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Application of Network Calculus to General
Topologies using Turn-Prohibition

David Starobinski, Mark Karpovsky, and Lev Zakrevski

Abstract— Network calculus is known to apply in gen-
eral only to feed-forward routing networks, i.e., networks
where routes do not create cycles of interdependent packet
flows. In this paper, we address the problem of using net-
work calculus in networks of arbitrary topology. For this
purpose, we introduce a novel graph-theoretic algorithm,
called turn-prohibition (TP), that breaks all the cycles in a
network and, thus, prevents any interdependence between
flows. We prove that the TP-algorithm prohibits the use of
at most 1/3 of the total number turns in a network, for any
network topology. Using analysis and simulation, we show
that the TP-algorithm significantly outperforms other ap-
proaches for breaking cycles, such as the spanning tree and
up/down routing algorithms, in terms of network utilization
and delay bounds. Our simulation results also show that the
network utilization achieved with the TP-algorithm is within
a factor of two of the maximum theoretical network utiliza-
tion, for networks of up to 50 nodes of degree four. Thus,
in many practical cases, the restriction of network calculus
to feed-forward routing networks may not represent a too
significant limitation.

Keywords— network calculus, acyclic networks, network
stability, quality of service.

I. INTRODUCTION

�
ETWORK calculus is a general paradigm for the pro-
vision of Quality of Service (QoS) in communication

networks [6], [10], [18]. The main principle of network
calculus is to show that if all the input ßows to a network
satisfy a certain set of constraints, then so do all the ßows
within the network. The formulation of the constraints
is simple enough to allow the computation of bounds on
various performance measures, such as delay and queue
length, at each element of the network.

A well-known network calculus is the ��� �� calculus,
Þrst introduced in [10] and further developed in [19] which
provides deterministic bounds on delay and buffering re-
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quirements in a communication network. This model is
useful for applications requiring deterministic QoS guar-
antees [22].

The network calculus framework applies also to statisti-
cal services [4], [15]. In particular, the minimum envelop
rate (MER) [5] and exponentially bounded burstiness
(EBB) [28] network calculi provide exponential bounds
on various metrics of interest. More recently, a network
calculus, termed stochastically bounded burstiness (SBB)
calculus [24], [26], was developed in order to capture the
multiple time-scale and self-similar behavior of the trafÞc,
as observed over the Internet [17], [20], [27]. The SBB
calculus provides general stochastic bounds at each node
of a network.

A central problem shared by all network calculi is of
determining the conditions under which a network is sta-
ble, meaning that the queue length at each element of the
network is bounded according to some appropriate met-
ric [5], [11]. It turns out that network stability is easy
to establish only for feed-forward routing networks, i.e.,
networks where routes do not create cycles of interdepen-
dent packet ßows. Such networks are stable if and only if
the trafÞc load (utilization) at each element is smaller than
one [5], [11]. This condition is known as the throughput
condition [28]. The case of non-feed-forward networks is
generally much more complicated, with only a few notable
exceptions (e.g. [19]). While the throughput condition re-
mains necessary for the stability of such networks, it is no
longer sufÞcient. A number of examples given in [16] il-
lustrate this fact. Recent results show that even networks
of FIFO queues with ��� �� sessions may be unstable [1].

It is worth noting that an upper bound on the delay
in arbitrary non-feed-forward networks has recently been
derived in [7]. Unfortunately, this bound is useful only
for very small link utilization. SpeciÞcally, the maximum
achievable link utilization is inversely proportional to the
maximum route length of any ßow in the network. For
instance, for a network diameter of 6 hops, the maximum
utilization on any link does not exceed 20%.

In summary, network calculus is mostly useful for feed-
forward routing networks. This fact leads to the natural
question of how network calculus can be applied to net-
works of arbitrary topology. The main contribution of this
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paper is to take on this problem and provide an efÞcient
solution to it.

Our approach is to pro-actively break all the possible
cycles in a network, by prohibiting (disabling) the use of
some of the network resources. This way, we prevent any
interdependence between different ßows. The main chal-
lenge with this approach resides in minimizing the amount
of resources that need to be prohibited.

