defined the minimum distance between distinct max-
ima of two different threshold revenue functions, we will prove
the lemma by first showing that

W ∗(p, x+ ε) > W ∗(p, x), ∀x ∈ [0, σmax] and ε < d,

where ε is a constant the value of which does not depend on
the secondary demand x.

It should be noted that the value of ε does not depend on
x. From the way ε has been chosen, there can be at most one
distinct maximum over the interval [x, x + ε]. In the rest of
this proof, let T̂ denote the optimal threshold value at x (if
there are more than one we can choose any). We will complete

our proof by distinguishing between two cases, as illustrated
in Fig. 3:

Case 1: σT̂ /∈ [x, x+ ε).
Given the unimodality of W (p, σ, T̂ ), this function must

be either decreasing or increasing with respect to σ in the
interval [x, x+ ε]. Furthermore, it must also be true that x <
σT̂ . Otherwise, if x ≥ σT̂ , through the way we have defined
σT̂ in Eq. (12) we would have W ∗(p, x) = W (p, x, T̂ ) <

W (p, σT̂ , T̂ ), which is a contradiction to Lemma IV.1, which
we can rewrite in the following form:

W ∗(p, x) ≥W (p, σT̂ , T̂ ), ∀x ≥ σT̂ .

Thus W (p, σ, T̂ ) cannot be decreasing but must be increasing
in σ over the interval [x, x+ ε). By definition of optimality:

W ∗(p, x+ ε) ≥W (p, x+ ε, T̂ ) > W (p, x, T̂ ) = W ∗(p, x).

Case 2: σT̂ ∈ [x, x+ ε).
W (p, σ, T̂ ) attains its maximum value over [x, x+ε) at σT̂ .

Given the unimodality of W (p, σ, T̂ ) with respect to σ, the
revenue function must be increasing on the interval [x, σT̂ ].
Next we show that the revenue must remain increasing over
[σT̂ , x+ ε) for at least one other fixed threshold policy, which
we prove by contradiction. Suppose that at σ = σT̂ there
exists no threshold policy under which the revenue rate is both
increasing and greater than or equal to W (p, σ, T̂ ). Then, the
revenue function under the optimal policy must be decreasing
right after σT̂ as it is continuous in σ (see also proof of
Theorem IV.2). This contradicts Lemma IV.1. Hence, there
must exist at least one other threshold policy A = T ′ such that
the revenue rate under this new threshold value W (p, σT̂ , T

′)

is increasing and satisfies W (p, σT̂ , T
′) ≥W (p, σT̂ , T̂ ). Since

the interval [x, x + ε) contains at most one distinct maxi-
mum, W (p, x, T ′) must remain increasing over the interval
[σT̂ , x+ ε). Then we can conclude

W ∗(p, x+ ε) ≥W (p, x+ ε, T ′) > W (p, σT̂ , T
′)

≥W (p, σT̂ , T̂ ) > W (p, x, T̂ ) = W ∗(p, x).

Having shown that W ∗(p, x + ε) > W ∗(p, x) for ε < d
under both cases, we can finally proceed with making the
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connection between our proof and the lemma by first stating:

W ∗(p, σ1) > W ∗(p, σ1 − ε) > W ∗(p, σ1 − 2ε) >

. . . > W ∗(p, σ1 − kε), (13)

where k is the largest integer such that σ1 − kε > σ2. Since
we can take any ε < d, we can choose one final ε′ = σ1 −
kε− σ2 < d, such that:

W ∗(p, σ1 − kε) = W ∗(p, σ2 + ε′) > W ∗(p, σ2). (14)

Combining Eqs. (13) and (14) we get

W ∗(p, σ1) > W ∗(p, σ2).

Proceeding with the proof of our theorem, we show that as
long as the price is lowered by less than a certain amount, the
relationship established in the Lemma IV.2 can be extended
to different prices such that W ∗(p′, σ(p′)) > W ∗(p, ασ(p))
where p′ < p.

Proof of Theorem IV.2 Through Lemma IV.2 we know that
the following inequality holds:

W ∗(p, σ(p)) > W ∗(p, ασ(p)). (15)

For a fixed threshold value T , the revenue takes the form:

W (p, σ(p), T ) =(1−B2(λ, σ(p), T ))σ(p)p (16)
+ (1−B1(λ, σ(p), T ))λK,

where

B1(λ, σ(p), T ) =

(λ+σ(p))TλC−T

C!∑T−1
n=0

(λ+σ(p))n

n! + (λ+ σ(p))T
∑C
n=T

λn−T

n!

