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Abstract

Emerging Vehicle-to-Vehicle (V2V) technologies are expected to significantly contribute to the safety and growth of
shared transportation provided challenges towards their deployment can be overcome. This paper focuses on one such
challenge: characterizing the fraction of vehicles which have received a message, as a function of space and time,
and operating under different traffic and communication conditions. V2V technologies bridge two infrastructures:
communication and transportation. These infrastructures are interconnected and interdependent. To capture this inter-
dependence, which may vary in time and space, we propose a new methodology for modeling information propagation
between V2V-enabled vehicles. The model is based on a continuous-time Markov chain which is shown to converge,
under appropriate conditions, to a set of clustered epidemiological differential equations. The fraction of vehicles
which have received a message, as a function of space and time may be obtained as a solution of these differential
equations, which can be solved efficiently, independently of the number of vehicles. Such characterizations can form
the basis of assessing several attributes of V2V systems, some of which we demonstrate. The characterizations lend
themselves to a variety of generalizations and capture various interdependencies between communication and mobil-
ity. As tests of the model we provide applications both in real-world settings using microscopic traffic traces and in
postulated scenarios of outages and system perturbations: we find good model agreement with microscopic trajec-
tory from two actual trajectory datasets, as well as a synthetic trajectory dataset generated from the origin/destination
matrix.

Keywords: V2V communication, Mobility, Information propagation, Transportation network, Shared transportation,
Trajectory data

1. Introduction

1.1. Motivation and Applications
Vehicle-to-Vehicle (V2V) technology is poised to significantly impact the functioning and management of trans-

portation networks (Harding et al., 2014; NHTSA, 2016). With V2V, vehicles can communicate directly with each
other, or with bikes, wheelchairs, and devices held by pedestrians, to share information about road conditions ahead.
We consider all these communications within the purview of V2V. In 2016, the National Highway Traffic Safety Ad-
ministration (NHTSA) of the U.S. Department of Transportation proposed to mandate the integration of dedicated
short-range communications (DSRC) for V2V on all lightweight vehicles (NHTSA, 2016); a final decision on the
proposal is awaited. In 2019, the European Commission implemented new rules stepping up the deployment of Co-
operative Intelligent Transport Systems (C-ITS) which enables V2V communication (European Commission, 2019).
Several automakers are already deploying V2V; for example, General Motors has already incorporated V2V technol-
ogy into the 2017 Cadillac CTS sedan (Bonelli, 2017), and by March 2018 there were over 100,000 Toyota and Lexus
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vehicles equipped with V2V in Japan (Toyota, 2018). Volkswagen has also announced plans to begin deploying V2V
technology in Europe starting in 2019 (Cain, 2018). In view of these market and regulatory forces, we may safely
anticipate a rise in market penetration of V2V in the near future. Thus, it is wise to both plan for its immediate
deployment and currently unforeseen future uses in traffic congestion, safety, and monitoring.

V2V can substantially enhance public safety. It can provide advance warnings to drivers about developing dan-
gerous situations, through for example forward collision warning, intersection movement assist, left turn assist, and
blind-spot warning (Harding et al., 2014); the latter two applications alone could prevent an estimated 600,000 crashes
and save over 1,000 lives each year in the U.S. (Bertini et al., 2016). V2V can inform drivers about the incipient arrival
of emergency and service vehicles such as police cars, ambulances, and fire brigades. For example, police vehicles in
an active pursuit could use V2V communication to pull over vehicles or deliver warnings to drivers, and ambulances
with critical patients and fire services could send messages to clear roadways in advance of their arrival — it is difficult
for drivers to determine the direction of approach of an emergency vehicle and react appropriately based on auditory
cues of traditional sirens alone, since auditory localization of warning alarms is imprecise within the confines of a
closed vehicle (Caelli and Porter, 1980). V2V can also propagate warnings of disruptive conditions—flash floods,
flooded roads, and damaged bridges, for instance—to vehicles approaching from a distance.

V2V may be used to alleviate traffic congestion as several works in the existing state of the art suggests. Be-
yond the usual suspects such as poorly designed narrow streets, traffic accidents, and inefficient traffic signals, traffic
congestion arises from small perturbative effects when the traffic density is high. For example, in phantom jam (doc-
umented through aerial photography (Helbing, 2001) and confirmed experimentally (Sugiyama et al., 2008)) a small
perturbation initiated through braking by an individual vehicle slows down the speed of the vehicles behind and, when
the traffic density is high, this can cause a chain reaction with the phenomenon amplifying as the waves spread farther
back (Qian et al., 2017; Patire and Cassidy, 2011). This can quickly result in severe traffic congestion throughout a
relatively large area, especially in peak traffic. V2V communications can mitigate such phenomena by timely and effi-
cient distributed communication. In recent work, Won et al. (2017), for instance, have proposed an efficient phantom
jam control protocol leveraging V2V communication. Autonomous vehicles may be particularly susceptible to such
perturbations because of higher traffic densities enabled by automation. V2V-equipped autonomous vehicles will
however be able to anticipate and mitigate phantom traffic jams by receiving relevant information to automatically
adjust speed, space headway, and routes.

For effective remediation, congestion must be detected early and be communicated to relevant parties efficiently.
Congestion can be detected by floating vehicles equipped with GPS (Wang et al., 2019; Hellinga et al., 2008; He
et al., 2017b) or cellular devices (Wang et al., 2012; Demissie et al., 2013). However, traffic status estimation based
on floating vehicles is not accurate enough (Mandal et al., 2011; Yong-chuan et al., 2011) and the instantaneity and
stability of urban traffic congestion estimation remain challenging (Kong et al., 2016). V2V can facilitate smoother
traffic flow overall by quickly disseminating relevant traffic information, e.g., vehicle speed, acceleration, and location
of neighboring vehicles, to detect traffic congestion and estimate its severity as it builds (Chen et al., 2006; Lakas and
Chaqfeh, 2010; Chou et al., 2011; Knorr et al., 2012; Forster et al., 2014; Jiang et al., 2014; de Souza et al., 2015; Wang
et al., 2016). V2V can also facilitate autonomous exchanges of routing plans between vehicles and suggest alternative
routes to optimize overall traffic flow. For example, Gupte and Younis (2012) proposes to factor in microscopic data
incorporating the destination and routes of nearby vehicles in deciding whether rerouting is advisable, in contrast to
centralized schemes that only provide macroscopic information on congestion.

Traffic conditions are known to vary widely and sometimes abruptly in a variety of unexpected events. For ex-
ample, at the end of a major sporting event, unexpected victories can cause sudden increases in traffic in areas of
celebration. Unscheduled personal visits by high-ranking officials (e.g., presidents) and celebrities can also signifi-
cantly increase local traffic volumes. The congestion from such hot spots can spread all over the city, including the
peripheries. This congestion can be ameliorated through the use of V2V communications originating from vehicles at
or near the epicenter of the disturbance allowing the recipients the option to bypass the congested region.

All in all, V2V is likely to have widespread applications in ameliorating congestion, improving routing, enhancing
safety, and improving profitability. Many of these applications save time and money of participants of ride-sharing
services, who are likely to use transportation networks more than the rest of the populace. Through participation in
these applications, shared-ride services also contribute to society by improving the travel experience of the overall
populace. Early adopters of V2V or connected and automated vehicles (CAV) may be commercial vehicles including
ride-sharing, shared taxis and shuttles and transit services etc., rather than private vehicles of individual consumers
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(Sweatman, 2017): individual consumers tend to hold on to personal vehicles for many years; consider that the average
age of cars and light trucks reached 11.6 years in 2016 (U.S. Department of Transportation, 2017). As to the ride-
sharing companies, Uber has invested heavily in CAV research and development (McGuckin et al., 2017). Since May
2018 any one with the Lyft app in Las Vegas can hail a V2V-enabled CAV (Blanco, 2019). As of January 2019, they
currently have 30 CAVs and have provided over 30,000 rides. These developments suggest that CAVs enabled with
V2V may be expected to facilitate growth and change in commercial shipping and in the shared mobility industry.
Once a critical mass is achieved, the exchange of information between such commercial vehicles will also benefit
unaffiliated or otherwise affiliated vehicles, especially in the context of safety and traffic conditions.

V2V technologies need not however constitute an unmitigated blessing - they can also bring new threats, e.g., by
serving as vectors to infect vehicles with malware (Checkoway et al., 2011; Koscher et al., 2010; Miller and Valasek,
2015). Infected vehicles can proceed to infect other vehicles with the malware. Malware can disrupt functionali-
ties of vehicles, the automated ones certainly, but also manually driven ones, and thereby constitute a public-safety
hazard. Malware may contaminate the information that vehicles receive or transmit. Routing information could be
manipulated to direct the vehicles to locations causing maximum harm, e.g., 1) to roads with poor visibility condi-
tion, thereby causing accidents, 2) to areas of heavy traffic, for example, to block the roads surrounding a busy sports
coliseum at the conclusion of a game, 3) to congregate to maximize malware propagation, for example, to launch a
denial of service (DoS) on the communications infrastructure associated with critical facilities (e.g., transportation
hubs). Alternatively, the information communicated to other vehicles informing of precarious road conditions ahead
may be suppressed, leading to a chain of collisions. Malware can cause serious malfunctions in assisted driving, e.g.,
adaptive cruise control, forward collision warning, lane departure warning (Miller and Valasek (2015), p. 11), leading
to accidents. Malware may also be able to record and leak private information of individuals in the vehicles, e.g., their
driving patterns, the address books in their phones, their pictures (Miller and Valasek (2015), p. 15).

V2V can also constitute part of the solution for this security threat. It can be used for sharing security patches
that would render vehicles immune to malware (of types that are anticipated or detected), and certificates for privacy
and authenticity, that would help blacklist infected vehicles and enable other vehicles to ignore messages from ve-
hicles which do not have these certificates. Certification Authorities (CAs) issue certificates to trusted vehicles, and
certificates of untrusted vehicles must be immediately revoked. The Certificate Revocation Lists (CRLs) must be con-
tinuously updated, thoroughly secured, and quickly delivered over large areas like entire cities. A recent report from
the U.S. Federal Highway Administration (FHWA) (Green et al., 2018) noted that epidemic routing over V2V may be
utilized for the distribution and revocation of cryptographic materials. Various other studies have also advocated the
secure distribution of CRLs using V2V (Haas et al., 2011; Chen et al., 2011; Laberteaux et al., 2008).

Characterizing the spread of malware, security patches, and CRLs over V2V constitute the first step in countering
the spread of the malware and enhancing the efficacy of the defense mechanisms, both of which would help shared
transportation companies to consider their vulnerability to cyber attacks and devise plans to protect against intrusions.

We seek to characterize the spatio-temporal propagation of information (whether it be hazards, traffic conditions,
safety, emergency protocols, malware, CRLs, or something else) through local messaging between vehicles, regardless
of the specific content of the messages. Such characterizations would reveal the fraction of vehicles who have the
information of interest, i.e., the fraction of informed vehicles, as a function of time and location. Obtaining such
a characterization is of central importance for ensuring the efficacy and security of all the applications in question.
Given the diverse set of applications of V2V, the models for such characterizations need to apply regardless of specific
content, be flexible, easy to compute and scale efficiently with size.

1.2. Challenges
Different applications that utilize V2V would need to populate vehicles over different areas with the pertinent

messages - we refer to such an area for a given application as its Region of Interest or RoI. Geocast can be used to
provide information only to vehicles in the RoI (Navas and Imielinski, 1997). The RoI will be of different shapes
and sizes for different applications. The characterization of the spatio-temporal propagation of information would
be of value provided the RoI spans at least a few blocks. In many applications of V2V, the RoI varies from an area
spanning a few blocks to a large area spanning the entire city, or areas of intermediate sizes. From domain knowledge,
we now suggest the sizes of the RoIs for different applications mentioned in Section 1.1. In urban areas, such as
Manhattan or Hong Kong, which are always suffering from traffic congestion, information pertaining to 1) incipient
arrival of emergency vehicles such as police cars, ambulances, and fire brigades, 2) sudden development of disruptive
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conditions—flash floods, flooded roads, ice formation, damaged bridges etc., or 3) possibility of a phantom jam, must
be transmitted in advance to a region of at least 10 blocks radius around the epicenter of the event or the current
location of the emergency vehicle in question. Thus, the RoI is of the order of 100 blocks for such applications.
The relevant information may also have to be shared in certain key arteries connecting a larger area to warn vehicles
directed towards the epicenter of the events in question or to clear arterial roads in advance of the arrival of the
emergency vehicles. In these cases, the size of the RoI would be larger, especially in the city center and at peak traffic,
because it takes longer to clear arterial roads. In urban areas with heavy traffic congestion, even informed vehicles
may require more time to change trajectories rather than following the road ahead. Incidentally, information has to
be spread to the vehicles not only traversing the same road as the emergency vehicles, but also those traversing the
intersecting roads; otherwise, vehicles in these intersecting roads may congest by arriving unaware into the road taken
by the emergency vehicle. Thus, information must be spread over two dimensions. The same observation applies for
messages pertaining to the development of emergency conditions or phantom jams. The RoI for these local events
may not however exceed radii of 20 blocks or so.

The RoI for security applications may constitute entire cities, large counties or nationwide highways, etc. since
malware can quickly spread throughout large areas causing large scale instability and chaos. On the other hand, the
RoI for the spread of information concerning routes and congestions due to unanticipated events, such as unexpected
victories in major sporting events, unscheduled personal visits by dignitaries and celebrities, may span anywhere
between radii of 10 − 20 blocks to entire cities, counties, long highways, etc.