The simplest approach for breaking cycles in a network
is to construct a spanning tree and prohibit the use of links
not belonging to the tree. However, a spanning tree ap-
proach is highly inefÞcient since a large number of links
are unused, and links close to the root become congested.

Instead, we propose to resort to a more sophisticated
approach based on the prohibition of turns. Here, a turn
is deÞned as a speciÞc pair of input-output links around a
node [12]. The main claim is that in order to break all the
cycles in a network, it is sufÞcient to prohibit a set of turns
instead of a set of links, as is the case with spanning trees
(a turn ��� �� �� around some node � is prohibited if not
packets can be forwarded from link ��� �� to link ��� ��).
For instance, while a spanning tree may fully prohibit the
transmission of any packet through an output link of some
node, a turn-prohibition approach may allow the use of this
link, as long as packets arrive from a pre-determined set of
input links.

In this paper, we introduce a novel algorithm using
this approach, called the turn-prohibition algorithm (TP-
algorithm) [29]. This algorithm ensures that all the cycles
in a network are broken, while maintaining global connec-
tivity. Moreover, for any network topology, it never pro-
hibits more than 1/3 of the total number of turns in the net-
work. This property provides a meaningful upper bound
on the maximum amount of resources that need to be sac-
riÞced in order to guarantee a cycle-free network. The TP-
algorithm exhibits a reasonable computational complexity
that is a polynomial in the number of nodes in the network.
It is applicable to network nodes of general, non-blocking,
switching architecture.

The TP-algorithm is not the Þrst algorithm based on the
concept of turn-prohibition. In particular, the up/down
routing scheme, developed in the context of a local area
network called Autonet, uses a similar concept [23]. How-
ever, this scheme does not systematically attempt at mini-
mizing the amount of prohibited turns in the network and
its performance is much less predictable. In particular,
we show in the sequel that the fraction of turns prohib-
ited by this scheme may tend to 1 in some networks. Fur-
thermore, our numerical results in Section V show that the
TP-algorithm typically achieves a throughput 10% to 20%
higher than the up/down algorithm.
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Fig. 1. Simple example of a connected graph

This paper is organized as follows. In Section II, we
introduce our graph-theoretic model of the network and
related notations. Next, in Section III, we summarize the
spanning tree and up/down routing algorithms and indi-
cate their limitations. Then, in Section IV, we introduce
the TP-algorithm, prove its main properties, and illustrate
it with concrete examples. Our simulation results are pre-
sented in Section V, where we compare the throughput and
delay bounds achieved by the three algorithms. The last
section of this paper is devoted to concluding remarks.

II. MODEL

We model a network by a directed graph. We deÞne the
graph � to be a collection of � nodes and � links. A pair
�	�� 	�� denotes a link directed from node 	� to node 	�.

We restrict our attention to the typical case of bi-
directional network topologies, that is networks where
nodes are connected by bi-directional links. We will de-
Þne the degree of a node as the number of output links of
the node. For a bi-directional graph, this number is equiv-
alent to the number of input links to the node.

A path from nodes 	� to 	� in a graph �, is a se-
quence of nodes �	�� 	�� 	�� 
 
 
 � 	���� 	��, such that each
two subsequent nodes are connected by a link. We say that
a graph � is connected, if for each node � there exists a
path to every other node �.

A cycle in � is deÞned to be a path where the Þrst link
and the last link of the path are the same, for instance,
�	�� 	�� 	�� 
 
 
 � 	���� 	�� 	�� 	��
 Note that the literature
in graph-theory typically deÞnes a cycle as a path such that
the Þrst node and the last node in the path are the same [9].
We will refer to this latter deÞnition as a cycle of nodes.

Breaking all cycles of nodes is a too strong requirement
for network calculus. For instance, referring to Figure 1,
the path ��� �� �� �� �� creates a cycle in the network, while
the path ��� �� �� �� �� �� does not (although it contains a
cycle of nodes). A cycle is thus created only when the
same port (or link) is visited twice. In particular, a path
may traverse several times the same node without creating
a cycle.

A pair of input-output links around a node is called a
turn. The three-tuple ��� �� �� will be used to represent a
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Fig. 2. A spanning tree for the the graph of Fig. 1. A link with
an X represents a prohibited link.

turn around node � from link ��� �� to link ��� ��. For in-
stance, in Fig. 1, the three-tuple ��� �� �� represents the turn
from link ��� �� to link ��� �� around node 2.