,

and

B2(λ, σ(p), T ) =

(λ+ σ(p))T
∑C
n=T

λn−T

n!∑T−1
n=0

(λ+σ(p))n

n! + (λ+ σ(p))T
∑C
n=T

λn−T

n!

,

the derivation of which is given in [30]. Since the respective
blocking probabilities of primary secondary users B1(·) and
B2(·) are a function of p through σ(p), which is assumed to be
continuous in p, we conclude from Eq. (16) that W (p, σ(p), T )
is also continuous in p.

From the way we have defined the optimal access policy in
Eq. (3), W ∗(p, σ(p)) is also continuous in p as we consider
a finite set of possible values which T can take [18, pp.
11&135].

First let us assume that there exists a p̂ ∈ (pBE , p) such
that

W ∗(p̂, σ(p̂)) ≥W ∗(p, σ(p)).

Then it follows by Eq. (15) that

W ∗(p̂, σ(p̂)) > W ∗(p, ασ(p))

and p′ can be set equal to p̂. On the other hand, assume that
there exists no such price p̂ < p for which

W ∗(p̂, σ(p̂)) ≥W ∗(p, σ(p)).

p1 = p2 𝐩𝟏 

  

p2
BE 

p1
BE

 

𝐩𝟐 

  
Fig. 4: Representation of a price war as a result of best
response dynamics under coordinated access.

This implies that the revenue is monotonically increasing for
all p̂ < p such that:

W ∗(p̂, σ(p̂)) < W ∗(p, σ(p)). (17)

Then by continuity, the following can be stated for
W ∗(p, σ(p)): ∀ε > 0, ∃δ(ε, p) > 0 s.t. if |p− p̂| < δ then

|W ∗(p, σ(p))−W ∗(p̂, σ(p̂))| < ε.

Making use of Eq. (17) and our assumption that p̂ < p, we
can remove the absolute value from the previous equation and
simplify it to:

W ∗(p, σ(p))−W ∗(p̂, σ(p̂)) < ε. (18)

Taking ε = W ∗(p, σ(p)) −W ∗(p, ασ(p)) and cancelling the
terms W ∗(p, σ(p)) on both sides of the inequality (18) we ob-
tain −W ∗(p̂, σ(p̂)) < −W ∗(p, ασ(p)). Multiplying both sides
by −1, the equation finally takes the form W ∗(p̂, σ(p̂)) >
W ∗(p, ασ(p)) and p′ can be set equal to p̂. �

Theorem IV.2 states that if a provider profits at a given
price, obtaining the entire secondary demand at that price is
strictly more profitable than obtaining part of the demand at
a slightly higher price. This property reflects an incentive for
each provider to unilaterally deviate from offering the same
price as its opponent, provided that the price is strictly above
its break-even price. This best response dynamics is illustrated
in Figure 4 and the resulting market equilibrium is formally
analyzed in the next section.

C. Market Equilibrium

Having identified the best response of a network provider
under coordinated access in Theorem IV.2 in the previous
section, we now proceed to establish the market equilibrium.
Given initial prices p1 and p2 such that pi > pBEi , i = 1, 2,
the two providers will lower their prices in turn. This process
continues until the market price drops so low that the provider
with the higher break-even price finds himself unable to lower
its price any further without incurring a net loss.
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We start with a characterization for competitive equilibria
in the considered scenario. However, before we do that, it is
important to recall the formal definition of a Nash equilibrium.

Definition IV.1 A pricing strategy profile (p1, p2) is a Nash
equilibrium for rewards Ri(p1, p2) if and only if

R1(p1, p2) = max
p

R1(p, p2)

and
R2(p1, p2) = max

p
R2(p1, p).

Next, we provide a theorem which identifies possible market
outcomes in terms of Nash equilibria, the proof of which can
be found in the appendix.

The first part of the theorem is concerned with the case when
one provider (without loss of generality provider 1) has strictly
lower break-even price than the other provider. In the theorem,
we show that the provider with the lower break-even price
captures the entire market by pricing below its competitor’s
break-even price. However, when the price is continuous, it
is impossible to provide an exact price that achieves this best
response. Hence, following a well-known approach used in
game theory to address this technicality [33, pages 64-67], we
assume that each provider’s price is a multiple of a sufficiently
small discretization step ε.