Any model developed must lend itself to simple computation regardless of scale. Consider that the number of
vehicles registered in Los Angeles in 2017 was around 8 million (California Department of Motor Vehicles, 2017)
and the number of registered vehicles in Shanghai in 2015 was about 2.5 million (Ningning, 2016). Although not
all the registered vehicles may simultaneously ply a RoI, the number of vehicles plying the RoIs, particularly in
urban areas and highways is large. For example, considering multiple lanes, at peak travel times at city centers,
more than one thousand vehicles may simultaneously ply even a modest-sized two-dimensional RoI of radius of five
blocks (the area encompasses 25 blocks or so). This inhibits a simulation-based study because memory usage and
execution time exponentially increases with the number of simulation vehicles in most of the V2V simulators (e.g.,
in VEINS, composed of OMNeT++ and SUMO, which is designed to capture microscopic aspects such as details
of communication network protocols etc.); as such, these can simulate only transportation networks with far fewer
number of vehicles. Thus, given the sheer number of vehicles and adding a multitude of non-motorized travelers to
the mix, designing easy-to-compute analytical characterizations for the spatio-temporal spread, in which computation
time gracefully scales with the number of entities, assumes paramount importance.1

1A question that arises is if for large RoIs like entire cities, etc., the communication will necessarily have to be over cellular networks, rather
than over V2V. Towards that end, note that DSRC technology for V2V can utilize the specified authenticated bandwidth to enable reliable commu-
nication, and it can also provide high-speed data transmission (Ban et al., 2018). For security applications, as noted before, several research papers
and U.S. Federal Highway Administration (FHWA) make the case for transmitting CRLs over V2V; the medium for the propagation of malware
will be determined by the designer and as such V2V can not be ruled out. According to a recent FHWA report (see Green et al. (2018)), multi-hop
dedicated short-range communication (DSRC) V2V is an example of a Mobile Ad-hoc Network (MANET), and that “A MANET can serve many
needs that traditional physical infrastructure-dependent networks cannot. For example, MANETs can provide cellular network offloading. Network
offloading can be crucial in situations where the number of users on a network approaches or exceeds the network capacity, causing delays and
other interruptions in service. MANETs are capable of temporarily diverting traffic from traditional network infrastructure to reestablish service
for, or increase the number of, users within a typical area of coverage. In a similar light, MANETs are able to expand the coverage of a given
network to regions beyond what an infrastructure-dependent network usually covers. MANETs can also provide communication and information
dissemination capabilities in areas that temporarily or permanently lack an efficient communication infrastructure.” Next, note that, V2V is only
intended to provide autonomous communication in transportation environments and offers control over priority, channel, transmit power. Thus,
special purpose V2V messaging networks may be optimized for inexpensive and efficient delivery of the specific messages they need to cater to, as
opposed to the general-purpose cellular data networks which can not be optimized for the requirements of the transmission of any one specific cate-
gory of messages. Thus, it is quite possible that transmission over V2V may cost travelers less. In fact, V2V may well be offered as public utility in
due course since it provides public service by enhancing road safety and reducing congestion; if so, transmission over V2V may become free, while
Cellular communication will cost users in the foreseeable future. Thus, a cellular network-based system may be replaced or at least supplemented,
for at least data communication pertaining to transportation requirements, as market penetration of V2V increases, as is expected given the interests
shown by automakers and regulators. In such an eventuality, equivalents of the popular tools like google maps and crowdsourcing-based apps like
Waze, which are currently utilized over Cellular networks, for applications like congestion control and route selection, may be developed for V2V;
their current design for utilization only over Cellular networks may be the artifact of the current reality that Cellular network is the only available
network as V2V is not widely deployed. All the above constitute reasonable presumptions now, and the applications would become clearer as the
V2V technology is widely deployed.
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Frustratingly, not only the size of the RoI but also the heterogeneity of vehicular networks complicates the task
of obtaining a computationally simple mathematically tractable model for characterizing the fraction of informed
vehicles as a function of time and space. Both vehicle mobility and wireless communication influence information
propagation in the vehicular network, and both conditions vary temporally and spatially. Heterogeneity in vehicu-
lar mobility arises, for example, due to (1) different forms of transportation networks including grid networks (e.g.,
Manhattan), radial and circular road topologies (e.g., Paris, Moscow), and irregular narrow streets (e.g., medieval
town centers); (2) regional characteristics, such as urban or rural; and (3) time of day, such as morning and evening
rush hour. Heterogeneity in communication conditions can primarily be attributed to: (1) obstacles like buildings and
trees; (2) adverse weather conditions like heavy storms; (3) frequency of communication; and (4) user density and
available bandwidth. Different admixtures of these transportation and communication conditions have different con-
sequences for the dynamics of information propagation. Also, both mobility patterns and communication conditions
continuously evolve over space and time because of (1) evolving road topologies (e.g., due to road constructions and
temporary roadblocks), (2) varying traffic conditions (e.g., due to congestion and accidents), and (3) fluctuating link
quality. Any model should therefore be readily adaptable to this temporal and spatial evolution to capture its impact
on information propagation dynamics. Also, it is not sufficient to study how mobility (e.g., vehicle speed, traffic den-
sity, routing) and communications independently influence information propagation, as these factors mutually interact
with each other and consequentially affect information propagation in a more complicated way.

Finally, variations of mobility and communication in a vehicular network are inherently stochastic. A character-
ization of V2V information flow must hence begin by considering the stochastic components of the system. In such
settings, the classical theory of even well-behaved stochastic systems governed by Markov processes provides com-
putation approaches only for the steady-state distributions (i.e., distribution as time approaches infinity) of the number
of informed vehicles. These computation approaches are also computation-intensive as these rely on the inversion of
a Q × Q transition probability matrix, where Q is the number of states, i.e., Q is at least JK , where J is the maximum
number of vehicles in a city block and K is the number of blocks in the RoI. Such computations become intractable
even for modest size RoIs. Obtaining distributions at a given finite time is even more hopeless. On the other hand,
one can envision more computationally tractable deterministic characterizations, but the challenge then becomes to
show these as limits or some other mathematical derivations or statistic such as expectations of the governing stochas-
tic process (e.g., Kim et al. (2016) notes the need to consider “stochastic modeling to introduce greater realism”, as
future work).

1.3. Positioning our contributions with respect to the state of the art
Prior research on V2V has studied how to leverage the technology to smooth out congestion speeds in a trans-

portation problem with communication exogenous (Scholliers et al., 2016). Other work in a dual setting of a com-
munications problem with transportation exogenous has focused on the relationship between the latency of different
communication mechanisms and their impact on traffic flow and on vulnerable road users (Whyte et al., 2013; Zhang
et al., 2014a; Greenberg, 2015). The state of the art that considers both communication and mobility as endogenous
has largely focused on characterizing and evaluating message propagation speeds. Here, certain destinations points
are identified, and the speed is characterized as the ratio of the distance between the source and destination and the
time message takes to reach the destination; the latter is referred to as the delay. Some existing works compute average
message propagation speed (or delay) for various system attributes such as traffic densities, vehicle speed, etc.; some
others obtain, using renewal processes, long-term average propagation speed, i.e., limt→∞(distance/time).

Most of the analytical works in the above genre have considered movement along a one-dimensional road, which
we briefly review next. Wu et al. (2009) studied message dissemination on one-dimensional road, considering one-
and two-way traffic, based on the inter-vehicle gap and vehicle speed distributions. For a one-dimensional road with
bidirectional traffic, Agarwal et al. (2012) derived bounds on the average speed of information propagation, while Liu
et al. (2013) and Saleet et al. (2011) investigated the influence on delay of traffic density, vehicle speed, and delivery
distance. Baccelli et al. (2012) provided analysis of the information propagation speed in bidirectional vehicular
delay tolerant networks, and showed that a phase transition occurs in the propagation speed with respect to vehicle
density. Kesting et al. (2010) considered bidirectional traffic and presented an analytical model to study probability
distributions for message transmission times, assuming an exponential distribution of inter-vehicle distances. Yin
et al. (2013) also proposed an analytical model for the expected distance of information propagation on two parallel
roads, considering the distance between the two roads and the general distributions of vehicle headways. Zhang et al.
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(2014b) considered multiple lanes of the one-dimensional road with bidirectional traffic and assessed the effect of
traffic density and distribution of vehicle speed in different lanes on the speed of message dispersion.

The literature on two-dimensional traffic models is much sparser and more recent. A recent paper studies the
delay in forwarding messages along a selected path in a two-dimensional road topology assuming that the speed of all
vehicles in the same direction on a road segment is identical (He et al., 2017a). In this paper, the authors considered
a unicast scenario and, assuming communication delays may be ignored, introduced an algorithm to choose the path
with the minimum expected delay. In another recent work Kim et al. (2016) study the speed of the information
propagation “wave”, approximating it at each time and location as a function of only the deterministic traffic flow
at that time and in the vicinity of the location, and evaluate the approximation through comparison with a synthetic
stochastic process.

To summarize, the state of the art has focused mostly on analyzing expected propagation speed (or expected deliv-
ery delays) for given vehicle speed, traffic density, and distance between vehicles, with investigations limited primarily
to one-dimensional roads and, rarer, two-dimensional networks. To the best of our knowledge, characterizations of
fractions of informed vehicles at a given time and location, that have been verified through either mathematical proofs,
or synthetic simulations, or empirical studies involving actual microscopic trajectory data, have remained elusive for
both one and two-dimensional vehicular networks, regardless of size. Such fractions are more informative of the
message propagation process than expected propagation speed (or expected delivery delays), in the same manner as
cumulative probability distributions or densities are more informative of a stochastic process than an expectation.
We obtain such characterizations following rigorous mathematical proofs, and evaluate the same through extensive
synthetic simulations, and utilization of several actual microscopic trajectory data. Such characterizations can form
the basis of assessing several attributes of V2V systems, some of which we demonstrate. The characterizations are
computationally tractable and lend themselves to a variety of generalizations and capture various different interdepen-
dencies between communication and mobility. We elaborate our contributions in the next Section.

1.4. Our Contribution
We start with by modeling V2V information flow in a transportation network, i.e., the number of informed and

uninformed vehicles as a function of time and space, as a continuous-time Markov chain (CTMC) following the
extensive precedents of utilization of CTMCs in transportation networks, e.g., in estimation of freeway travel time
in both routine and perturbed states (Ramezani and Geroliminis, 2012; Dong and Mahmassani, 2009; Geroliminis
and Skabardonis, 2005; Alfa and Neuts, 1995). We are immediately confronted with the perils of the stochastic
essence of such systems. As mentioned before, even well-behaved stochastic processes like CTMCs are known to
be computationally challenging in providing probability distributions which are only accentuated in the context of
information flow in vehicular networks (last paragraph of Section 1.2). Our key insight to bypass the computational
bottleneck in this setting is to finesse the computational limitations by appeal to the ergodic theorem to argue that the
propagation process converges, in the mean field limit, to a solution of a set of clustered epidemiological differential
equations which provide the fraction of informed vehicles at any given time and space, and also lend themselves to
fast computation. One of the main virtues of this modeling approach is that, in the mean field limit, the computation
time needed to solve the equations does not depend on the number of entities including vehicles, pedestrians, bikes,
and wheelchairs, while computation time increases only modestly with topographical complexity (we demonstrate
the computational tractability in Section 5). In fact, as the number of vehicles in the system grows, the better is the
fit of the model to the underlying traffic patterns, which renders our tool suitable for most of the applications that
arise in practice. In Section 2, we also show how our framework caters to various interdependence between mobility
and communication that arise in practice-namely, temporal variation of the traffic density and routing to capture the
vehicular movement pattern during rush hour, a location-dependent mobility model that reflects speed limits applied
differently depending on the region, and finally a traffic density dependent mobility model that reflects reduced vehicle
speed due to high traffic density.

Continuum limit and mean field models have been used in the ride-sharing literature to control shared transporta-
tion systems for ride-sharing services. The goal of these platforms is to maximize fulfilled demands, revenue, or other
objectives by employing tools from optimal control (Banerjee et al., 2018). Specifically, Banerjee et al. (2018) focuses
on the scheduling policy, where the platform can determine which vehicle to allocate in response to an incoming ride
request. They proposed policies to minimize the proportion of dropped requests. In Braverman et al. (2019) and
Braverman et al. (2017), empty-car routing in a ride-sharing network was considered under a condition where supply
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and demand for vehicles tend to infinity. They provided a comprehensive analysis of the design of an optimal empty-
car routing policy based on an asymptotic fluid analysis. And Yang et al. (2018) studied the equilibrium behavior
of nomadic agents for different resources depending on time and location, arising in ride-sharing economies. The
utilization of these models in the context of information flow in transportation networks is new to our knowledge.

The analytically sanitized theoretical model lives in the mean field limit of an idealized propagation process which
converges to the solution of a coupled system of ordinary differential equations when vehicles follow exponential
sojourn times and the number of vehicles goes to infinity. In contrast, in practice, we deal with a finite number
of vehicles with sojourn times governed by an unknown underlying process. It is legitimate to wonder then how
closely our models hew to reality. We therefore conduct detailed empirical verifications of our model, intentionally
considering settings which stress the model assumptions (Section 3). For this purpose, we use synthetic stochastic
models and microscopic traffic traces - two actual trajectory datasets on highways, two-way roads with intersections,
and one synthetic trajectory dataset gleaned from origin/destination information on a roundabout. Our empirical
validations confirm that, even for a moderate number of vehicles and a variety of road topologies, the output of
the differential equations matches the results of the trace propagation process quite well even in the settings of the
microscopic trajectory data where there are a finite number of vehicles and there is no compelling reason to believe
that vehicles have exponential sojourn times, and even when vehicles follow shortest-path destination-specific routes
(as opposed to our modeling abstraction of using routing probabilities agnostic of the destination). We have made
publicly available a software that can model the spread of V2V messages in arbitrary transportation networks using
the clustered epidemiological differential equations (Kim, 2019).

We next present case-studies demonstrating the usefulness of our model to characterize the behavior of V2V
systems in various practical situations (Section 4). Here is a sampling of the results. We show how traffic congestion
can be alleviated through an intelligent application of V2V technology. We also assess how quickly information about
the location of disruptive changes (i.e., temporary roadblocks) can be disseminated. Lastly, we examine how the initial
location of informed vehicles determines the spread of information throughout the transportation network. Our study
reveals a counter-intuitive phenomenon: message propagation is not necessarily accelerated if the initially informed
vehicles are centrally located.

Finally, we show how our mathematical framework can be readily generalized to accommodate information prop-
agation under the condition of destination-dependent vehicle routing mechanisms (e.g., the shortest path routing) and
also handle the simultaneous spread of multiple pieces of information (Section 6). We discuss the various computation
tradeoffs associated with the generalizations. We conclude by summarizing our research findings in Section 7.

2. Model formulation

Section 2 introduces models pertaining to various forms of vehicle mobility and communication. We first introduce
a general mathematical framework for the propagation of messages in V2V systems (Section 2.1). We subsequently
show how the general framework caters to various specialized cases that arise in practice (Section 2.2): temporal
variation of the traffic density and routing to capture the vehicular movement pattern during rush hour (Section 2.2.1),
a location dependent mobility model that reflects speed limits applied differently depending on the region (Section
2.2.2), and finally a traffic density dependent mobility model that reflects reduced vehicle speed due to high traffic
density (Section 2.2.3). These various scenarios can occur simultaneously, which can easily be represented by com-
bining these models. All models are based on continuous-time Markov chains. We show that information propagation
based on the Markov chain can be very well approximated by differential equations for the various vehicular mobility
and communication patterns mentioned above.