Due to the symmetrical nature of bi-directional graphs,
we will consider the turns ��� �� �� and ��� �� �� to be the
same turn. The number of turns around a node of degree �
is equal to ��� � ����. For instance, in Fig. 1, there are
six turns around node 4.

As shown in the sequel, an efÞcient approach for break-
ing cycles in a network is based on the prohibition of turns.
For example, in Fig. 1, prohibiting the turn ��� �� �� means
that no packet can be forwarded from link ��� �� to link
��� �� (and from link ��� �� to link ��� ��).

III. SUMMARY OF PREVIOUS APPROACHES FOR

BREAKING CYCLES

In this section, we summarize two earlier approaches
that preserve network connectivity and break all the cycles
in a network of arbitrary topology.

A. Spanning Trees

The simplest approach for breaking all the cycles in a
graph is to construct a spanning tree. A spanning tree is a
connected sub-graph of � that includes all the nodes of �
and does not contain any cycle of nodes.

Spanning trees can be generated in various ways. One
involves picking a root node at random (for instance, the
node with the lowest id), and construct a shortest path tree
using a Breadth First Search (BFS) procedure [9]. An ex-
ample of a spanning tree generated that way is depicted in
Fig. 2. In this example, node 1 is chosen as the root.

A major drawback of the spanning tree approach is that
a large number of links are unused. Moreover, links near
the root of the spanning tree get congested, thus limiting
the throughput of the whole network.

B. Up/Down Routing

The spanning tree approach turns out to be too restric-
tive in preventing all cycles of nodes. As explained earlier,
cycles in networks arise only when a path can traverse the
same link twice or more. Instead of fully prohibiting use of
links, a more efÞcient approach is to prohibit use of turns.
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Fig. 3. An up/down spanning tree for the the graph of Fig. 1.
An arc represents a prohibited turn.

With the up/down routing algorithm [23], a spanning
tree is Þrst constructed, and nodes are ordered according
to the level at which they are located on the tree (the level
of a node is deÞned at its distance from the root). Nodes at
the same level are ordered arbitrarily. Such an ordering of
the nodes in a spanning tree is illustrated in Fig. 2 where
node 1 is the root of the tree, nodes 2, 3 and 4 are level 1
nodes, nodes 5 and 6 are level 2 nodes, and node 7 is a
level 3 node. Note that if another node were chosen as the
root, then the labels of the nodes would be changed.

Once the nodes are ordered, a link ��� �� is considered to
go �up� if � � �. Otherwise, it is said to go �down�. A turn
��� �� �� is referred to as an up/down turn if node if � � �
and � � �. Respectively, a down/up turn is a turn such that
� � � and � � �. A key observation is that any cycle must
involve at least one up/down turn and one down/up turn.
Therefore all the cycles in a graph can be broken by pro-
hibiting all the down/up turns. This also means that all the
other types of turns can be permitted. Thus, packets are al-
lowed to traverse links not belonging to the spanning tree
as long as they are not forwarded along down/up turns. An
up/down spanning tree, for the graph of Fig. 1, is depicted
in Fig. 3. The arcs represent the prohibited turns. For in-
stance, around node 4, turns ��� �� ��, ��� �� �� and ��� �� ��
are all prohibited. On the other hand, turn ��� �� �� is per-
mitted. Thus, the up/down spanning tree approach still al-
lows to make use of link ��� ��, unlike the simple spanning
tree approach.

The up/down routing algorithm leads to markedly better
performance than the simple spanning tree approach. Nev-
ertheless, links near the root still remain more likely to get
congested than other links in the network.

Another problem is that the performance of the up/down
scheme depends critically on the selection of the spanning
tree and on which node is chosen as the root of the tree. To
illustrate this fact, Figures 4 and 5 show the same graph,
but with different node labeling. We note that the total
number of turns in this graph is on the order of ��. For
the case of Fig. 4, only the turns ��� � � �� ��, � � � � � ,
are prohibited. The fraction of prohibited turns is thus on
the order of ��� , and tends to 0 as � gets very large. On
the other hand, for the case depicted in Fig. 5, all the turns
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around node � are prohibited, and the fraction of prohib-
ited turn in the graph tend to 1 as � gets very large. In
general, the the up/down scheme will perform somewhere
between these two extremes depending on the location of
the root.