Additionally, the exact value of the equilibrium price p1
depends on where provider 1’s revenue is maximized over the
interval [pBE1 , pBE2 − ε]. We formally define this maximum as
the following:

W
∗
1 = max

p∈[pBE
1 ,pBE

2 −ε]
W ∗1 (p, σ(p)). (19)

Note that the revenue may attain this maximum at several
prices on the interval, which we denote by the following set:

P = argmax
p∈[pBE

1 ,pBE
2 −ε]

W ∗1 (p, σ(p)). (20)

The other provider is unable to underbid its competition in
a profitable fashion. Hence it opts for any price that doesn’t
capture the secondary demand. In the equilibrium this price
must also not give an incentive to the winner to deviate to a
higher price. We next define the lowest price provider 2 can
choose for which there exists an incentive for provider 1 to
deviate from P:

pmax , arginf
p̂≥pBE

2

{
max

p∈[pBE
1 ,p̂]

W ∗1 (p, σ(p)) > W
∗
1

}
. (21)

If no such price exists, then we simply set pmax = ∞. Then
this price effectively limits the price choice of provider 2
from above. Setting any price above pmax creates an incentive
for provider 1 to deviate, thus disturbing the equilibrium.
If provider 2 were to choose a price p2 > pmax, then
what follows is that provider 1 raises its price to this new
maximizing price. However, provider 2 would then respond
with underbidding provider 1 as a result of Theorem IV.2.

The second part of the theorem concerns the symmetric case
when both providers have the same break-even price. In that
case the unique Nash equilibrium outcome is defined by both

providers charging their break-even prices, unable to capture
the entire market due to profitability constraints.

Theorem IV.3 (Nash Equilibria)
(a) If pBE1 < pBE2 then one or more Nash equilibria exist and

have the strategy profile (p1, p2) where

p1 ∈ P

p2 ∈ (p1, p
max),

where P is as given by Eq. (20) and pmax by Eq. (21).
(b) If pBE1 = pBE2 then there exists a unique Nash Equilibrium

given by the strategy profile (p1, p2) such that

p1 = p2 = pBE1 .

Proof: See Appendix.
The following two examples aim to illustrate that qualitative

differences in the placement of Nash equilibria are governed
by the secondary demand function σ(p). These examples are
based on demand functions commonly used in the economics
literature that are respectively exponentially and linearly de-
creasing with price [37].

Example IV.1 Suppose that the secondary demand function
follows a negative exponential demand σ(p) = 10e−0.2p,
which indicates sufficiently low price elasticity of demand so
that the revenue rate remains increasing with price. We set the
network parameters for both providers as:

(λ1, C1,K1) = (1, 2, 20), (λ2, C2,K2) = (10, 5, 35),

which, through Eq. (9), yield pBE1 = 4.00, pBE2 = 19.74. Fig-
ure 5(a) demonstrates the low-elasticity property of provider
1’s revenue rate function, W ∗1 (p1, σ(p1)). The revenue rate is
clearly maximized when the price is p1 = 19.74−ε, at a price
slightly below the other provider’s break-even price.

Example IV.2 In this example we consider a linear demand
function σ(p) = 10 − 0.5p. The network parameters and
thus the break-even price are the same as in the previous
example, which we omit. Under this new and faster decreasing
demand function, we plot the revenue rate in Figure 5(b).
The revenue rate achieves its maximum at p1 = 15.76 after
which it demonstrates high-elasticity and starts to decrease
with price. This results in the revenue maximizing price being
less than pBE2 = 19.74. Therefore, facing such demand
provider 1 would lower its price further below even though
its competitor cannot match it without incurring a net loss,
which demonstrates our result stated in Theorem IV.3(b).

Comparison with classical Bertrand duopoly. Theorem IV.3
essentially asserts that the equilibrium outcome of competition
for secondary demand is a price war. Price wars are also
typical outcomes in the classical Bertrand duopoly, hence it
is worthwhile to put the two settings in perspective. In the
Bertrand game, for a given price, both the revenue and the
cost are linear functions of demand. In contrast, in the present
setting neither revenue nor cost of secondary service are linear
in secondary demand, primarily because both quantities rely
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(a) Provider 1’s reward maximized just below competitor’s break-
even price when secondary demand is σ(p1) = 10e−0.2p1 .
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(b) Provider 1’s reward maximized well below competitor’s break-
even price when secondary demand is σ(p1) = 10− 0.5p1.

Fig. 5: Different reward maximizing prices as provided in Examples IV.1 and IV.2.

heavily on blocking probabilities that are highly nonlinear
in the demand. In addition, the Bertrand model precludes
any capacity constraints and assumes that all demand can
be satisfied, whereas the model of this paper is centered on
a fundamental limitation in capacity. Yet, interestingly, the
equilibrium of the present game resembles (and, depending
on the secondary demand function, may be identical to) the
outcome of a Bertrand game in which marginal cost is constant
and equal to the break-even price.