2.1. Clustered epidemiological differential equation model
We develop tools to model information propagation under general types of transportation network and various

communication conditions. Transportation networks exist in various forms such as highways connecting cities; coastal
roads; and urban roads. Unlike highways or coastal roads, which are relatively simple one-dimensional forms, urban
roads exist in complex networks of different types depending on the characteristics of the area. In most areas, however,
these road topologies are superposed in a complex manner. We introduce mathematical tools that can be used to model
and analyze information flow across arbitrary complex road networks as shown in Figure 1, which can potentially be
used for prediction of information propagation through vehicle-to-vehicle communication.
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(a) Grid roads (b) Radial and circular roads (c) Diamond interchange (d) Irregular roads

Figure 1: Clustered road topologies. The figures represent various road topologies such as grid roads, radial with circular roads, and irregular
roads. In arbitrary types of topologies, roads can be divided into multiple smaller segments, so clusters can be defined as shown by the red dotted
rectangle in the illustration.

Figure 2: Mobility and communication networks. The mobility network is a directed network and the communication network is an undirected
network. The edges of these two networks may overlap but need not be exactly the same.

The extent to which information is spread between moving vehicles is determined through vehicle movement and
wireless communication. The mobility of vehicles on the transportation network depends on topology which will
continuously evolve (addition of new roads, blockage of existing roads due to maintenance), traffic conditions (traffic
congestion, the presence of an accident), time of day, and the characteristics of the individual travelers (urban, rural,
land use interactions). Communication on these transportation networks is influenced by traffic conditions (packet
collisions due to high traffic density) and communication conditions (frequency of communication between vehicles,
fading due to obstacles such as buildings, trees, etc., vehicle occlusion, multipath transmissions, rate and power
control, the hidden terminal problem, etc). We present a mathematical model that can capture information flow in
arbitrary vehicular network that contains all of these complex elements.

We divide the entire RoI into a collection of J clusters, with each cluster corresponding to a specific region of the
road; thus each vehicle is located in one of the J clusters. One possible way to form a cluster is to set the cluster size
to the communication range as it is natural to assume that the vehicles located within the same cluster are within the
V2V communication range. However, vehicles located at the boundary of one cluster can communicate with vehicles
in other adjacent clusters if they are within the communication range. Our model can cater to this communication
between vehicles located near the boundary of two adjacent clusters by considering that the vehicles located in the
different clusters can communicate at a reduced rate. When considering the communication of vehicles in adjacent
clusters, it is reasonable to apply the reduced rate because not all cars in the two adjacent clusters can communicate
with each other and only vehicles located near the boundary can communicate.

Vehicles can both communicate and move across clusters or within clusters. Clearly, a vehicle cannot communicate
between every pair of clusters because of the technical limitations of the wireless communication range. Similarly, a
vehicle cannot move between each pair of clusters due to the nature of the road and traffic rules. Both of the above are
influenced, but not solely determined, by geography. For example, although two clusters are close enough to permit
communication, the vehicle may not be able to move between them. Figure 2 shows cluster i and j located on the
same road segment of the two-way roads; these vehicles are close enough to permit communication but traffic rules do
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not allow them to travel across the median. Similarly, even between two adjacent clusters where vehicles can move,
the success rate of communication between two clusters may become low or 0 due to obstacles (buildings, trees, etc.).

Table 1: Mathematical Notation

G(V, E) Directed network of mobility on road topology
G′(V, E′) Undirected network of communication on road topology
V Set of clusters, |V | = J
E Set of directed mobility edges
E′ Set of undirected communication edges
N Total number of vehicles
nI

j(t) Number of informed vehicles in cluster j at time t
nS

j (t) Number of non-informed vehicles in cluster j at time t
X(t) Continuous-time Markov process
XN(t) Scaled Markov process, X(t)/N
λI

i j(·) Mobility rate from cluster i to j for informed vehicles
λS

i j(·) Mobility rate from cluster i to j for non-informed vehicles
λ Upper bound for mobility rate
βi j/N Communication rate between a vehicle located in cluster i and a vechicle in j
NG( j) Neighborhood of cluster j; set of clusters connected from cluster j
p jk Probability that a vehicle in cluster j move to k
ρ(t) Proportion of informed vehicles at time t

We define two networks and corresponding adjacency metrics: communication network and mobility network.
While both depend on the geographical characteristics of the roads, they do not necessarily have to be the same. We
first describe the mobility network. Let G = (V, E) be the directed mobility network on the road topology, and the
directed network G consists of a set of nodes V = {1, 2, ..., J} corresponding to clusters and a set of mobility edge set
E. If clusters j, k ∈ V are adjacent roads and vehicle movement is possible from cluster j to k, the directed edge is
specified as the edge e ∈ E from j to k (equivalently, e:= j → k). The corresponding adjacency matrix of G is the
J × J matrix A = (a jk) where a jk = 1 if j → k ∈ E and a jk = 0 otherwise. We now introduce the communication
network. Let G′ = (V, E′) be the undirected network of communication with the set of same nodes V and set of
wireless communication edge set E′. If two clusters j, k ∈ V can directly communicate amongst each other then there
exist an edge e ∈ E′ between j and k (equivalently, e:= j ↔ k). The corresponding adjacency matrix G′ is the J ×
J symmetric matrix a′ = (a′ jk) where a′ jk = a′k j = 1 if j ↔ k ∈ E′ and a′ jk = a′k j = 0 otherwise. Through the
adjacency matrices G and G′ we have discussed, the characteristics of any road topology can be extracted.

We model the information propagation in transportation networks based on the Susceptible-Infective(SI) epidemi-
ological model that has been adopted in numerous infectious disease and information propagation research. This
epidemiological model assumes that susceptible individuals have not yet incurred the disease but are vulnerable to it,
and susceptible individuals can become infected after receiving the disease through contact with infected individuals.
These newly infected individuals can spread the disease to susceptible individuals. In this study, we use the math-
ematical formulation where the vehicles which carry information are referred to as infective, vehicles which do not
yet have the information are called susceptible. From hence, we denote the vehicle that carries the information as
informed vehicles, and vehicles that have not received the information as non-informed vehicles.

Suppose that N vehicles are located in the network with each vehicle in one of the J clusters corresponding to
different road segments. We will suppose for now that the network is closed and that there are no exogenous arrivals
into, or departures from, the system. Let n j

I(t) and n j
S (t) respectively represent the number of informed and non-

informed vehicles in cluster j ∈ V at time t. The 2J-dimensional lattice vector(
nI(t),nS (t)

)
=

(
nI

1(t), nI
2(t), . . . , nI

J(t); nS
1 (t), nS

2 (t), . . . , nS
J (t)

)
then represents the instantaneous state of the system, semicolon and extra spacing have been added merely for visual
separation of informed and non-informed vehicular counts in the various clusters. The state space on which we model
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the dynamics of information propagation accordingly is the set of lattice points in ZJ × ZJ satisfying

S N :=

(nI ,nS ) | nI
j ≥ 0, nS

j ≥ 0, j = 1, . . . , J;
J∑

j=1

(
nI

j + nS
j

)
= N

 .
The basic transitions in this state space capture one of three types of phenomena: the movement of an informed vehicle
to a neighbouring cluster; the movement of a non-informed vehicle to a neighbouring cluster; and the conversion of
a non-informed vehicle to an informed vehicle by the successful transmission and receipt of information. A little
notation helps grease the wheels: write k = (nI ,nS ) for the current state and let 1 j represent the 2J-dimensional unit
vector whose jth element is 1 with all other elements being 0. For j, k ∈ {1, . . . , J} with j , k, the state transition
k → k − 1 j + 1k captures the movement of an informed vehicle from cluster j to cluster k; the state transition
k → k − 1J+ j + 1J+k represents the movement of a non-informed vehicle from cluster j to cluster k; and the state
transition k→ k+1k −1J+k represents a successful communication of information to an uninformed vehicle in cluster
k which now joins the informed ranks in that cluster with a concomitant reduction of the non-informed ranks in that
cluster.

We now develop the stochastic underpinnings of the time evolution of the state process X(t) =
(
nI(t),nS (t)

)
. We

model mobility delays by assuming that the time taken by a vehicle to move to a neighboring cluster is exponentially
distributed with possibly state-dependent parameters. Likewise, we model communication delays, within and across
clusters, by supposing that the time taken for a successful transmission of information from an informed vehicle to a
non-informed vehicle is exponentially distributed, again with possibly state-dependent parameters. Under these as-
sumptions, the state evolution process X(t) forms a continuous-time Markov chain (CTMC). We flesh out the structure
of the CTMC in what follows.

We recall that the CTMC exhibits the following three types of state transitions: (1) an informed vehicle moves
from cluster j to cluster k, k , j; (2) a non-informed vehicle moves from cluster j to cluster k, k , j; and (3) a
non-informed vehicle in a cluster k receives a successful transmission from an informed vehicle located in the same
cluster or in a different cluster.

The first two types of transition capture vehicle mobility. Write λI
jk(·) for the rate at which informed vehicles from

cluster j migrate to cluster k, and λS
jk(·) for the rate at which non-informed vehicles migrate from cluster j to cluster

k. These rates may be the same but there is no cost in the model to assuming potentially different mobility rates for
informed and non-informed vehicles and we may as well do so. We assume that both λI

jk(·) and λS
jk(·) are bounded

functions of 1
N (nI ,nS ) if a jk = 1 and are 0 otherwise. In other words, the model permits mobility-based transitions

only between neighboring clusters, the transition rates between neighboring clusters are permitted to vary boundedly
across clusters as a function of both the (geographic location of) the clusters as well as the density of vehicles in the
clusters, and these rates may depend on whether the vehicle is informed or non-informed.

The third type of state transition that we encounter deals with a successful communication of information from an
informed vehicle to a non-informed vehicle resulting in the non-informed vehicle attaining informed status. We posit
fixed, non-negative constants β j j and β jk, for each j and k, such that intra-cluster communications between vehicles
in a cluster j occur at rate β j j/N while inter-cluster transmissions of information from cluster j to a distinct cluster
k occur at rate β jk/N. (To keep away from unnecessarily burdening notation, we suppose that β jk = 0 if a′jk = 0,
that is to say, there is no direct communication across clusters not connected by a wireless communication link.) The
model explicitly captures the phenomenon that communication rates diminish due to reductions in shared bandwidth
as the number of vehicles in the clusters increase. There is an implicit ergodic model assumption here: effectively, we
assume that the number of vehicles in each cluster is proportional to the total number N of vehicles in the network
where the proportion of the population that is captured within each cluster may be cluster-dependent—these cluster-
dependent constants of proportionality may be folded into the specification of the parameters β j j and β jk. This type
of phenomenon is familiar in ergodic chains where, with a large population N, the occupancy in each cluster will be
close to its expected value. The implicit mobility network modelling assumption here, of course, is that the model
clusters represent settings in which road segments may be reasonably considered to have an ergodic character where,
with a sufficiently large population of vehicles, each cluster sees a non-trivial vehicular occupancy.

The communication parameter will be drawn from the underlying, well-studied communication pathways, com-
munication conditions, capacities, and protocols. The capabilities of the physical devices such as antennas can provide
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the maximum rate that can be transmitted, and also the maximum capacity of the medium restricts the amount of in-
formation that can be transmitted over a certain period of time. In this respect, the capabilities and capacity which
are closely related to the network performance can also be reflected in the communication parameter. Besides, one
can analyze the communication protocol and draw the corresponding parameter based on what is feasible in the
given protocol. Hartenstein and Laberteaux (2008) present a tutorial survey on the network protocols, communication
technologies, potential applications, and challenges of vehicular ad hoc network (VANET), and many protocols for
VANET have also been discussed (Almalag et al., 2013). Any given combination of protocols would translate to a
certain attainable communication parameter. Furthermore, as protocols and physical devices are redesigned for bet-
ter network performance, we can get a corresponding higher communication rate, which can be used to inform our
communication parameters.

To summarize, state transitions in the Markov chain are governed by exponential processes, the transitions from a
given state k =

(
nI ,nS ) to a state k′ = k + h occurring at a rate

q (k,k + h) =



λI
jk

(
k
N

)
· nI

j if h = −1 j + 1k and j , k,

λS
jk

(
k
N

)
· nS

j if h = −1J+ j + 1J+k and j , k,
β jk

N · n
I
j · n

S
k if h = 1k − 1J+k,

0 otherwise.

(1)

This follows a well-worn pathway in the theory of continuous-time Markov chains. The key to a dramatic asymptotic
simplification in our setting is that the transition rates given by (1) have a certain density-dependent property which
reduces considerations via the ergodic theorem to a system of ordinary differential equations in the continuum.

Proceed to the continuum limit and introduce the set E :=
{
(I,S) | Ii ≥ 0, S i ≥ 0, i = 1, 2, . . . , J;

∑J
i=1(Ii + S i) = 1

}
where, in the natural vector notation, we write

(
I,S

)
= (I1, I2, . . . , IJ; S 1, S 2, . . . , S J). The continuous analog of (1) is

a continuous function f (x,h) on E × Z2J given, for each x = (I,S) ∈ E and h ∈ Z2J , by

f (x,h) =



λI
jk (x) · I j if h = −1 j + 1k and j , k,

λS
jk (x) · S j if h = −1J+ j + 1J+k and j , k,

β jk · I j · S k if h = 1k − 1J+k,

0 otherwise.

(2)

The discrete formulation (1) can be imbedded in the continuous formulation (2) by the simple observation that
q (k,k + h) = N f

(
k
N ,h

)
, hence the connection to a continuum density—in the nomenclature introduced by Kurtz,

we say that the Markov chain is density-dependent. In such cases a very general theorem of Kurtz (Kurtz, 1970) as-
serts that, in the asymptotic limit as N → ∞, state evolution in the CTMC may be represented by a system of ordinary
differential equations.

Introduce the formal notation

lim
N→∞

nI(t)
N

= I(t), lim
N→∞

nS (t)
N

= S(t).

The formal quantities I(t) and S(t) represent the asymptotic fraction of informed and non-informed vehicles, respec-
tively, in each cluster. The following is the key consequence of Kurtz’s theorem adapted to our model assumptions.