Example 1: In order to make the previous example con-
crete in term of delay bounds, assume that a ��� �� ses-
sion is established in both directions between each pair
of nodes in the network of Figs. 4 and 5. Here, the pa-
rameters � and � correspond to the bucket rate and bucket
depth (burstiness), respectively. Assume further that ßow
shapers are implemented at each node such that the ��� ��
characterization of each ßow remains the same within
the network [18]. Each node implements a FIFO output
queueing architecture, and the capacity of each link is � .
Assuming that the throughput condition is satisÞed on each
link, the delay bound for � ßows sharing a same link is
�� 	 ���� [10]. For the case of Fig. 4, each node can
communicate with each other node within two hops, via
node 1. Therefore, in this case, an end-to-end delay bound
for each ßow will be �� 	 ��� � ����� , since � � �

ßows share each link starting from node 1 or ending at
it. For the case of Fig. 5, all the communication needs
to be done over the bottom links, that is over the links
��� � � ��. It can easily be checked that the delay bound
on each link ��� � � �� is �� 	 ��� � ����� , which can
be on the order of �� 	 ����� . Worse, since a ßow
between node 1 and node � traverses � � � hops, the re-
sulting end-to-end delay bound for this ßow is on the order
of �� 	 ����� . This shows that the selection of the root
can have a tremendous effect on the network performance
and the delay bounds.

In summary, the choice of a �good� spanning tree is
critical for the performance of the up/down routing ap-
proach. Unfortunately, there are currently no simple meth-
ods to Þnd the tree that minimizes the amount of prohib-
ited turns, except for performing an exhaustive, prohibitive
search. Note that the up/down algorithm does not provide
any bounds on the fraction of prohibited turns, even if the
node of largest degree is selected as the root.

IV. THE TURN-PROHIBITION ALGORITHM

In this section, we describe a new algorithm that pro-
vides a robust upper bound on the amount of restricted
network resources [29]. In particular, the algorithm guar-
antees that the fraction of prohibited turns, for any given
graph, never exceeds 1/3. This is in contrast to the
up/down routing algorithm, for which the fraction of pro-
hibited turns may tend to 1, as shown in the previous sec-
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Fig. 4. Up/Down: A node labeling resulting in a small fraction
of prohibited turns.

N−1 12345N

Fig. 5. Up/Down: A node labeling resulting in a large fraction
of prohibited turns.

tion.
The turn-prohibition algorithm does not make use of a

spanning tree. Instead, it considers iteratively each node in
the network and uses turn prohibition to break all the possi-
ble cycles involving the node under consideration. At each
step, the algorithm selects the node of minimal degree. We
will show that this selection is the key in guaranteeing that
the fraction of prohibited turns never exceeds 1/3. A basic
version of the TP-algorithm is described in more details in
the next section.

A major complication comes from the connectivity re-
quirement, that is, the requirement that all the nodes must
remain connected at the end of the algorithm. The basic
version of the TP-algorithm does not generally guarantee
connectivity. In Section IV-B, we describe a full version
of the TP-algorithm that breaks all the cycles, preserves
connectivity, and guarantees that no more than 1/3 of the
turns are prohibited. This algorithm is recursive in nature.
Note that the up/down routing algorithm automatically sat-
isÞes the connectivity requirement by Þrst constructing a
spanning tree.

A. Basic Version

We Þrst introduce a simpler version of the TP-algorithm,
that forms the basis of the full version. The algorithm per-
forms the following iteration:
Step 1: Select a node of minimal degree. Denote this node
as node �.
Step 2: Prohibit all the turns around node �, that is, pro-
hibit all the turns of the type ��� �� ��.
Step 3: Permit all the turns starting from node �, that is,
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Fig. 6. Successive iterations of the TP-algorithm

permit all the turns of the type ��� �� ��.
Step 4: Delete node � and the links incident to it, and re-
peat the procedure until all the nodes in the graph have
been deleted.