This similarity is a consequence of two nontrivial properties
established in the present paper: (i) insensitivity of break-
even price against secondary demand, and (ii) Theorem IV.2,
which indicates that having more secondary demand is always
more favorable provided that secondary service is priced
above break-even price. Both properties, however, rely on the
assumption of optimal coordination of secondary access and
does not necessarily extend to arbitrary access policies, as
illustrated in the sequel.
Extension to multiple providers. Equilibrium strategy pro-
files given in Theorem IV.3 can be generalized to an arbitrary
number of providers competing for the secondary demand,
each with their own primary users, capacities and primary user
rewards: Consider N such providers and let pBEi continue to
represent the break-even price of provider i. Without any loss
of generality, let us re-index the providers if necessary so that:
pBE1 ≤ pBE2 ≤ pBE3 ≤ . . . ≤ pBEN .

Further we define n = max{i : pBEi = pBE1 }. Hence n is
the number of providers that share the lowest break-even price.
We generalize the two cases presented in Theorem IV.3:
• If n > 1 then any price profile (p1, p2, · · · , pN ) such that

pi = pBE1 for i = 1, 2, · · · , n

and

pi > pBE1 for i = n+ 1, n+ 2, · · · , N.

is a Nash equilibrium. In each such equilibrium providers
1, 2, · · · , n service the secondary demand at their break-

even prices thereby generating no additional profit. The sec-
ondary demand is split among these providers according to
an arbitrary probability vector [α1, α2, ..., αn−1, αn] where∑n
i αi = 1, αi > 0, which has no bearing on equilibrium

prices. The remaining N − n providers are not able to
capture any secondary demand.

• If n = 1 then there is a single provider whose break-even
price is lower than all the rest. In equilibrium this provider
captures the entire secondary demand at a strictly profitable
price, while the remaining N − 1 providers cannot serve
any secondary demand. In particular Nash equilibria have
the form:

p1 ∈ P,

and
pi ≥ pBEi for i = 2, · · · , N,

and at least one provider j 6= 1 chooses a price such that
pj < pmax, where pmax is defined as in Eq. (21), so that
there is no incentive for provider 1 to deviate from P .

Quality of Service. QoS plays an important role wireless
services. In this paper, QoS is implicitly captured through
the implementation of a coordinated access policy. Under this
policy, the QoS experienced by primary users will naturally
be higher than that experienced by secondary users, since the
provider reserves a certain part of its network capacity for the
exclusive use of primary users. A possible refinement of the
model is through the introduction of penalties. Specifically,
whenever a provider is unable to accommodate a service
request of an incoming user, it would compensate the blocked
user by paying a fee (or giving a discount). If the penalty
is imposed only when primary users are blocked (secondary
access is opportunistic, and therefore has no associated penal-
ties when blocked), then our results still hold through a similar
analysis.
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V. UNCOORDINATED ACCESS POLICY

In this section we consider equilibrium regimes that arise
when competing providers grant uncoordinated access to sec-
ondary demand. We shall argue that such equilibria can be
drastically different than those under an optimal coordinated
access.

Under uncoordinated access, a provider does not differenti-
ate between primary and secondary users in granting spectrum
access requests. In turn, both types of users experience the
same blocking probability. This probability depends on the
aggregate demand and system capacity, and can be computed
using standard techniques in teletraffic. Namely, when provider
i serves secondary demand σ, the two blocking probabilities
are

Bi,2(λi, σ, Ai) = Bi,1(λi, σ, Ai) = E(λi + σ,Ci),

where E(λi + σ,C) is the Erlang-B formula.
The revenue rate of provider i, when serving secondary

demand σ by charging pi per admitted request, is then given
by

Ŵi(pi, σ) = (1− E(λi + σ,Ci))σpi (22)
+ (1− E(λi + σ,Ci))λiKi,

where the first term corresponds to the reward rate collected
from secondary users that gain admission to the network,
while the second term corresponds to the reward rate collected
from the serviced primary users. (Here and in the rest of this
section we will consistently use the symbol ˆ to indicate the
quantities associated with uncoordinated access.) Once again,
for analyses in which we consider a single provider, we will
drop index i from our notation for the sake of simplicity.

A. Profitability

We recognize Ŵ (p, 0) as the revenue rate of a provider
when it does not serve any secondary demand. Similar to the
profitability conditions for the optimal coordinated access case
stated in Theorem IV.1, note that

Ŵ (p, σ(p)) ≥ Ŵ (p, 0) (23)

if and only if p ≥ p̂BE , where p̂BE satisfies:

p̂BE =
(E(λ+ σ(p̂BE), C)− E(λ,C))λK

(1− E(λ+ σ(p̂BE), C))σ(p̂BE)
. (24)

Hence the provider incurs loss and has no incentive to serve
the secondary demand at a price below p̂BE . In turn p̂BE is
the break-even price of a provider under uncoordinated access.