Under the conditions of our model, for a given choice of initial conditions
(
I(0),S(0)

)
, the time-evolution,

(
I(t),S(t)

)
,

of the distribution of the asymptotic fraction of informed and non-informed vehicles across clusters is governed by the
following system of ordinary differential equations:

İ j(t) = −

J∑
k, j

λI
jk (I,S) · I j +

J∑
k=1

βk j · Ik · S j +

J∑
k, j

λI
k j (I,S) · Ik ( j = 1, 2, . . . , J),

Ṡ j(t) = −

J∑
k, j

λS
jk (I,S) · S j −

J∑
k=1

βk j · Ik · S j +

J∑
k, j

λS
k j (I,S) · S k ( j = 1, 2, . . . , J).

(3)
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Figure 3: Clustered grid road topology. We capture probabilities of a vehicle moving between the CBD and the periphery. As for the movement
from j to s, the direction is classified as to the direction towards the CBD since d(s,D) < d( j,D). Movement from i to m is classified as movement
towards the periphery because the vehicle stays in the periphery, and does not move in the direction toward the CBD.

This reduction to a system of differential equations is the jumping off point for our model analysis and a reader who
is primarily interested in seeing applications of the model in diverse settings can begin with (3) and read on. The
theoretically inclined reader who would like to see details of how Kurtz’s theorem, adapted to our setting, results
in (3) will find the analysis and proofs in the Appendix.

2.2. Specialization
The general framework, that is the set of differential equations (3), referred to as the clustered epidemiological

differential equations (CEDE), cater to several special cases that arise in practice. For this, we consider the grid road
topology in Figure 3 with six avenues and streets. In the center of the network is a representation of a Central Business
District (CBD): the CBD acts as an attractor of trips from the surrounding locations in the city (periphery). In this
network, we assume that all roads are two-way and allow vehicles to move in both directions, and a road segment
consists of two clusters corresponding to the opposite directional roads.

2.2.1. Temporal variation of traffic density and routing
We now show how the differential equations (3) cater to the temporal variation of the traffic density and routing

pertaining to vehicle movement during rush hour. We capture the morning rush from the periphery to the CBD in
the morning and then the reverse at the conclusion of the work day. In the directed mobile network G(V, E), the
neighborhood of cluster j is defined as the set of clusters connected from j ∈ V through a directed edge, denoted
NG( j). Let D be the set of clusters in the CBD, and O = Dc be the set of clusters in the periphery. As shown in
Figure 3, the shaded area of the city center is generally located in the center of the city. Let p jk be the probability that
vehicles in cluster j move to cluster k ∈ NG( j). In that case, the mobility rate set in this model is

λI
jk(·) = λS

jk(·) = p jkλ (4)

where λ is constant. Since the mobility rates for j = 1, 2, ..., J and k ∈ NG( j) are constant, it is clearly Lipschitz
continuous on E. Therefore, by results in the Appendix, the behavior of propagation process based on this temporal
variation of traffic density and routing can be approximated by ordinary differential equations (3).

In the rest of this subsection, we describe how p jk can be computed. Suppose that, for the starting point j ∈
{1, 2, ..., J}, this probability is classified into two types: the probability p j

d of moving towards the CBD, and the
probability p j

o of moving towards the periphery. Concretely, if the direction from cluster j to k is in the direction
moving toward the periphery, p jk corresponds to p j

o, and in the opposite case, p jk corresponds to p j
d. We introduce

the γ parameter defined by the ratio of probability p j
d to p j

o to control the temporal variation of the routing for these
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two directions, resulting in p j
d = γp j

o. For example, if γ = 5, the probability of moving towards the CBD is five times
higher than the probability of moving towards the periphery. Thus, γ > 1 indicates a movement pattern in which
peripheral dwellers move into the city center, e.g., during morning commute time; 0 < γ < 1 indicates a movement
pattern in which workers leave the CBD and go back to the periphery, e.g., during evening commute time.

We define a decision rule for determining whether movement from one cluster to another cluster is toward or away
from the CBD. Let d(x, y) denote the Euclidean distance between two geometric centers of x ∈ V and y ∈ V , and let
d(x,D) denote the minimum distance between a cluster x ∈ V and a cluster in D as follows.

d(x,D) = min{d(x, y) | y ∈ D}

When vehicles move from cluster j to k, if d( j,D) < d(k,D) then it is classified as the movement towards the periphery,
resulting in probability p jk being p j

o. If d( j,D) > d(k,D), it is classified as the movement towards the CBD, and as
a result, the probability p jk becomes p j

d = γp j
o. In the case of d( j,D) = d(k,D), the type of movement direction is

classified according to the position of the origin cluster and the destination cluster. Specifically, if d( j,D) = d(k,D)
and origin cluster j and destination cluster k are both in the CBD, p jk is considered to be p j

d = γp j
o, since this direction

corresponds to the movement to stay in the CBD rather than leaving the CBD. Similarly, if d( j,D) = d(k,D) and origin
cluster j and destination cluster k are both in the periphery, p jk is regarded as p j

o because it is a type of movement
that stays in the periphery, not in the direction toward the CBD. Therefore, for all cluster j ∈ V and its neighborhood
k ∈ NG( j), we have

p jk =


p j

d, if d( j,D) > d(k,D)
p j

d, if d( j,D) = d(k,D) and j, k ∈ D
p j

o, if d( j,D) < d(k,D)
p j

o, if d( j,D) = d(k,D) and j, k ∈ O

(5)

From this decision rule, for cluster j ∈ V and k ∈ NG( j), p jk is classified into one of p j
d and p j

o, then these two
probabilities p j

d and p j
o are determined by

∑
k∈NG( j) p jk = 1. More specifically, we now show how p j

d and p j
o can be

computed for all j ∈ V . First, consider an arbitrary node j ∈ D and let A be the set of clusters k ∈ NG( j) such that
d( j,D) ≥ d(k,D). By using

∑
k∈NG( j) p jk = 1, we have |A|p j

d + |NG( j)\A|p j
o = |A|γp j

o + |NG( j)\A|p j
o = 1, resulting in

p j
o = 1

|A|γ+|NG( j)\A| and p j
d =

γ
|A|γ+|NG( j)\A| . Similarly, for arbitrary node j ∈ O, let A′ be the set of clusters k ∈ NG( j) such

that d( j,D) ≤ d(k,D). Through the same approach, we have p j
o = 1

|A′ |+|NG( j)\A′ |γ and p j
d =

γ
|A′ |+|NG( j)\A′ |γ . For example, in

Figure 3, when a vehicle in cluster i moves to neighborhood clusters k, n, and m, the pik, pin, and pim are classified as
pi

o, pi
d, and pi

o, respectively. Therefore, pi
o = 1/(γ+2) and pi

d = γ/(γ+2), resulting in pik = 1/(γ+2), pin = γ/(γ+2),
and pim = 1/(γ + 2).

2.2.2. Location-dependent mobility model
In this subsection, we show that how the differential equations (3) can capture location dependent mobility model

that reflects different speed limits for various regions. Speed limits are applied differently depending on the local
characteristics of each city and the type of road, and as a result the average speed of the vehicles will depend on these
characteristics. In this model, two different mobility rates are applied to reflect different speed limits applied to the
CBD and the periphery roads, respectively, and the mobility rate of the CBD is set to a lower value. Let λd be the
mobility rate from a cluster located in the CBD to the neighboring clusters, so that the average time to stay in the
cluster before moving to a neighboring cluster is 1 / λd. Similarly, let λo be the mobility rate from a cluster located in
the periphery to the neighboring clusters, so that the average time to stay in the cluster before moving to a neighboring
cluster is 1 / λo. The routing probability associated with γ is also applied. The location dependent mobility rate can
be described as

λI
jk(·) = λS

jk(·) = p jkλ j,

λ j =

λd if cluster j is in the CBD
λo if cluster j is in the periphery,

(6)
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where λd and λo are constants, and p jk is computed by the decision rule (5). Since the mobility rates for j = 1, 2, ..., J
and k ∈ NG( j) are constants, the behavior of propagation process can be approximated by ordinary differential equa-
tions (3) for the same reason as the previous model (Section 2.2.1).

2.2.3. Traffic density-dependent mobility model
As in the previous two cases, the differential equations (3) can cater to traffic density dependent mobility model.

Vehicle speed depends on the traffic density on the road with density being inversely related to speed; this is de-
scribed by models such as the Greenshields model, the Drew model, and the Pipes-Munjal model. The general-
ized form of these models (Haefner et al., 1998; Kühne and Rödiger, 1991; Wang et al., 2009) can be expressed as

v = v f

[
1 −

(
k/k jam

)a]b
where v f is free flow speed, k jam is jam density, and v and k are speed and density respectively.

Motivated by these studies, we introduce the traffic density-dependent mobility rate λ jk(·) from cluster j to k ∈
NG( j), which depends on the relative density of both the clusters j and k, where the relative density is defined as the
fraction of vehicles located in the clusters j and k. As the fraction of vehicles located in clusters j and k increase, the
movement from cluster j to k is slowed down, which implies that the mobility rate from the origin cluster j to the
neighboring cluster k decreases. Concretely, when the traffic density of the origin cluster j is high, movement beyond
this region is restricted, and if the traffic density of the destination cluster k is high, it is also difficult to enter this
region. The mobility rate reflecting this mobility characteristic is set to

λI
jk(·) = λS

jk(·) = λ · p jk ·

1 −
 ∑

i∈{ j,k}

(Ii + S i)

a
b

(7)

where λ is constant, p jk is computed by the decision rule (5), and a, b ≥ 1. By controlling parameters a and b, we
can reflect a general form of relationship between vehicular speed and traffic density. The mobility rate function λ jk

is Lipschitz continuous on E for j = 1, 2, ..., J and k ∈ NG( j) since the function is continuously differentiable on
E. Thus, by results in the Appendix, the dynamics of the information propagation converge to the solution of the
differential equation (3).

3. Results of empirical validation

We now empirically validate the mathematical model (Section 2) when the underline assumptions of the model
are relaxed. The analytical result in the previous section ensures convergence of the propagation process results
to solutions of differential equations only when the number of vehicles goes to infinity. In practice, however, the
number of vehicles is finite. Therefore, we investigate the effect of a finite number of vehicles on various mobility and
communication characteristics. We first consider statistical models which we call synthetic models (Section 3.1), and
subsequently consider the two actual and one synthetic vehicle trajectory data collected on different road topologies
(Section 3.2). In the latter case, the statistical communication process is superimposed on the trajectory data since
there is no data currently available for the communication process. With a finite number of vehicles, we show that
there is an excellent match between the result of the propagation process simulation and the model solution even for a
moderate number of vehicles in the statistical models. We additionally show there is an acceptable match even for the
trajectory data that does not satisfy the statistical assumption of exponential sojourn time under which convergence is
guaranteed. Throughout this result section, the ordinary differential equations were solved using ode function from
the deSolve package of R.

3.1. Synthetic models
We show that the output of the differential equations (3) matches simulations for different statistical mobility

models with a finite number of vehicles. In Section 3.1.1, we consider the mobility model of Section 2.2.1 which
captures the temporal variation of the traffic density and routing. In Section 3.1.2, we apply the location dependent
mobility model of Section 2.2.2. In Section 3.1.3, we apply the traffic density dependent model of Section 2.2.3. In
Section 3.1.4, we consider that each vehicle chooses its destination randomly among the clusters, follows the shortest
path towards it, and upon reaching chooses another destination, again uniformly. For the validation, we consider the
grid road topology introduced in Section 2.2 (We will consider the other road topology in Section 3.2). As shown in
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Figure 3, there are six avenues and six streets. The CBD is the shaded area in Figure 3 and the rest is the periphery.
All road segments are assumed to be two-way roads which are set to be composed of two clusters corresponding to
the opposite directional roads. Since two clusters on the same road segment are sufficiently close to each other, the
vehicles located in these can communicate. Therefore, the adjacency matrix of the communication network G(V, E′)
is given by a′i j = a′ji = 1 if i and j are in the same road segment, otherwise a′i j = a′ji = 0. We set the communication
parameter to βi j = 3 if a′i j = 1 and βi j = 0 otherwise. At initial time, N vehicles are uniformly distributed in J clusters,
where J = 120. Thus, each cluster has n = N/J vehicles at initial time. The information of interest initially begins
to propagate from 10% of vehicles located in the lower left cluster (equivalently, 0.1n vehicles), which are located in
peripheral areas. To study the degree of information propagation, we introduce ρ(t), the fraction of overall vehicles
that are informed at time t.

(a) Fraction of informed vehicles (b) Fraction of vehicles in CBD

Figure 4: The gray lines represent the average of 200 simulation runs of the information propagation, and the red lines are the solutions of the
ordinary differential equations.

(a) Maximum deviation (b) ρ(t) of changing the number of vehicles per cluster

Figure 5: Both (a) and (b) show that with the increase in the number of vehicles per cluster, simulation results approach the solutions of the
differential equations. We consider the average of 200 simulation runs in both cases. Even for n = 30, the maximum deviation is as little as about
0.0426.
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(a) t=0s (b) t=90s, γ = 1 (c) t=90s, γ = 3 (d) t=90s, γ = 5

Figure 6: Geographical representation of traffic density and information propagation for various γs under the same initial conditions with n = 100
(i.e., 200 vehicles per road segment). The thickness of the road segment is linearly proportional to the number of vehicles, that is, when the
thickness corresponding to one vehicle is x, the thickness of the vehicle v is expressed by v · x. The number written on each road segment indicates
the number of vehicles. The upper row of red corresponds to the number of vehicles informed in each road segment, and the lower row of gray
corresponds to the total number of vehicles in each road segment. The first column shows the initial distribution of vehicles, which is the same for
all γ. The remaining columns show the distribution of vehicles at time t = 90s for different γ.

3.1.1. Temporal variation of traffic density and routing
We show that the simulation of the propagation process with the mobility model in Section 2.2.1 closely matches

the output of the differential equations (3) for a finite number of vehicles. We subsequently use the differential
equations to understand the temporal and spatial propagation of the information. The mobility parameter λ in (4)
is set to λ = 0.1. We set n = 100, thus N = n· J = 12000. Under these settings, we compare the solutions of
the corresponding differential equations with an average of 200 runs of the propagation process simulations. Then,
the results of the propagation process and the solution of the corresponding differential equations are compared. We
consider different γ values reflecting the temporal variation of traffic density and routing. Figure 4a shows that the
simulations of the propagation process closely match the solutions of the differential equations. The largest deviation
between them is 0.0256 for γ = 1, 0.0101 for γ = 3, and 0.0222 for γ = 5. Now, we investigate the impact of a
relatively small number of vehicles on our model. For non-rush hour (γ = 1), Figure 5a shows that the greater the
number of cars, the smaller the maximum deviation between the two results. Even for a small n, the solution of the
differential equations well approximates the simulation of the propagation process: the maximum deviation between
the two is (a) 0.0426 for n = 30 and (b) 0.1682 for n = 10. This means that asymptotic results are obtained even for a
very small number in practice.