The iterations of the TP-algorithm are illustrated in
Fig. 6. First, node 7 is selected. There is no turn around
node 7, and thus no turn is prohibited. Turns �
� �� �� and
�
� �� �� are permitted. Node 7 and link ��� 
� are then
deleted and the procedure is repeated. At the next stage,
either of nodes �, � or � can be selected, as they are all
of the same minimal degree �. Assume that node 6 is se-
lected. Then, the turn ��� �� �� is prohibited, and the turns
��� �� ��, ��� �� ��, ��� �� �� and ��� �� �� are all permitted.
Node 6 and links ��� �� and ��� �� are now deleted from
the graph. The procedure continues until all the nodes
have been considered. The Þnal set of prohibited turns
is ��� �� ��, ��� �� �� and ��� �� �� (other solutions are also
possible). Note that this one turn less than for the up/down
spanning tree example given in the previous section.

The TP-algorithm satisÞes the following properties:

Theorem 1 The TP-algorithm breaks all the cycles.

Proof: The proof is by induction. The induction hypoth-
esis is that, at each step of the algorithm, all the cycles
involving a deleted node have already been broken. This
hypothesis is clearly true for the Þrst node selected, since
all the turns around it are prohibited. Now suppose that �
nodes have already been deleted, and all the cycles involv-
ing them have been broken. The next node under consid-

eration is, say, node 	���. We distinguish between two
types of turns around node 	���. First, we consider the
turns that involve at least one node that has already been
deleted. These turns have been permitted in one of the
previous steps of the algorithm, but can not lead to a cycle
since, by the induction hypothesis, all the cycles involv-
ing a deleted node have already been broken. Second, we
consider the turns around node 	��� that do not involve a
previously deleted node. The TP-algorithm prohibits all
these turns, and thus breaks all the remaining cycles that
could have involved node 	���. The induction hypothesis
is thus justiÞed, and the proof of the claim is complete.

Remark: Consider the last node deleted by the algo-
rithm. All the turns around it are permitted. Thus, no cycle
of nodes can start and end at it, since otherwise a cycle (of
links) would automatically be created. Therefore, no path
can traverse the last deleted node more than once. We will
use this property in the sequel.

Theorem 2 The TP-algorithm prohibits at most 1/3 of the
turns.

Proof: At each step, the algorithm selects a node of min-
imal degree. Suppose that the selected node 	� has a de-
gree �. The total number of prohibited turns around node
	� is ��� � ����.

By deÞnition, node 	� has � neighbors. Each neigh-
bor 	� has a degree, � , that is larger or equal to �. The
number of permitted turns starting from node 	� and in-
volving neighbor 	� is � � �. Denoting the neighbors of
node 	� as 	�� 	�� 
 
 
 � 	�� , the total number of permitted
turns starting from 	� is then

���
����� � �� � ��� � ��.

This quantity is at least twice as large as the number of
prohibited turns. Thus, at most 1/3 of the turns are prohib-
ited.

Remark: In the case of a complete graph, where each node
is connected to each other node, the TP-algorithm pro-
hibits exactly 1/3 of the turns. Thus, the bound provided
by the theorem is tight.

Theorem 3 The basic version of the TP-algorithm pre-
serves connectivity under the assumption that, at each step
of the algorithm, the graph consisting of the non-deleted
nodes remains connected.

Proof: Suppose that, at step �, node 	� is deleted. We select
a link from node 	� to one of its non-deleted neighbors,
say node 	� , and refer to the link as a selected link. For
instance in Fig. 6, the links �
� ��, ��� ��, ��� ��, etc., are
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Fig. 7. An implementation where all the cycles are broken, but
connectivity is lost

successively picked as selected links. Note that the TP-
algorithm guarantees that all the turns between selected
links are permitted. From the assumption, once node 	�
has been deleted, there remains a connected graph of ���
non-deleted nodes. The same procedure is repeated for
each of these nodes. As the algorithm terminates, we end
up with a graph of � nodes and � � � (selected) links.
The only graph that satisÞes such a property is a spanning
tree. Thus, connectivity is guaranteed.

B. Full Version

Unfortunately, the assumption, on which Theorem 3 is
based, does not hold in general, as illustrated in Fig 7. Sup-
pose that the Þrst node selected is node 7, and turn ��� 
� ��
is prohibited. Then, the graph is broken into two compo-
nents of connectivity, namely, nodes ��� �� �� �� �� �� and
��� � ��� ���, and the global connectivity is lost.