It is instructive to compare the break-even prices under
uncoordinated access and optimal coordinated access. Firstly,
p̂BE ≥ pBE because if the optimal admission policy does
not yield positive profit from secondary demand then neither
does any other policy. For typical parameters this inequality is
strict. Consequently, providers need to charge a higher price to
secondary users in order to avoid a net loss, which results in
the tendency to bid higher prices under uncoordinated access.
Secondly, in contrast to pBE , the break-even price p̂BE for
uncoordinated access is given by an implicit equation that
depends on the secondary demand σ(p).
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Fig. 6: Revenue rates under optimal coordinated and uncoordi-
nated access versus secondary demand - network parameters:
p = 30, λ = 13, C = 20 and K = 50.

B. Market Sharing

While we established in Lemma IV.2 that market sharing is
not favorable under optimal coordinated access, these results
do not necessarily extend to a case when uncoordinated access
is implemented. As a matter of fact, under an uncoordinated
access implementation, whether the revenue rate increases or
decreases by sharing secondary demand depends on another
critical parameter we shall establish later.

Before we get into our analysis, it is insightful to compare
how the revenue rates Ŵ (p, σ) and W ∗(p, σ) behave under
uncoordinated and optimal coordinated access strategies. Fig-
ure 6 illustrates the two revenue rates for a range of secondary
demand σ ,when all other parameters are fixed. When plotting
both revenue rates, the secondary price p is chosen above both
break-even prices so that the optimal revenue rate W ∗(p, σ)
is strictly increasing in σ. As a by-product of optimality,
W ∗(p, σ) ≥ Ŵ (p, σ) under all circumstances.

However, Ŵ (p, σ) has an important qualitative difference
relative to its optimal counterpart: It increases for a range of
secondary demand σ and decreases afterwards. This happens
because for small σ, secondary users enhance revenue by using
the leftover capacity from primary users, but as σ increases
secondary access occurs at an increasing expense of primary
access and that leads to a decline in revenue if primary users
are more valuable (that is, if p < K). This property opens the
possibility that Ŵ (p, ασ) > Ŵ (p, σ), in which case a provider
has incentive to share secondary demand at prices higher than
break-even. Consequently, it has a profound impact on the
outcome of a competitive setting.

To formalize this intuition let us define pMS as the solution
to the following:

p =
(E(λ+ σ(p), C)− E(λ+ ασ(p), C))λK

(1− E(λ+ σ(p), C))σ(p)− (1− E(λ+ ασ(p)))ασ(p)
.

(25)
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It can be verified directly from Eq. (22) that:

Ŵ (p, ασ(p))

{
> Ŵ (p, σ(p)) for p < pMS

≤ Ŵ (p, σ(p)) for p ≥ pMS .
(26)

Thus, only up to the price value pMS , any provider would
benefit from a reduction in its secondary demand. The price
pMS can be interpreted as a market sharing threshold for the
provider: Any price above this threshold renders secondary
demand too valuable to share and warrants a price war. Below
this threshold, the provider has an incentive to remain at an
equilibrium that reflects market sharing, provided the price
satisfies the initial profitability condition in Eq. (23), which
translates to being above the break-even price p̂BE .

C. Profitable Sharing Interval

In this section, we seek to determine the relationship be-
tween the maximum market sharing price pMS and the break-
even price p̂BE . In particular, if one can show that one price
is always greater than the other, this can greatly simplify the
results by ruling out or strictly establishing a preference to
share the secondary market before making a negative profit.
We present our results in the next theorem for the special
case of fixed demand (we later present numerical evidence
that similar results should hold for elastic demand):

Lemma V.1 For a fixed secondary demand such that σ(p) =
σ, the following price relationships always hold under an
uncoordinated access policy:

p̂BE ≤ pMS < K. (27)

Proof:
a) First, we prove p̂BE ≤ pMS . Through Eqs. (24) and (25)

we can rewrite this inequality in the following form:

1− E(λ+ σ(p), C)

E(λ+ σ(p), C)− E(λ,C)
·

E(λ+ σ(p), C)− E(λ+ ασ(p), C)

1− E(λ+ σ(p), C)− α− αE(λ+ ασ(p), C)
≥1. (28)

Next, using the well-known recursive equation of the
Erlang-B formula [24]:

E(λ,C) =
λE(λ,C − 1)

C + λE(λ,C − 1)
,

we can expand Eq. (28) and after some algebra and regrouping
of the terms, we can show that the inequality p̂BE ≤ pMS is
equivalent to demonstrating that:

α(λ+ σ)E(λ+ σ,C − 1) + (1− α)λE(λ,C − 1)