Now that we have verified that the differential equations (3) can capture information propagation reasonably
accurately even with a moderate number of vehicles, we now use them to understand the characteristics of information
propagation. In the case of non-rush hour (γ = 1), as shown in Figure 4b, the information slowly spreads over the
entire area without an upsurge in particular areas. On the other hand, in the case of morning rush hour (γ > 1), there
is a significant increase in the number of vehicles in the CBD, and as a result, information spreads very quickly. The
larger the γ, the higher the traffic density in the CBD; thus, the information spreads quicker in the CBD than in the
periphery, as shown in the geographical representation (Figure 6).

3.1.2. Location dependent mobility rate
We now consider the location dependent mobility model introduced in Section 2.2.2. In this subsection, two

different mobility rate values are applied to roads in the CBD and the periphery respectively, which we call two-level
mobility rate. We set the mobility rate of the CBD to a lower value, reflecting a lower speed limit in the CBD. For the
two-level mobility rate case, we choose λd = 0.05 for the CBD and λo = 0.1 for the periphery in (6); for the uniform
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(a) Fraction of informed vehicles (b) Fraction of vehicles in CBD

Figure 7: The curves of the two-level λ are the result of applying a different λ value depending on whether the region is CBD or peripheral region,
and the uniform λ case is the result of applying the same λ regardless of region. The simulation results are averaged over 200 runs.

mobility rate case, we choose λd = λo = 0.1 for both the CBD and the periphery. The number of vehicles per cluster
is set to n = 100 at t = 0. Also, γ is assumed to be 1 (non-rush hour). Figure 7a shows that the propagation process
for this two-level mobility rate is also well approximated by solutions of the corresponding differential equations (3):
The maximum deviation between them is only 0.0484. We now compare the propagation of information under the
two-level mobility rate with that for uniform mobility rate. Since the mobility rate in the CBD is lower than in the
periphery, the average speed of vehicles in the CBD is slower. Therefore, even in the case of non-rush hour with
γ = 1, once vehicles enter the CBD, the vehicles in the CBD take longer to move, resulting in the concentration of
vehicles in the CBD (Figure 7b). Concentrated traffic leads to faster information propagation as shown in Figure 7a.

3.1.3. Traffic density dependent mobility model
Next we consider the mobility model of Section 2.2.3 where the mobility rate depends on the traffic density of

both the origin and destination clusters. We have the mobility rate depend on the traffic densities of both the origin
and destination clusters. For (7), we choose λ = 0.1. Recall that the sensitivity of the mobility rate to traffic density is
determined by parameters a and b of (7). As Figure 8a shows for fixed b, the mobility rate λ jk decreases with traffic

(a) (b) (c)

Figure 8: (a) The relation between mobility rate divided by a constant factor (
λ jk(·)
λ·p jk

) and traffic density (I j + S j + Ik + S k), for a given origin cluster

j and destination cluster k. (Recall that the mobility rate in Section 2.2.3 is given by λ jk(·) = λ · p jk ·
[
1 − (I j + S j + Ik + S k)a

]b
) (b) Fraction

of informed vehicles over time. (c) Fraction of vehicles located in CBD over time. For both (b) and (c), the gray lines are simulation results of
averaging 200 simulation runs, and the red lines are the solutions of the approximate ordinary differential equations. For all three figure, b = 40.
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(a) t=0s (b) t=60s, a=1 (c) t=90s, a=1 (d) t=60s, a=5 (e) t=90s, a=5

Figure 9: The upper row of red corresponds to the number of informed vehicles in each cluster, and the lower row of gray corresponds to the
number of vehicles in each cluster. The thickness of the road segment is linearly proportional to the number of vehicles, that is, when the thickness
corresponding to one vehicle is x, the thickness of the vehicle v is expressed by v · x. The first column represents the initial distribution of vehicles,
which is the same for all values of a. The remaining columns show the times and the values of a as indicated.

density of cluster j and k; this is sharp for relatively small a and more gradual as a increases. To illustrate, we fix the
parameter b = 40 and compare the results for a = 1 and a = 5. In both cases, we consider the movement pattern of
the morning rush hour (γ = 5). As Figure 8b shows, the differential equations closely approximate the propagation
process; the maximum deviation between them is 0.0304 at a = 1 and 0.0208 at a = 5.

Now using the geographical representation of information propagation in Figure 9, we investigate how informa-
tion propagates for the traffic density dependent model. Since we are considering morning rush hour, the vehicles
congregate in the CBD over time, thus information propagates faster therein. This phenomenon is pronounced for
larger values of a as the mobility rate increases with a given fixed b and traffic density as can be seen in Figure 8a.

3.1.4. Shortest-path routing
In our model, the routing probabilities of the vehicles at the clusters depend only on the cluster but not on the

destinations of the vehicles. Thus, with positive probability, vehicles retrace their paths. Retracing does arise in
practice, for example, when people drive around for sight-seeing, trying to locate some eatery rather than a specific
eatery, or an available parking spot. A compilation of ten studies in eight cities between 1927 and 2011, reveal
that an average of 34% of drivers cruise for parking in congested downtowns (Pierce and Shoup, 2013). Next, in
Carpooling services such as Uber Pool and Lyft Line, vehicles frequently move back and forth to pick-up and drop-off

various riders who share the ride at their different sources and destinations. Then again vehicles that deliver goods
or transport passengers, e.g., shared ride vehicles, taxis, (even without car-pooling) choose different destinations in
quick succession, to transport different goods and different passengers. In the process, although they do not retrace
their paths while traversing to a destination, with a positive probability they retrace an earlier path while traversing to
another destination, depending on the choice of successive destinations. Thus, paths are retraced over time.

We next compare the solution of our model with the characteristics that emerges when vehicles do not retrace
their paths. Towards that end, we consider the propagation of messages when every vehicle follows the shortest path
from its source to its destination. This is a special case of an extensively utilized probabilistic routing model in the
transportation community (Yperman et al., 2005; Gentile, 2015) in which a vehicle randomly chooses its next hop
at each node, with the probabilities of the choice depending on the destination of the vehicle in question. In our
special case, each vehicle chooses at each node with probability 1 the next hop corresponding to the shortest path to
its destination. We consider that the destination is chosen at the start of the travel, with uniform probability among all
clusters. We also assume that when a vehicle arrives at its destination, the vehicle chooses another random destination
cluster, uniformly, and travels along the shortest path route again. This is for example consistent with traveling patterns
of delivery vehicles, shared rides (without car pooling) and taxis. These vehicles proceed along a recommended path
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(a) (b) (c)

Figure 10: (a) Fraction of informed vehicles over time from the average of 10 runs of the shortest path routing. (b) The number of informed vehicles
over time in the cluster located at the center and the upper right corner. The gray lines represent an average of 10 simulation runs, and the red lines
represent the model solution obtained by using the routing probabilities from the average of the 10 runs of the shortest path propagation process.
(c) As we increase the number of runs to 100, the match improves, and the fluctuation of the simulation results decreases.

to their chosen destination, which is often the shortest path or close to it, and after reaching the destination, choose
another destination for transporting their goods or passengers, and follow the shortest path to it, and so on.

We set λ = 0.05, n = 50, thus N = nJ = 6000. We average over 10 runs of the shortest path routing simulations.
We then compare the solutions of the corresponding differential equations with the simulation result of the shortest
path propagation process, averaged over 10 runs. We extract the routing probabilities from the average of the 10
runs of the shortest path propagation process, and substitute them into the differential equations to get the model
solution. As can be seen in Figure 10a, considering the averages over all clusters, the differential equations closely
approximate the propagation process. Next, we focus on two specific example clusters respectively located in the
center and upper-right corner. As Figure 10b shows, despite fluctuations in the number of informed vehicles over time
in both clusters, the spatial and temporal propagation of information is relatively well approximated by the theoretical
model that operates under the assumption of memoryless probabilistic routing at each cluster. Figure 10c shows that
the match only improves, and the fluctuation of the simulation results decreases, as we increase the number of runs
to 100. The match is close because, as mentioned previously, vehicles that choose different destinations in quick
succession retrace some of their paths over time (with positive probability). The close match also suggests that in the
memoryless probabilistic routing that we have assumed the probability that routes are retraced is not high.

3.2. Empirical validation with traffic trace data

When the mobility process is exponential, even for a finite number of vehicles, the solution of the differential
equations closely approximates the dynamics of the propagation process (Section 3.1). In this section, we show that
the temporal and spatial flow of information is well approximated by the solution of differential equations even when
the mobility process is not exponential, and the number of vehicles N is finite. Towards that end, we use microscopic
vehicle trajectory data collected to empirically validate our model. Thus far, we have only considered grid topology,
but we will also consider other topologies in this section. In this case, we show that the output of the differential
equations reasonably matches the dynamics of information propagation for various road topologies.

The three vehicle trajectory data we use are collected from different road topologies of varying complexity, unlike
the grid topologies considered earlier; U.S. Highway 101 in Los Angeles, California (Section 3.2.1), Peachtree Street
in Atlanta, Georgia (Section 3.2.2), and Europarc Roundabout in Creteil, France (Section 3.2.3). We manually divide
each topology into J clusters, and define the mobility network G and the communication network G′. The directed
mobility network G, which consists of directed edges between clusters, is determined by the existence of a trajectory
in which the vehicle moves from one cluster to another. To indicate that vehicle-to-vehicle communication in the
cluster is possible, the diagonal element of the adjacency matrix corresponding to the communication network is set
to 1 as a baseline for all three data sets. In addition, if the distance between neighboring clusters is close enough, the
corresponding element is set to 1 to enable inter-cluster communication according to the characteristics of the road.
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The mobility rate between clusters is extracted from the vehicle trajectory data, and is applied to the ordinary differ-
ential equation of our model to estimate the information propagation. We superimpose the statistical communication
process on the trajectory data, and compare the result with the solution of the differential equations. As a result, not
only does this show that our model is applicable to arbitrary road topologies, but it also shows that simulation results
using even trajectory data are well approximated by model solutions. To extract the mobility rates from the data, we
will first classify the clusters into three categories. Let S be the set of clusters of the study area where information
propagation occurs. Note that the mathematical model considers the fixed set of vehicles in the system. In the real
transportation network, there would be entrances from outside and also exit to outside. To incorporate the impact of
the entrances and exits, we introduce a set of virtual clusters A and B where A and B are the respective sets of clusters
corresponding to the entry and exit roads respectively entering and leaving the study area. Let O = S ∪ A ∪ B. Here
we consider that the mobility rate of a vehicle does not depend on whether it is informed or non-informed.

We now describe how we obtain mobility rate λi, j of the analytical model from the trajectory data (λi, j moving
from cluster i ∈ S to j ∈ O, such that i , j). First, from the trajectory data, we compute λi, which is the reciprocal
of the average time of staying in cluster i. Then we compute the fraction of vehicles that move to cluster j among
the vehicles located in cluster i, and denote this as pi, j. By multiplying λi by probability pi, j, the mobility rate from
cluster i to j, λi, j, can be computed. If the origin cluster of the movement is the entry road, it is assumed that a vehicle
enter the study area at a fixed rate, regardless of the number of vehicles in the entry cluster. In this case, the mobility
rate moving from cluster i ∈ A to j ∈ S , such that i , j, is given by λ̃i, j/N where N is the total number of vehicles and
λ̃i, j denotes the number of vehicles that enter cluster j ∈ S from cluster i ∈ A per unit time.

3.2.1. U.S. Highway 101 in Los Angeles, California

(a) (b)

Figure 11: (a) U.S highway 101 broken into clusters. The vehicles enter the study area from the cluster 10 or 12 and leave the study area toward the
cluster 1 or 11. (b) Fraction of informed vehicles over time. The information spreading simulation based on the trajectory data is well approximated
by the theoretical predictions from the ordinary differential equations (3). The gray lines are simulation results of averaging 30 simulation runs for
each β, and the red lines are the solutions of the differential equations.

We use the microscopic actual vehicle trajectory data of the southbound U.S. highway 101 in Los Angeles, Cal-
ifornia, that had been collected under the auspices of the Next Generation Simulation (NGSIM) program ([dataset]
U.S. Department of Transportation, 2017). This data includes geographical location information for each vehicle on
the southbound U.S. highway 101 of 600 meters in length. We consider the total number of vehicles that exist in the
system at any point during the observation period (N = 1993). As shown in Figure 11a, we divide the road into J = 12
clusters. The study area in which we conducted information propagation studies is a set of clusters S = {2, 3, ..., 9},
which is depicted as a dotted rectangle in Figure 11a. Vehicles enter the system through clusters {8, 9}, and leave the
system from clusters {2, 4}. We introduce a set of virtual entry clusters and exit clusters as shown in Figure 11a; thus
A = {10, 12} and B = {1, 11}. The set of clusters A and B corresponding to the entry and exit roads respectively are
represented by shaded solid line rectangles. The actual trajectory data for the first 831.7 seconds out of the entire
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data was used for this study, and all vehicles entering the study area were regarded as separate vehicles. There is no
vehicle in the study area at an initial time, and we assumed that approximately 20% of all incoming vehicles, that
is, 402 out of 1993 incoming vehicles, had already received the information before they entered the study area. The
adjacency matrix for the communication network is set to a′i j = 1 if i ∈ S and i = j, otherwise a′i j = 0. As shown in
Figure 11b, there is an excellent match between the simulation result using the actual trajectory data and the solutions
of corresponding differential equations. The maximum deviations between the average of 30 simulation runs and the
solution of the differential equation are 0.0039 for β = 1, 0.0112 for β = 3, and 0.0151 for β = 10.

3.2.2. Peachtree Street in Atlanta, Georgia

(a) (b) (c)

Figure 12: (a) Peachtree street schematic ([dataset] U.S. Department of Transportation, 2017). (b) Clustered Peachtree street (c) Fraction of
informed vehicles over time. The information spreading simulation based on the actual trajectory data is well approximated by the theoretical
predictions from the ordinary differential equations (3). The gray lines are simulation results of averaging 30 simulation runs for each β, and the
red lines are the solutions of the differential equations.