In general, once all the turns around some node � have
been prohibited, the remaining nodes in the graph will be
split into � � � different components of connectivity
��� ��� 
 
 
 � �� . In order to preserve global connectiv-
ity, the full version of the algorithm must permit some of
the turns around node �. To this end, the full algorithm se-
lects � links connecting node � to each component. These
links are referred to as special links. All the turns between
special links are permitted. In Fig. 8, the special links are
links �
� �� and �
� ��.

At a Þrst glance, it seems that all what remains to do is
to recursively run the algorithm within each component of
connectivity. Unfortunately, such a scheme would indeed
break all the cycles within components of connectivity, but
not necessarily cycles across components of connectivity.
This fact is illustrated in Fig. 8. Here the turn ��� 
� ��
has been permitted (to guarantee connectivity) and the TP-
algorithm has been run within each component connec-
tivity. Cycles within the components have indeed been
broken, but cycles across components, such as the cycle
�
� �� � ��� ��� �� 
� �� �� �� �� �� 
� ��, still exist.

Note that cycles across components of connectivity arise
only due to the presence of cycles of nodes within compo-
nents. SpeciÞcally, for each component, these cycles of
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Fig. 8. An implementation where connectivity is preserved, but
not all the cycles are broken

nodes must start from the node connected to the special
link (in Fig. 8, these are nodes � and �).

The solution to this problem consists of preventing cy-
cles of nodes that originate from a node connected to a
special link. We remind now the property that that no cy-
cles of nodes can originate from the last node deleted by
the TP-algorithm (see the remark following Theorem 1).
We are now going to take advantage of this property and
make sure that, for each component of connectivity, the
node connected to the special link will be the last one to
be deleted. For this purpose, we will mark the node and
refer to it as a special node. By making sure that the spe-
cial node is the last one to be deleted, the full TP-algorithm
guarantees that no cycle of nodes will originate from that
node.

Due to the recursive nature of the TP-algorithm, one of
the � components of connectivity, say component 1, may
already contain a special node. For this component, the
node connected to the special link is not marked as spe-
cial. Thus, a cycle of nodes originating from this node
may exist. However, cycles across components are still
prevented since none of the other components of connec-
tivity contains a cycle of nodes (a cycle across components
of connectivity arises only if at least two components con-
tain a cycle of nodes originating from the node connected
to the special link). The following theorem summarizes
our results:

Theorem 4 The full version of the TP-algorithm breaks
all the cycles and preserves global connectivity.

The formal description of the full TP-algorithm follows.
It is based on a recursive procedure TP(��), where the ar-
gument �� represents a component of connectivity:

Procedure TP(��) :
Step 1: Select the node of minimal degree in��, excluding
the special node (if there is such one). If several nodes of
minimal degree are available, then select Þrst a node that
is not a neighbor of the special node. Denote the selected
node as node �.
Step 2: Prohibit all the turns around node �, that is, pro-
hibit all the turns of the type ��� �� ��.
Step 3: Permit all the turns starting from node �, that is,
permit all the turns of the type ��� �� ��.
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Step 4: If the remaining graph is broken into � � � com-
ponents of connectivity ��� ��� 
 
 
 � �� , then select �
special links connecting node � to each component, and
permit all the turns between the special links.
Step 5: If a special node exists in ��, then it should be
in ��. For each of the other components of connectivity
��� ��� 
 
 
 � �� , the node connected to the special link is
marked as a special node.
Step 6: Delete node � and the links incident to it. If there
is only one remaining node in �� then delete it and return
the procedure. Otherwise, invoke recursively the proce-
dure for each component of connectivity, that is, perform
TP(��),TP(��),
 
 
,TP(��).

The algorithm is started by invoking TP(�), where �
corresponds to the whole graph. Initially, no node is
marked as special. An illustration of the results of the TP-
algorithm is given in Fig. 9. In this case, we suppose that
node 7 is the Þrst selected node. After deleting node 7 and
the links incident to it, the graph is broken into two com-
ponents of connectivity. Then, links �
� �� and �
� �� are
marked as special links and node 8 is marked as a special
node. Note that node 6 could also have been marked as a
special node, but this is unnecessary since � special links
require only � � � special nodes, as explained earlier.