≥ (λ+ ασ)E(λ+ ασ,C − 1). (29)

Define gC−1(λ) = λ ·E(λ,C−1), which represents the traffic
loss rate when the arrival process is Poisson with rate λ. For
Eq. (29) to hold we need:

αgC−1(λ+ σ) + (1− α)gC−1(λ) ≥ gC−1(λ+ ασ). (30)

Once can observe that Eq. (30) is by definition the convexity
condition on the traffic loss as a function of the arrival rate,
which is proven in [24]. Therefore, p̂BE ≤ pMS .

b) We now show that the market sharing price is always less
than the primary reward, i.e., pMS < K. Recalling Eq. (25),
this is equivalent to the following:

(E(λ+ σ,C)− E(λ+ ασ,Ci))λ

(1− E(λ+ σ,C))σ − (1− E(λ+ ασ))ασ
< 1.

After some rearrangement of the terms and substituting
gC(λ) for λ · E(λ,C), the inequality takes the form:

gC(λ+ σ)− gC(λ+ ασ) < σ(1− α).

Upon careful observation, this inequality condition holds if
one can show that:

g′C(λ) =
dgC(λ)

dλ
< 1. (31)

In the paper [24], it has been demonstrated that g′C(λ) ≤ 1
for C ≥ 0. The equality condition stems from the fact that
the induction proof starts from C = 0, for which gC(λ) = λ
and hence g′C(λ) = 1. If one would start the induction from
C = 1, using the following recursive formulation of gC(λ)

gC(λ) =
λgC−1(λ)

C + λgC−1
, (32)

provided in [24], one can show that g1(λ) = λ2/1+λ. Taking
the derivative with respect to λ,

g′1(λ) =
λ2 + 2λ

λ2 + 2λ+ 1
< 1. (33)

Then following the same steps as in [24] one can show that
g′C(λ) < 1 for C ≥ 1, which establishes Eq. (31).

Lemma V.1 establishes a fundamental relationship between
the break-even and market sharing prices and the primary
reward K, thus proving the existence of a profitable market
sharing price interval. This interval plays a critical role in
defining the market outcomes, as we shall demonstrate in the
next section.

D. Equilibrium

Competitive equilibria under uncoordinated access can now
be determined depending on the critical price values p̂BEi
and pMS

i of all providers i. Figure 7 illustrates a particular
placement of these parameters for two providers. In the
illustrated setting, the market sharing intervals [p̂BE1 , pMS

1 ]
and [p̂BE2 , pMS

2 ] have a non-empty intersection; therefore there
exist common price values that are above break-even values
and acceptable for market sharing for both providers. In turn,
there is a continuum of equilibria strictly above the break-even
prices.

We conclude this section with a numerical example con-
cerning a symmetric setting.

Example V.1 We consider two network providers with identi-
cal parameters: Primary arrival rate λi = 13, capacity Ci = 20,
and revenue collected per serviced primary user Ki = 50. We
continue to assume inelastic secondary demand whose value is
chosen to be σ = 20. We assume that secondary demand splits
equally in the case of equal prices, that is, α1 = α2 = 0.5.
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Access Policy Equilibrium price Equilibrium profit
Coordinated p1 = p2 = 0.91 P1 = P2 = 0

Uncoordinated 23.46 ≤ p̂1 = p̂2 ≤ 34.11 0 ≤ P̂1 = P̂2 ≤ 121.54

TABLE I: Equilibrium prices and resulting profits for the setting considered in Example V.1.

 

Fig. 7: Point (A) represents the highest price Nash equilibrium
under optimal coordinated access, and the continuum of points
in (B) is the set of Nash equilibria under uncoordinated access.

The break-even price for coordinated access is computed
as 0.91; hence by Theorem IV.3 the unique price equilibrium
under coordinated access is p1 = p2 = 0.91 and no provider
profits from secondary demand.

The break-even price for uncoordinated access is p̂BEi =
23.46 and the market sharing threshold is pMS

i = 34.11.
Hence, any price profile (p, p) where p lies in the interval
[23.46, 34.11] constitutes a competitive equilibrium. For ex-
ample, if provider −i adopts the secondary price p−i = 30
then

Ri(p1, p2) =


Ŵi(pi, σ) = 74.66 if pi = 29.99

Ŵi(pi, 0.5σ) = 90.01 if pi = 30

Ŵi(pi, 0) = 0 if pi > 30,

In particular pi = 30 is the best response of provider i;
and so the price profile (30, 30) is a Nash equilibrium. A
comparison of possible equilibria and associated profits under
both access strategies is given in Table I. It is worth noting
that in the coordinated access policy, the price war drives the
profits of both provider to zero by lowering the prices to the
break-even price, which is the same for each provider. On
the other hand, uncoordinated access gives a range of prices
yielding positive profits in the sharing interval. Note that profit
from primary users is not included in either case.