We use the actual microscopic vehicle trajectory data of the Peachtree street in Atlanta, Georgia, that had been
also collected under the auspices of the Next Generation Simulation (NGSIM) program ([dataset] U.S. Department
of Transportation, 2017). This data includes geographical location information for each vehicle on the two-way street
of 640 meters in length with 5 intersections, which are more complex than the previous one-way road topology. We
consider the total number of vehicles that exist in the system at any point during observation period (N = 2298). As
shown in Figure 12b, we divide the road into J = 55 clusters. The actual trajectory data for 1044.2 seconds was used
for this study, and all vehicles entering the study area were considered separate vehicles.2 In addition, we clean up
the data to exclude obvious instances of data error and vehicles which do not enter the study area; we consequentially
use 98.4% of the original number of vehicles. As shown in Figure 12b, the study area in which we conducted
information propagation studies is a set of clusters S = {31, 32, ..., 35, 38, 39, ..., 45}. Vehicles enter the study area
from the virtual clusters A = {1, 2, ..., 14, 36, 47, 49, 50, 54, 55}, and leaves the study area through the virtual clusters
B = {15, 16, ..., 30, 37, 46, 48, 51, 52, 53}. We consider that the vehicles in the study area are not informed at an initial
time, but we assumed that 30% of vehicles entering the study area from the cluster 36 ∈ A and 47 ∈ A, that is, 231

2In the original dataset ([dataset] U.S. Department of Transportation, 2017), we used data with Global time attribute values between
1163019100 and 1164063300. The Total Frames attribute represents a total number of frames in which the vehicle appears in the system.
The O Zone and D Zone attributes represent the place where the vehicles enter and exit the system respectively. There are records with the same
value of Vehicle ID but different values of Total Frames, O Zone, and D Zone attributes. In this study, every time a vehicle enters the system,
we have considered it a new vehicle even if the value of Vehicle ID is same.
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out of 770 incoming vehicles, had received the information before they enter the study area. The adjacency matrix
for the communication network is set to a′i j = 1 if i ∈ S and i = j. In addition, given their proximity, a′38,39 = a′39,38,
a′40,41 = a′41,40, a′42,43 = a′43,42, and a′44,45 = a′45,44 are also set to 1, and all other elements are set to zero. Under
these conditions, the information propagation simulation using the actual trajectory data on Peachtree street is well
approximated by the model solution as shown in Figure 12c. The maximum deviations between the average of 30
simulation runs and the solution of the differential equations are 0.0456 for β = 1, 0.0448 for β = 10, 0.0376 for
β = 100, and 0.0647 for β = 1000.

3.2.3. Europarc Roundabout in Creteil, France

(a) (b)

Figure 13: (a) Clustered Europarc roundabout road. (b) Fraction of informed vehicles over time. The information spreading simulation based on
the trajectory data is well approximated by the theoretical predictions from the ordinary differential equations (3). The gray lines are simulation
results of averaging 30 simulation runs for each β, and the red lines are the solutions of the differential equations.

We use the Microscopic vehicle trajectory data of the Europarc Roundabout in Creteil, France, that had been
generated by Lèbre et al. (2015). According to Lèbre et al. (2015), traffic information for Europarc roundabout was
based on actual observations of vehicle flow, and manual counting were performed to generate origin/destination
(O/D) matrix. This O/D matrix faithfully mimics the daily movement of the vehicle, from which a realistic synthetic
data set of vehicle mobility is presented by Lèbre et al. (2015). We choose 800 seconds from the morning traffic data
(7.15 AM to 9.15 AM) which have the peak number of vehicles (the peak occurs between time steps 4200 to 5000).
This topology is much more complex than the previous two; specifically, this is not a grid topology, as it includes a
roundabout road and 15 traffic lights. As shown in Figure 13a, we divide the road into J = 14 clusters. The study
area in which we conducted information propagation studies is a set of clusters S = {2, 4, 5, 7, 9, 11, 13, 14}. Vehicles
enter the road from the set of virtual clusters A = {1, 3, 6, 10, 12}, and leave the study area toward the set of virtual
clusters B = {1, 3, 10, 12}. Suppose that all vehicles entering the study area were regarded as separate vehicles. We
consider that the vehicles in the study area are not informed at an initial time, but we assumed that approximately 11%
of vehicles entering the study area from the set of clusters A, that is, 66 out of 591 incoming vehicles, had received the
information before they enter the study area. The adjacency matrix for the communication network is set to a′i j = 1 if
i ∈ S and i = j, otherwise a′i j = 0.

As shown in Figure 13b, there is a reasonable match between the solution of the differential equations (3). The
maximum deviation between the average of 30 simulation runs and the solution of the differential equation is 0.0124
for β = 0.1, 0.0507 for β = 0.5, 0.1185 for β = 1, and 0.0741 for β = 30.

The model solution and the simulation results match well for data obtained from U.S. Highway 101, but for the
other two trace data sets, there is a higher deviation between the model solution and the simulation. First, the total
number of vehicles the for Europarc Roundabout in Creteil, France, is fairly low compared to the previous two data
sets. More importantly, unlike the first data obtained on the U.S. Highway 101, the traffic movement becomes pulsed in
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(a)

(b) (c)

Figure 14: (a) Clustered road topologies. (b) We plot the ratio of the number of vehicles that are informed at a cluster to the number of non-informed
vehicles that pass by it in the entire simulation time horizon, as a function of the cluster number in the study area. The ratio spikes exactly at those
clusters 8 and 12 located just before the two traffic signals. (c) We simulate the spread of messages in a straight road segment, with 16 clusters.
The lines represent the average of 200 simulation runs of the information propagation.

the other two data sets because of the presence of many traffic lights (5 signals exist on Peachtree Street and 15 signals
exist on Europarc Roundabout) in a segment of the topology. Each traffic signal results in traffic synchronization,
because, all vehicles stop at a red light and start moving almost simultaneously when the light turns green. This
causes a significant divergence between the actual mobility of this trajectory and the exponential mobility process,
which our mathematical framework has assumed. The influence of multiple traffic signals is even more complicated
due to possible correlations between the durations of red lights and green lights at each.

Modeling information propagation with pulsed traffic, which is due to traffic signals, constitutes an open research
challenge. We briefly mention some possible directions for solving this open problem and postpone the details for
our future research. We can consider a time-dependent mobility parameter λi, j(·) which equals 0 when the light in the
corresponding cluster is red, and is at the normal values when it is green.

We elucidate the impact of traffic synchronization due to traffic lights, utilizing our modeling innovation outlined
above, considering a simple example. Consider a one-way road with two traffic signals (Figure 14a). The road is
divided into 16 small segments. The study area where information propagation occurs is the set of clusters S =

{6, 7, ..., 15}. Vehicles enter the study area from the set of clusters A = {1, 2, ..., 5} and leave the study area toward the
cluster B = 16. Traffic signals are located between clusters 8 and 9 and between clusters 12 and 13. The traffic signals
have cycle lengths of 80 s, and 40% of the cycle time is spent in red. Both signals begin their cycles in red at the start
of the simulation. 1500 vehicles are uniformly distributed in the entry clusters {1, 2, 3, 4, 5}, and there is no vehicle in
the study area and exit road at an initial time. We assume that 10% of all incoming vehicles had already received the
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information before they entered the study area. The mobility parameter λi, j(·), for i ∈ {8, 12} where there are traffic
signals, switch along with the lights: they are 0 when the lights are red, and 0.2 when they are green. The mobility
parameter λi, j(·), for i ∈ S \ {8, 12} where there is no traffic signal in the study area, is set to 0.2, and λi, j(·), for i ∈ A
in the entry clusters, is set to 0.01. The communication parameter β is set to 10.

Figure 14b shows that V2V messages propagate rapidly among vehicles when they wait at red lights. The ratio
of the number of vehicles that are informed at a cluster to the number of non-informed vehicles that pass by it spikes
exactly at the clusters just before the two traffic signals. Thus, traffic signals have a significant impact on information
propagation. The traffic movement becomes more synchronized, due to the presence of these lights, which results in
faster information propagation (Figure 14c). When there are many traffic signals on more complex roads, multiple
traffic signals affect traffic flows in different directions simultaneously, which affects information propagation in a
more complicated way. Our future study will investigate this mathematical model and its generalizations, through
mathematical analysis, numerical computations and simulations, for a variety of traffic signal designs.

4. Use of the model

We have shown an excellent match between the solution of the approximated differential equation and the prop-
agation process results for a finite number of vehicles in the statistical synthetic models that reflect diverse mobility
and communication characteristics (Section 3.1). We also showed that there is a fairly good match between the two
results, even for trajectory data that does not satisfy the statistical assumptions under which convergence is guaran-
teed (Section 3.2). Now, through concrete real world examples, we will explain how these differential equation based
models for information propagation can be utilized. As in the result section on the synthetic model, we assume a grid
topology consisting of two-way roads, but we consider a larger city consisting of nine avenues and nine streets with
the total number of clusters J = 288. Likewise, the adjacency matrix of the communication network G(V, E′) is given
by a′i j = a′ji = 1 if i and j are in the same road segment, otherwise a′i j = a′ji = 0. We apply the model with temporal
variation of the traffic density and routing (Section 2.2.1). The communication parameter is set to βi j = β if a′i j = 1
and βi j = 0 otherwise, where β is a constant. Since we have verified the validity of the approximation by differential
equations, we now use differential equations to understand information propagation characteristics in this section.

4.1. Unexpected events

(a) Location of the event (b) Fraction of clusters

Figure 15: (a) Clustered grid road topology. Location of the event is represented by a dark shaded square. (b) The red solid line represents the
percentage of clusters in which information arrives, the solid black line represents the percentage of congested clusters that have increased by more
than 15% over the initial traffic volume. The black dashed line represents the fraction of clusters with increased traffic (i.e. the fraction of clusters
increases by more than one from the initial number of vehicles).
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We now assess the efficacy of V2V technology in mitigating traffic congestion due to sudden events e.g., unex-
pected victories in a major sporting event, unscheduled personal visits by high-ranking officials (e.g., president) and
celebrities) by studying how quickly V2V can help spread information about congestion.

We model an unexpected event occurring in a central area of a city with a grid topology (Figure 15a). It is also
assumed that 12.5% of the total number of vehicles N = 14400 are located on 4 road segments (equivalently, 8 clusters)
surrounding the event site, and 45 vehicles are uniformly distributed in all other clusters. We set the parameters to
β = 10, λ = 0.05, and γ = 1 (non-rush hour). Using our model, we can estimate how the traffic changes over time
due to the events, and investigate how the information about the traffic propagate during the dispersion of the gathered
vehicles. Our numerical computations reveal that information about the expected traffic congestion propagates faster
than the spread of traffic congestion itself. As can be seen in Figure 15b, the number of clusters in which information
arrives (i.e., the number of clusters in which more than one vehicle receives information) increases much faster than
the number of clusters with more than 15% increase in traffic volume. These results have been demonstrated when
the unexpected event occurs in the center of the grid. Because unexpected events can occur anywhere in a city, we
investigate the impact of the location of the initial informed vehicles on information propagation in Section 4.3.

4.2. Obstructions

(a) Blocked road (b) Fraction of clusters

Figure 16: (a) Clustered grid road topology. Blocked road segments are represented by dark shaded squares. (b) The red solid line represents
the fraction of clusters in which one or more informed vehicles reach when there is no communication (β = 0). This represents the rate at which
information propagates solely due to mobility. The black dotted and black solid lines represent the fraction of clusters that one or more informed
vehicles reach, in the presence of both communication and mobility, where β = 10 and β = 100, respectively. This represents the rate at which
information propagates due to the combination of communication and mobility.

In many cases, roads are obstructed for reasons such as traffic accidents or road maintenance. Vehicles upstream of
the obstruction must be detoured while vehicles that are in the queue immediately upstream of the obstruction must be
discharged. There are several obvious advantages associated with dispersing the location information of obstructions
as early as possible. Drivers who are heading for the obstruction can choose an alternate route even from a distance,
reducing their own inconveniences as well as traffic congestion around the area. Towards that end, we assess how
quickly the location information of the obstruction can be spread through the utilization of V2V technology.

We assume that two road segments in a central area of the city are blocked (Figure 16a). Information is propagated
from queued vehicles, stopped from the obstruction. Let R be the set of clusters that are blocked. If j ∈ R, ai j = 0
in the adjacency matrix of the mobility network, reflecting that the vehicle cannot enter the obstructed clusters. The
mobility parameter λ is set to λ = 0.05, and communication parameter β is set to β = 10 and β = 100. The total
number of vehicles N = 14400 is uniformly distributed in the total number of clusters J = 288 at initial time, thus the
initial number of vehicles per cluster is set to n = 50. In Figure 16, we plot as a function of time the number of clusters
in which (a) vehicles containing information on the obstruction location reach, and (b) the initially informed vehicles
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CBD

(a) CBD area (b) Fraction of informed vehicles

Figure 17: (a) Clustered grid road topology. The CBD area is represented by a dark shade. (b) The fraction of informed vehicles over time for
γ = 0.5 (evening rush hour). The red lines represent the fraction of informed vehicles when the information propagates from the center, and the
black lines represent the fraction of informed vehicles when the information propagates from the bottom-left corner.

(a) t=0s (b) t=40s (c) t=80s (d) t=120s (e) t=160s

Figure 18: The first row of gray represents the number of vehicles in each road segment over time, and the second and third rows of red represent the
number of vehicles informed in each road segment over time when information is propagated from 10 vehicles located in the lower left cluster and
in the center cluster respectively. The thickness of the road segment is linearly proportional to the number of vehicles, that is, when the thickness
corresponding to one vehicle is x, the thickness of the vehicle v is expressed by v · x. The number indicates the number of vehicles located in each
road segment.

located on the obstructed road reach. Figure 16 reveals that the result of the former is significantly higher than
the latter, which indicates that the information propagates much faster through V2V communication, as compared
to vehicular mobility alone. Figure 16 also shows that the difference in the extent to which information has been

26



propagated becomes greater as the communication rate β increases, since the larger the β value, the greater the impact
of V2V on information propagation.

4.3. Initial locations of informed vehicles

In the previous two examples, we have respectively considered that the unexpected event and the road obstructions
occur in the center of the city. However, these can occur in anywhere in the city, so we investigate the impact of the
location of initially informed vehicles on information propagation in this subsection. In particular, the impact of the
location of initially informed vehicles on information propagation is expected to be more accentuated in habitations
that are limited by natural boundaries such as coastal areas (e.g., Hong Kong and Manhattan). Thus, one might think
that the message propagation is accelerated if the initially informed vehicles are centrally located because information
can propagate simultaneously in all directions towards the boundary; using our framework, we will show that this
is not necessarily the case even under the condition that vehicles are uniformly distributed in the entire region at an
initial time (equivalently, no initial disparity of traffic density exists). This is because the information propagation
speed is also affected by the vehicular movement pattern; we show this counter-intuitive phenomenon through the
following example. As an example of a coastal area, we consider the finite grid area like Manhattan and assume
that the CBD is located in the middle of the city (Figure 17a). We set the parameters to β = 10, λ = 0.1. The
total number of vehicles N = 14400 is uniformly distributed at the initial time. We consider the evening rush hour
mobility pattern with γ = 0.5. When information is propagated from the lower left cluster located in the periphery,
information propagates rapidly to vehicles located at the bottom of the periphery where traffic density is increasing
as can be seen in Figure 18b. Hence, at an early stage, information propagates faster when it propagates from the
lower left corner (Figure 17b). However, from a certain point onwards, information propagates more quickly when
information propagates from the center. When the information propagates from the bottom left corner, it takes time
until the information is delivered to the top area of the periphery where traffic density is increasing as can be seen
in the second row of Figure 18c. This counter-intuitive phenomenon shows that the effect of the initial location of
informed vehicles on the dynamics of the information propagation can vary significantly depending on the temporal
variation of the traffic density.

5. Computation time

A significant benefit of our model is that it is computationally tractable regardless of the number of vehicles. The
statistics of the information propagation converge to the solution of the differential equations as the number of vehicles
goes to infinity. Thus, the result becomes more accurate as the number of vehicles increase, and the computation time
to numerically solve the differential equations does not depend on the number of vehicles. The number of variables
and the number of differential equations are linear (twice) in the number of clusters. Nonetheless, we show that the
computation time is still tractable even for a large number of clusters.

We report the computation time using a computer which is not computationally high-end; a 2.8 GHz Intel Core i7
processor and 16 GB of RAM. We solved the equations using the ode function from the deSolve package of R with
lsoda integration method developed by Petzold (1983). We solve the equations for 200 seconds, producing output
every 1 second. We consider the size of a cluster to be the V2V communication range so as to enable all vehicles
in the same cluster to communicate with each other. Note that the V2V messages have a range of over 300 meters
(NHTSA, 2016). We consider extensive, complex transportation networks with relatively long roads and calculate
the number of clusters, and then obtain the computation time. First, a road of approximately 366 km from New York
City to Washington, D.C. via the Highway I-95S can consist of approximately 1220 clusters. The computation time
required to numerically solve the differential equations for the 1220 clusters is only about 150 seconds. Next, as a
more challenging example, consider the entire metropolitan region. The total road network size in Hong Kong is 2107
km (Highway Department of the Hong Kong, 2018), which can be covered with 7024 clusters. The computation time
for a one-dimensional road consisting of 7024 clusters is approximately 172 minutes. Lastly, US Highway 101 is a
North-South highway that runs through California, Oregon, and Washington State, with a total length of nearly 2, 500
km. This entire West coast highway can be covered with 8334 clusters, and the computation time is 240 minutes.
These examples show that information propagation between vehicles can be identified within a reasonable time frame
even in extreme cases using clustered epidemiological differential equation model.
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6. Generalization

We generalize our model to accommodate 1) arbitrary destination dependent probabilistic routing mechanisms
(Section 6.1) 2) transmission of multiple messages in overlapping time intervals and RoIs (Section 6.2).

6.1. Destination-based routing

(a) Morning rush (no back-and-forth) (b) Fraction of informed vehicles

Figure 19: (a) An Example Destination-based routing. Even if there are multiple routes to the CBD, the vehicle only travels in the CBD direction
by selecting one of these routes. (b) The fraction of informed vehicles over time.

In our model, the routing probabilities of the vehicles at the nodes (clusters) depend only on the node (cluster)
but not on the destinations of the vehicles. Some of the extensively utilized probabilistic routing models in the
transportation community consider that each vehicle chooses its next arc at each node with a probability that depends
on the node in question and destination of the vehicle (Yperman et al., 2005; Gentile, 2015). Considering an important
special case of this, namely shortest path routing, we have presented simulations in Section 3.1.4 that reveal that
there is a close match with our model, and have explained why the match may be intuited. We do not however
have any analytical guarantee on the fit of the model. We therefore generalize our model to accommodate arbitrary
destination dependent probabilistic routing mechanisms (as in Yperman et al. (2005); Gentile (2015)). Note, however,
that vehicles may still retrace their routes in the arbitrary destination-dependent probabilistic routing mechanisms, as
in our model, depending on the choice of the routing probabilities and the network topology.

Recall that we have thus far denoted the fraction of informed and non-informed vehicles in cluster j as I j(t) and
S j(t) at time t, respectively. We now subdivide each category based on the destinations of the corresponding vehicles.
We consider a set of destinations {1, 2, ...,M} in the transportation network. Each destination corresponds to a class
of vehicles headed towards the destination in question, M + 1 denotes the class of vehicles meandering around rather
than seeking a particular destination (e.g., sight-seeing, trying to locate available parking, some eatery rather than
a particular one, etc.). We now introduce destination-based mobility rates λI

jk:m and λS
jk:m for informed and non-

informed vehicles, respectively, which represents the mobility rate from cluster j to k of vehicles whose destination
is m ∈ {1, 2, ...,M}. These mobility rates incorporate the destination-dependent routing probabilities. As a specific
example, if the path from cluster j to k is not in the direction toward the destination m, m ∈ {1, 2, ...,M}, then the
corresponding mobility rates may be chosen as zero, and then these vehicles do not retrace their paths.

Following the approach in Section 2.1, the system may be modeled as a continuous-time Markov chain (if the
sojourns of the vehicles in the clusters and the intervals between communications are exponentially distributed).
Similar to the proofs in Section Appendix A, it may be shown that Lemma 1 and Kurtz’s theorem (Existing result
1) extend to this case, and the asymptotic fraction of informed and non-informed vehicles across clusters converge
to the solution of a system of ordinary differential equations. Towards describing these differential equations, we let
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(a) t=0s (b) t=60s (c) t=0s (d) t=60s

Figure 20: Geographical representation of traffic density and information propagation, obtained from the generalized differential equations. The
first and second columns of gray represent the number of vehicles in each road segment over time, and the third and fourth columns of red represent
the number of vehicles informed in each road segment over time when information is propagated from 10 vehicles located in the lower left cluster.
Class 1 corresponds to vehicles heading only towards the CBD, and Class 2 corresponds to roaming vehicles. The second row of Class 1 represents
the movement of vehicles only towards the CBD and the propagation of information. The third row of Class 2 represents the movement of roaming
vehicles and the propagation of information. The thickness of the road segment is linearly proportional to the number of vehicles, that is, when
the thickness corresponding to one vehicle is x, the thickness of the vehicle v is expressed by v · x. The number indicates the number of vehicles
located in each road segment.

I j:m(t) and S j:m(t) denote the fraction of informed and non-informed vehicles of class m in cluster j at time t, for
m ∈ {1, 2, ...,M + 1}, respectively. The ordinary differential equations in question are:

İ j:m(t) = −

J∑
k, j

λI
jk:m (I,S) · I j:m +

J∑
k=1

βk j ·

M+1∑
m=1

Ik:m · S j:m +

J∑
k, j

λI
k j:m (I,S) · Ik:m ( j = 1, 2, . . . , J),

Ṡ j:m(t) = −

J∑
k, j

λS
jk:m (I,S) · S j:m −

J∑
k=1

βk j ·

M+1∑
m=1

Ik:m · S j:m +

J∑
k, j

λS
k j:m (I,S) · S k:m ( j = 1, 2, . . . , J).

We now consider the computation time for the above system of differential equations. The number of variables
and the total number of differential equations are now 2(M + 1)J each, rather than 2J (recall that J is the total number
of clusters). Thus, the number of differential equations increase linearly in the number of destinations. Utilizing
characteristics of transportation networks that arise in practice, we suggest some values of M, next.

First, in all large cities there exist some important destinations (such as airports, shopping malls, colleges, hospi-
tals, etc.), referred to as trip attractors or special generators in the transportation community (Yin et al., 2010), that
attract most of the traffic. For example, six and thirteen sites were treated as special generators to estimate trip attrac-
tion rates in Chittenden County in Vermont, U.S. and Des Moines Area in Iowa, U.S., respectively (Resource Systems
Group, 2008; Des Moines Area MPO, 2006). Also, the City of Philadelphia has roughly dozens of such important
destinations, such as University of Pennsylvania, Hospital of the University of Pennsylvania, airport, baseball sta-
dium, museum, etc. One may also consider distinct parts of a city as trip attractors, e.g., the Central Business District
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(CBD), old city, University city, North Philadelphia, etc. in Philadelphia. Then M becomes the number of such major
destinations, and the vehicles headed to destinations other than these may be considered to belong to the M + 1th
category. Considering the above realistic values of M, the computation remains tractable.

We now describe how the destination based probabilistic routing may be utilized to characterize the fraction of
informed vehicles as a function of time and space, in one simple instance that arises in practice; this instance also
helps us elucidate the details of this generalization. We consider a grid road topology with six avenues and streets, as
in Section 2.2.1; thus, a total of J = 120 clusters. We consider the morning rush hour, and divide vehicles into two
classes: Class 1 corresponds to vehicles heading only towards the CBD, and Class 2 corresponds to other vehicles.
We obtain the routing probability of Class 1 vehicles, building on the model introduced in Section 2.2.1. Recall that
the mobility rate set in Section 2.2.1 is λI

jk = λS
jk = p jkλ. The mobility parameter λ is set to λ = 0.03 and the

communication parameter is set to βi j = 10. At the initial time, the total number of vehicles N = 12000 is uniformly
distributed, and 70% of the vehicles in each cluster belong to Class 1. For a vehicle in Class 1, that is currently in
cluster j which is outside the CBD, the routing probability p jk is set to 1 if k is the cluster adjoining j that is the
closest to the CBD; if multiple clusters adjoining j are closest to the CBD, then the routing probability is equally
divided among them; the routing probability is set to 0 towards other adjoining clusters. Thus, vehicles in Class 1 do
not retrace their paths, i.e., do not move back and forth, while they are outside the CBD (see Figure 19a). The existing
non-rush hour model (random walk) model of Section 2.2.1 applies to vehicles in 1) Class 1 once they reach the CBD,
and 2) Class 2 anywhere. Thus, vehicles in Class 1 (Class 2 respectively) may retrace parts of their paths once they
have reached the CBD (anywhere, respectively), to represent cruising to locate a parking spot, a cafetaria, etc.

Figure 19b shows the fraction of informed vehicles obtained from the generalized differential equations, and
Figure 20 shows the corresponding geographical representation of traffic density and informed vehicles. The second
and third rows in Figure 20 respectively represent the movement of vehicles in Classes 1 and 2 and the propagation
of information. The sum of the second and third rows is the first row that depicts the traffic flow of the vehicles as a
whole and the spread of information between all the vehicles.

We conclude with some parting thoughts on the case that the RoI for the propagation of the message is a large
city or a long nationwide highway (e.g., for propagation of malware or CRL, as in Section 1.1). In this case, we note
that the routes to two blocks in a neighborhood do not usually diverge until a vehicle reaches the neighborhood, e.g.,
a vehicle traversing to a specific restaurant in Chinatown in a big city, first moves in the direction of the Chinatown
regardless of the exact address of its destination, and only after it reaches Chinatown, does it move towards the
particular restaurant. Thus, it ought to suffice to consider only the major destinations and the neighborhoods as
distinct entities. Thus, M would not be large as discussed before, and the product 2(M + 1)J would be of the same
order as J, therefore retaining computation tractability. But, when the RoI spans relatively smaller regions, e.g., small
downtowns, or neighborhoods in large cities (e.g., when messages pertaining to sudden development of disruptive
conditions, driving conditions like icy roads, arrival of ambulances etc. are shared), then individual city-blocks ought
to be considered as separate destinations as the routes towards these destinations would differ in most of the RoI. But,
given that the RoI is small, relatively speaking, in this case, both J and M would be moderate. Thus, computation
time would be manageable throughout. For example, neighborhoods like SoHo in Manhattan, New York City, USA
and downtown Ottawa, Ontario, Canada, consist of approximately 40 and 50 city blocks, respectively, and there are
respectively 7440 and 12700 differential equations. The computation time for the corresponding differential equations
is less than 3 hours using even modest computation facilities. Recall that the computation time for a total of 14048
differential equations (corresponding to J = 7024 clusters) is approximately 172 minutes (See Section 5).

6.2. Multiple types of information
Our framework has been primarily designed for characterizing the spread of one kind of information, though in

practice, the network has to handle the spread of multiple overlapping pieces of information. This may not however
be a significant impediment as the RoIs of the multiple pieces of information that propagate simultaneously do not
always overlap, and then the same vehicle would not need to simultaneously act on these pieces of information. Then
again, even when the RoIs of different pieces of information overlap, the pieces may be unrelated to the extent that
actions that the vehicles need to take based on these may be distinct. For example, traffic accident information and
Certificate Revocation Lists (CRLs) are examples of unrelated pieces of information whose RoIs may overlap. In
these cases, one can separately formulate and evaluate differential equations concerning these pieces of information,
considering one piece of information at one instance.
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We now describe how our framework can be generalized to characterize the spatio-temporal characteristics of
simultaneous propagation over overlapping RoIs, of K kinds of related information, which together impact choices
of a vehicle. Congestions, traffic accidents, driving conditions (e.g., ice formations), road obstructions, arrival of
emergency vehicles at relatively close distances would constitute examples of such related information, as route
choices would be influenced by simultaneous knowledge of all of these if their RoIs overlap. The generalization
would involve increasing the state dimension, which in turn, increases the computation time. In this case, instead
of classifying as non-informed and informed vehicles, vehicles can be indexed by a bit map consisting of K bits, in
which each bit represents whether the vehicle has received the corresponding piece of information. Accordingly, a
vehicle in each cluster is classified as one of 2K types. In Section 2.1, we have introduced a 2J-dimensional vector
(I,S) = (I1, I2, ..., IJ; S 1, S 2, ..., S J) to model the propagation of a single piece of information on a road topology
consisting of a set of J clusters. The 2J-dimensional vector for the single type of information is expanded to a vector
in 2K J dimensions described in the form (I0, I1, · · · , I2K−1), where I0 represents the fraction of vehicles in different
clusters which have not received any information, and plays the role of S in Section 2.1. Thus, for i ∈ {1, 2, ..., J}
and j = {0, 1, ..., 2K − 1}, Ii j represents the fraction of informed vehicles located in cluster i and having received the
information bits corresponding to j. Considering K = 2, the state vector becomes (I0, I1, I2, I3) = (I00, I01, I10, I11),
e.g., I13 (equivalently, I1{11}) represents the fraction of vehicles in cluster 1 that have received both kinds of information.