Interestingly, an uncoordinated access policy, which is sub-
optimal to implement for a provider in isolation, results in
competitive equilibria in which all providers are strictly better
off than resorting to their optimal individual policies.

Example V.2 This time, we consider an elastic demand to
demonstrate that our results extend beyond inelastic secondary
demand. Once again there are two network providers with
identical parameters: Primary arrival rate λi = 30, capacity
Ci = 50, and revenue collected per serviced primary user
Ki = 50. We assume a secondary demand that is exponentially
decreasing with the price σ(p) = 80e−0.02p. We assume that
secondary demand splits equally in the case of equal prices,
that is, α1 = α2 = 0.5.

The break-even price for coordinated access is computed
as 0.01; hence by Theorem IV.3 the unique price equilibrium
under coordinated access is p1 = p2 = 0.01 and no provider
profits from secondary demand.

The break-even price for uncoordinated access is p̂BEi =
20.06 and the market sharing threshold is pMS

i = 33.39.
Hence, any price profile (p, p) where p lies in the interval
[20.06, 33.39] constitutes a competitive equilibrium. The same
arguments discussed within Example V.1 also apply here.

VI. CONCLUSION

In this paper we provided results on the competitive na-
ture of a secondary spectrum market with multiple firms by
investigating the equilibrium outcomes. Our focus was on
two proposed regimes for secondary spectrum access, namely
coordinated access and uncoordinated access under private
commons. This kind of market analysis can help provide
important guidance to a firm’s strategic decision process by
explicitly determining the parameters on which market success
depends. Given the current state of the wireless industry, this
research may encourage the adoption of dynamic sharing tech-
nologies. To achieve this goal, we formulated the problem as a
non-cooperative game, in which network providers with finite
spectral capacities choose price and access control strategies
to follow with respect to secondary users.

We started our analysis with a threshold type optimal
coordinated access policy. We demonstrated that in a sec-
ondary market each provider has a unique break-even price,
which serves as the minimum price at which profitability of
secondary provisions is guaranteed regardless of the secondary
user demand. We provided an explicit formula to calculate the
break-even price, which also establishes its relationship with
the network parameters (i.e., the primary load, primary reward,
and system capacity). The break-even price of each provider
is independent of the system parameters of other providers.
The break-even price is, in general, significantly lower than
the primary reward, indicating that secondary access can be
offered for relatively low prices. For example, the break-even
price is less than 1% of the primary reward if the network
load is below 68% and the number of channels C exceeds 32.
Even at the critical load where the primary load is equal to the
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system capacity (i.e., λ = C), the break-even price remains
below 20% of the primary reward for C ≥ 16.

Next, we provided a detailed study of the strictly increasing
property of the revenue rate under optimal coordinated access
through threshold type control and unimodality of the revenue
function for each threshold.. This lead to the establishment of
the best response for a network provider which is to always
underbid the competition as long as it finds it profitable to
do so. In the presence of multiple firms, this pricing strategy
results in a price war where a single provider (that with
the lowest break-even price) captures the entire secondary
spectrum market, effectively forming a monopoly. We then
listed the possible market outcomes using the notion of Nash
equilibrium in a non-cooperative game where two or more
network providers implement an optimal coordinated access
policy. While the demand function does not play a role in
determining the identity of the winning provider, we showed
that is does affects the revenue-maximizing price for that
provider and the placement of the Nash equilibrium.

Finally, we showed that the market dynamics fundamentally
differ when providers implement uncoordinated access. We
highlighted that the break-even price is no longer insensitive to
secondary demand and market sharing becomes a possible best
response, determined by another price threshold. Furthermore,
we demonstrated the existence of a profitable sharing price
interval for fixed secondary demand (we verified numerically
that the profitable sharing interval exists for other forms of
secondary demand). It is worth noting that even though a
provider might find it desirable to share the market, it would
still go into a price war for price values higher than its
market sharing price pMS , thus preventing convergence to an
arbitrarily high price for secondary access. The possible mar-
ket outcomes under an uncoordinated access policy become
complex for general forms of demand functions, but deserve
further study, since they may result in a larger number of
providers participating the a secondary spectrum market as
well as the realization of higher revenues rates than possible
under an optimal coordinated access policy.