Following the approach in Section 2.1, the system may be modeled as a continuous-time Markov chain (if the
sojourns of the vehicles in the clusters and the intervals between communications are exponentially distributed).
Similar to the proofs in Section Appendix A, it may be shown that Lemma 1 and Kurtz’s theorem (Existing result
1) extend to this case, and the fraction of vehicles with different kinds of information across clusters asymptotically
converge to the solution of a system of ordinary differential equations involving (I0, I1, · · · , I2K−1). We now introduce
the mobility rates λ(m)

jk , which represents the mobility rate from cluster j to k of vehicles having received information

bits corresponding to the m-th category for m ∈ {0, 1, ..., 2K −1}. We also introduce the communication parameter β(r)
jk ,

which corresponds to the communication of each of the bits that is 1 in bit-map r between vehicles in clusters j and
k, for r ∈ {1, 2, ...,K}. We now present the differential equations in the example scenario that K = 2:

İ j3(t) = −

J∑
k, j

λ(3)
jk (I,S) · I j3 +

J∑
k=1

β(2)
k j · Ik2 · I j1 +

J∑
k=1

β(1)
k j · Ik1 · I j2 +

J∑
k, j

λ(3)
k j (I,S) · Ik3 ( j = 1, 2, . . . , J),

İ j2(t) = −

J∑
k, j

λ(2)
jk (I,S) · I j2 −

J∑
k=1

β(1)
k j · Ik1 · I j2 +

J∑
k=1

β(2)
k j · Ik2 · I j0 +

J∑
k, j

λ(2)
k j (I,S) · Ik2 ( j = 1, 2, . . . , J),

İ j1(t) = −

J∑
k, j

λ(1)
jk (I,S) · I j1 −

J∑
k=1

β(2)
k j · Ik2 · I j1 +

J∑
k=1

β(1)
k j · Ik1 · I j0 +

J∑
k, j

λ(1)
k j (I,S) · Ik1 ( j = 1, 2, . . . , J),

İ j0(t) = −

J∑
k, j

λ(0)
jk (I,S) · I j0 −

J∑
k=1

β(1)
k j · Ik1 · I j0 −

J∑
k=1

β(2)
k j · Ik2 · I j0 +

J∑
k, j

λ(0)
k j (I,S) · Ik0 ( j = 1, 2, . . . , J).

In many cases, V2V messages pertaining to specific events, e.g., unexpected events, obstructions in roads do not
need to propagate beyond a certain RoI or after a particular period. For a single message, i.e., when K = 1, our
model can directly accommodate this temporal and spatial context, by (1) computing the differential equations only
in the time horizon in which the message is relevant, and (2) considering clusters only in the RoI. Thus, Geocast,
i.e., propagation of messages in specific designated geographical areas, can be accommodated in our model as above,
without increasing the state space and the number of differential equations. But, for multiple related pieces of in-
formation, different kinds of information may need to be propagated over different (but overlapping) RoIs and time
intervals. Communication parameters associated with each type of information can be set to zero in the cluster outside
the corresponding RoI and the time interval in which it needs to propagate. This generalization does not increase the
state space and the number of differential equations. Suppose that two different pieces of information about traffic
accidents at two distinct locations in Manhattan propagate simultaneously. The RoI of each piece of information may
overlap, and each information is only valid for different time horizons until each traffic accident scene is cleared. In
this case, the communication parameter β(2)

jk , which corresponds to the communication of information about accident
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2, is 1) positive when clusters j and k are located in the RoI of this message, and in the time interval in which the
message is relevant, 2) 0 otherwise.

The number of variables and the number of differential equations increase exponentially in the number of mes-
sages, by a factor of 2K to be specific. We however expect that only a few important pieces of related information
would need to simultaneously propagate in overlapping RoIs. Thus, K would be small. Moreover, such RoIs would
be smaller than entire cities or long highways because the related pieces of information are typically relatively local
in scope, e.g., congestions, traffic accidents, driving conditions like ice formations, road obstructions, arrival of emer-
gency vehicles at relatively close distance etc. The kinds of information whose RoIs span entire cities or counties
or long highways, like malware, CRL, are not related to the above. Thus, again the product 2K J may not always be
prohibitive. We elucidate this using some examples that arise in practice. We consider the situation in which seven
different types of information are disseminated in SoHo (40 blocks) in Manhattan and downtown Ottawa (50 blocks);
there are respectively 11904 and 16256 differential equations. The computation time would be less than 4 hours us-
ing even modest computation facilities. Recall that the computation time for a total of 16668 differential equations
(corresponding to J = 8334 clusters) is approximately 240 minutes (See Section 5).

7. Conclusion and future work

V2V technologies bridge two interconnected and interdependent infrastructures: the communications infrastruc-
ture and the transportation infrastructure (including the vehicular infrastructure, the sensor infrastructure, and the
physical roadway capacity). In this manuscript, proceeding from a continuous-time Markov chain model, utilizing
rigorous mathematical proofs, we compute the fraction of informed vehicles as a function of time and space as a
solution of a set of clustered epidemiological differential equations which lend itself to fast computation. We then
demonstrate the applicability of this model in various scenarios: both real world scenarios, involving several general-
izations and interdependence between communication and mobility and hypothesized scenarios of outages and system
perturbations. We find that our models match microscopic trajectory data with acceptable error, demonstrating the
applicability of our models. Our findings are of critical importance in shared transportation, as many of the current
commercial ventures are investing in and considering the deployment of Connected Autonomous Vehicles enabled
with V2V technologies. Overall, our work captures the spatio-temporal dynamics of information propagation over
connected vehicles, enabling shared mobility services, individuals, and transportation system operators to see the ben-
efits and drawbacks of large-scale V2V-enabled vehicle deployments in different transportation network typologies
and for different densities of V2V-enabled vehicles and communication conditions of V2V-enabled vehicles.

We now list some directions for future research. Reduction of the worst case computation times for the general-
izations considered in Section 6 through creative formulations that exploit specific temporal and spatial properties of
given transportation networks deserves further investigation. Next, the traffic signals result in traffic synchronization,
because, all vehicles stop at a red light and start moving almost simultaneously when the light turns green. This
synchronization causes a divergence between the actual mobility of the traffic trajectory and the exponential mobility
process, which we have assumed. Modeling information propagation with such pulsed traffic remains open. We can
for example consider a time-dependent mobility parameter λi, j(·), whereby they are 0 when the lights are red, and at
the normal values when they are green. When there are many traffic signals on more complex roads, multiple traffic
signals affect traffic flows in different directions simultaneously, which affects information propagation in a compli-
cated manner. We postpone the details, including mathematical analysis, numerical computations and simulations,
impact of the locations of traffic signal(s) for future research.
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Appendix A. Proof of the result in Section 2.1

The stochastic model for the information propagation can be approximated by a solution of ordinary differential
equations (3). To this end, we first present the results developed by Kurtz (1970).

Definition 1. One parameter family of Markov chain X(t) with state spaces contained in ZK is called density depen-
dent if there exist continuous functions f (x,h) : RK × ZK → R, such that the transition rates q(k,k + h) from k to
k + h is given by

q(k,k + h) = N f
(

k
N
,h

)
, h , 0.

We can obtain a new Markov chain by scaling with N, and the scaled process XN(t) is defined by

XN(t) :=
X(t)
N

=
1
N

(nI(t),nS (t)).

If a Markov process X(t) is density dependent, under certain conditions, a scaled process XN(t) can be approximated
by a solution of ordinary differential equations determined by the following function

F(x) :=
∑
h,0

h f (x,h) , (A.1)

which is the limiting mean increment. The following result (Kurtz, 1981; Ethier and Kurtz, 2009) provides sufficient
conditions for convergence of the scaled process XN(t) to the unique trajectory of an deterministic path when N is
large.

Existing Result 1. Suppose for each compact E ∈ RK∑
h

|h| sup
x∈E

f (x,h) < ∞, (A.2)

and there exist ME > 0 such that
|F(x) − F(y)| < ME |x − y| x, y ∈ E. (A.3)

Suppose limN→∞ XN(0) = x(0), and x(t) satisfies

x(t) = x(0) +

∫ t

0
F(x(s))ds,

for all t ≥ 0 (in particular sups≤t |x(s)| < ∞). Then

lim
N→∞

sup
s≤t
|XN(s) − x(s)| = 0 a.s. for all t > 0.

We now use this result to approximate the dynamics of infomation propagation through the solution of ordi-
nary differential equations. Recall a set E :=

{
(I,S) | Ii ≥ 0, S i ≥ 0 : i = 1, 2, ..., J,

∑J
i=1(Ii + S i) = 1

}
with (I,S) =

(I1, I2, ..., IJ , S 1, S 2, ..., S J). Note that S N/N is a subset of E and the scaled process XN(t) is contained in E. Also note
that I and S respectively have physical connotations of fraction of informed and non-informed vehicles in each cluster
as discussed. Let the function f (x,h), x ∈ E, h ∈ Z2J , be defined as

f (x,h) =


λI

jk (x) · I j, h = −1 j + 1k, j , k
λS

jk (x) · S j, h = −1J+ j + 1J+k, j , k

β jk · I j · S k, h = 1k − 1J+k

0, otherwise.

(A.4)

where x = (I,S). Since transition rate (1) can be written as the form of q (k,k + h) = N f
(

k
N ,h

)
, h , 0, the Markov

process satisfies density-dependent property (Definition 1). From (A.1) and (A.4), the function F(x) = F(I,S), can be
expressed as
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F(I,S) =
∑
h,0

h f ((I,S),h) =



−
∑J

k,1 λ
I
1k (I,S) · I1 +

∑J
k=1 βk1IkS 1 +

∑J
k,1 λ

I
k1 (I,S) · Ik

...

−
∑J

k,J λ
I
Jk (I,S) · IJ +

∑J
k=1 βkJ IkS J +

∑J
k,1 λ

I
kJ (I,S) · Ik

−
∑J

k,1 λ
S
1k (I,S) · S 1 −

∑J
k=1 βk1IkS 1 +

∑J
k,1 λ

S
k1 (I,S) · S k

...

−
∑J

k,J λ
S
Jk (I,S) · S J −

∑J
k=1 βkJ IkS J +

∑J
k,J λ

S
kJ (I,S) · S k.

Lemma 1. Suppose for i, j = 1, 2, ..., J and i , j, mobility rate functions λI
i j : E → R and λS

i j : E → R are bounded
and Lipschitz continuous on E. Then, the function F is Lipschitz continuous on E.

Proof. Let x = (I,S) = (I1, I2, ..., IJ , S 1, S 2, ..., S J) and y = (Ī, S̄) = (Ī1, Ī2, ..., ĪJ , S̄ 1, S̄ 2, ..., S̄ J) be points in E. Starting
from |Fi(x) − Fi(y)| for i = 1, 2, ..., J, we have

|Fi(x) − Fi(y)| =

∣∣∣∣∣∣∣−
J∑

k,i

(
λI

ik(x)Ii − λ
I
ik(y)Īi

)
+

J∑
k=1

βki(IkS i − ĪkS̄ i) +

J∑
k,i

(
λI

ki(x)Ik − λ
I
ki(y)Īk

)∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣−
J∑

k,i

λI
ik(x)(Ii − Īi) −

J∑
k,i

(
λI

ik(x) − λI
ik(y)

)
Īi +

J∑
k=1

βkiIk(S i − S̄ i) +

J∑
k=1

βkiS̄ i(Ik − Īk)

+

J∑
k,i

λI
ki(x)(Ik − Īk) +

J∑
k,i

(
λI

ki(x) − λI
ki(y)

)
Īk

∣∣∣∣∣∣∣ .
for i = 1, 2, ..., J. Suppose for i, j = 1, 2, ..., J and i , j, the mobility rate function λI

i j and λS
i j are bounded above by

λ̂I
i j and λ̂S

i j respectively. Suppose further that λI
i j and λS

i j are Lipschitz continuous in the sense that |λI
i j(x) − λI

i j(y)| ≤
LI

i j · |x − y| with Lipschitz constant LI
i j and |λS

i j(x) − λS
i j(y)| ≤ LS

i j · |x − y| with Lipschitz constant LS
i j. Then, we have

|Fi(x) − Fi(y)| ≤
J∑

k,i

λ̂I
ik

∣∣∣Ii − Īi

∣∣∣ +

J∑
k,i

LI
ik |x − y| +

J∑
k=1

βki|S i − S̄ i| +

J∑
k=1

βki|Ik − Īk |

+

J∑
k,i

λ̂I
ki|Ik − Īk | +

J∑
k,i

LI
ki|x − y|.

Since
∣∣∣Ii − Īi

∣∣∣ ≤ ∣∣∣(I,S) − (Ī, S̄)
∣∣∣ = |x − y| and

∣∣∣S i − S̄ i

∣∣∣ ≤ ∣∣∣(I,S) − (Ī, S̄)
∣∣∣ = |x − y| for i = 1, 2, ..., J, we have

|Fi(x) − Fi(y)| ≤ Ki · |x − y| i = 1, 2, ..., J

where Ki =
∑J

k,i λ̂
I
ik +

∑J
k,i LI

ik + 2
∑J

k=1 βki +
∑J

k,i λ̂
I
ki +

∑J
k,i LI

ki. Through the same way, for i = J + 1, J + 2, ..., 2J, we
have

|Fi(x) − Fi(y)| ≤ Ki · |x − y| i = J + 1, J + 2, ..., 2J

where Ki =
∑J

k,i λ̂
S
ik +

∑J
k,i LS

ik + 2
∑J

k=1 βki +
∑J

k,i λ̂
S
ki +

∑J
k,i LS

ki. Thus, the component functions Fi for i = 1, 2, ..., 2J
are Lipschitz continuous on E; consequently, the function F is Lipschitz continuous on E.

By Lemma 1, the mobility rate functions λI
i j and λS

i j for i, j = 1, 2, ..., J and i , j, are bounded and Lipschitz
continuous on E, so the condition (A.3) is satisfied. The state space S N is finite and the function f (x,h) for each
h is bounded, so the condition (A.2) is satisfied. Consequently, if limN→∞

1
N (nI(0),nS (0)) = (I(0),S(0)), the scaled

process XN(t) converges to the solution of the ordinary differential equations (3) as the total number of vehicles N
increases.
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