VII. APPENDIX

Proof of Theorem IV.3: We will prove the the two
parts of Theorem IV.3 separately, first when pBE1 < pBE2

and second when pBE1 = pBE2 . Under each case, we will
demonstrate that the price pairs described in the theorem give
the Nash equilibria by proving that neither provider i = 1, 2
can increase its reward Ri(p1, p2) by employing any other
strategy profile.

Part 1 - pBE1 < pBE2 In a given Nash equilibrium the pricing
strategy each provider chooses is given by:

p1 ∈ P

and
p2 ∈ (p1, p

max). (34)

Under these strategies provider 1’s reward is

R1(p1, p2) = W
∗
1 > W ∗1 (p1, 0),

where W
∗
1 is given by Eq. (19) and W ∗1 (p1, 0) represents the

base revenue rate provider 1 collects from the primary users
in the absence of secondary users. Thus provider 1 collects a
positive revenue from capturing the entire secondary market
above its break-even price. On the other hand, provider 2 is
unable to attract any secondary demand and faces the reward:

R2(p1, p2) = W ∗2 (p2, 0).

We first analyze the possible increases in reward when
provider 2 chooses other price strategies.

Suppose provider 2 chooses any price p′2 < p1. Then
provider 2 captures the secondary demand but since p′2 <
p1 < pBE2 this is a non-profitable price. Hence provider 2
choose to implement a lock-out policy which is reflected in
the reward:

R2(p1, p
′
2) = W ∗2 (p′2, σ(p′2)) = W ∗2 (p2, 0),

by Theorem IV.1. Therefore R2(p1, p
′
2) = R2(p1, p2).

Now suppose provider 2 chooses any price p′2 ≥ pmax,
which we have previously defined in Eq. (21). This action does
not change the reward of provider 2 as it remains in a position
where it capture no secondary demand. Hence, R1(p1, p

′
2) =

R1(p1, p2).
Having proven provider 2 has no incentive to deviate, we

shift our focus to provider 1.
If provider 1 chooses a price p′1 > p2, this results in the loss

of the secondary demand and its reward becomes R1(p′1, p2) =
W ∗1 (p′1, 0) = W ∗1 (p1, 0) < R1(p1, p2).

If provider 1 chooses a price p′1 = p2, it shares the
secondary demand with provider 2 and its reward becomes
R1(p′1, p2) = W ∗1 (p2, α1σ(p2)). By Theorem IV.2 there exists
an ε > 0 such that:

W ∗1 (p2, α1σ(p2)) < W ∗1 (p2 − ε, σ(p2 − ε)),

hence R1(p′1, p2) < R1(p1, p2).
If provider 1 chooses a price pBE2 ≤ p′1 < p2, this implies

through Eq. (34) that p′1 < pmax. By the definition of pmax

in Eq. (21), for any price p′1 < pmax we have:

W ∗1 (p′1, σ(p′1)) ≤W ∗1.

Hence R1(p′1, p2) = W ∗1 (p′1, σ(p′1)) < R1(p1, p2).

If provider 1 chooses a price p′1 < pBE1 , it serves secondary
demand at a non-profitable price and hence faces the reward
R1(p′1, p2) = W ∗1 (p′1, σ(p′1)) = W ∗1 (p1, 0) < R1(p1, p2).

Finally, if provider 1 chooses a price p′1 ∈ [pBE1 , pBE2 − ε]
but p1 /∈ P , from the way P is defined, the new
reward is R1(p′1, p2) = W ∗1 (p′1, σ(p′1)) < W

∗
1. Therefore

R1(p′1, p2) < R1(p1, p2).

Part 2 - pBE1 = pBE2 Since both providers are identical, we
will only consider provider 1. Also, for the sake of notational
simplicity we will drop the index on the break-even price and
denote it by pBE . Provider 1, when at the Nash equilibrium,
chooses the price strategy p1 = pBE and faces the reward
R1(p1, p2) = W ∗1 (p1, 0).

We fix provider 2’s strategy to p2 = pBE and demonstrate
that provider 1’s reward does not improve by choosing any
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other action pair.
If provider 1 chooses a pricing strategy p′1 > pBE , it faces

a reward R1(p′1, p2) = W ∗1 (p1, 0) = R1(p1, p2).
If provider 1 chooses any pricing strategy p′1 < pBE ,

by definition of pBE it faces a reward R1(p′1, p2) =
W ∗1 (p1, σ(p1)) = W ∗1 (p1, 0) = R1(p1, p2).

Because of provider symmetry, the same proof follows for
player 2.

Therefore the only Nash equilibrium is given by the price
pair pBE1 = pBE2 , from which uniqueness also follows since
the break-even price of each provider is unique.

Having shown that under both cases Nash equilibria exist
and can not be different from what is stated in Theorem IV.3,
we conclude our proof.
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