We now show that the Þrst step of the algorithm guaran-
tees that at most 1/3 of the turns are prohibited.

Theorem 5 The full version of the TP-algorithm prohibits
at most 1/3 of the turns.

Proof: At each step, the algorithm selects the node of min-
imal degree in the component of connectivity, excluding
the special node. If there exist several nodes of minimal
degree, then the algorithm selects Þrst a node that is not a
neighbor of the special node.

Suppose that the selected node, 	�, is of degree �.
The number of prohibited turns around 	� is at most
��� � ���� (maybe less if there are special links). We
now distinguish between two cases.

First, suppose that 	� is not a neighbor of the special
node. Then, all the neighbors of 	� have a degree greater
or equal than 	�, and the fraction of prohibited turns is
smaller or equal than 1/3, exactly as in the proof of theo-
rem 2.

Next, suppose that the selected node 	� is a neighbor
of the special node. Let�s denote the degree of the special
node by �. If � � �, then, again, it follows immedi-
ately that at most 1/3 of the turns are prohibited. Now,
suppose that � � �. Clearly, node 	� has at least � � �

neighbors that are not connected to the special node. The
degree of these neighbors must be strictly greater than �,

3

2 4

5

6 7

1

8

9 10

11

Fig. 9. The full TP-algorithm. The special node and special
links are marked in bold. Connectivity is preserved, and all
the cycles are broken.

otherwise one of them would have been selected instead
of 	�. The other � � � neighbors have a degree larger or
equal to �. The last neighbor is the special node, of degree
�. Overall, the total number of permitted turns is at least
�� � ��� � �� � ���� � �� � �� � �� 	 ��� � ��,
which is twice as large as the number of prohibited turns.
Thus, at most 1/3 of the turns are prohibited.

Example 2: Assume the same setting as in Example 1.
It is easy to check that the Þnal set of prohibited turns ob-
tained by TP-algorithm is the same as with the �intelli-
gent� node labeling of Fig. 4. Thus, the end-to-end delay
bound for each ßow will be �� 	 ��� � ����� .

C. Generalization for Links of Non-Uniform Weight

So far, we have only considered networks where all the
links have the same weight (value). In reality, different
links have different characteristics such as data rates or
physical lengths. Consequently, different turns have vary-
ing importance as well.

In order to take on this issue, we propose the follow-
ing framework. We suppose that each link ��� �� has a
weight ���, and ��� 	 ���. We assume that the weights
of links are additive (the weight of a link could corre-
spond to the revenue generated by letting packets use the
link). We can then deÞne the weight of a turn ��� �� �� as
���� 	 ��� � ���. Thus, more important turns are repre-
sented by greater weights.

We now introduce a �generalized� TP-algorithm that
aims at minimizing the sum of the weights of prohibited
turns. For this purpose, only the Þrst step of the algorithm
needs to be modiÞed. Denote by�� the sum of the weights
of the links incident to node 	�, i.e., �� 	

���
������ .

Then, instead of selecting a node of minimal degree, the
generalized algorithm will select a node 	� with minimum
weight �� (excluding the special node, if there is such
one). For instance, in Fig. 10 (inspired by the NSFNET
topology [8]), node NE with weight �NE 	 � is Þrst
selected. Next, node CO with weight �CO 	 � is se-
lected (remind that the links incident to node NE have been
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Fig. 10. Applying the generalized TP-algorithm to a weighted
graph. The number adjacent to each link represents the
weight of the link.

deleted in the previous step). The procedure continues un-
til all the nodes have been considered and deleted.

Using an approach similar to the proofs of Theorem 2
and 5, we show in Appendix A that the overall weight of
the turns prohibited by the generalized TP-algorithm is at
most 1/2 of the total weight of the turns in the network.
This bound is valid for any graph topology and any distri-
bution of weights.

D. Discussion

Computational Complexity: The worst-case computa-
tional complexity of the TP-algorithm is polynomial in � ,
more precisely �����, where  represents the maximal
degree of any node in the network. This complexity is cer-
tainly reasonable, as long as the network topology does not
change too often.

A derivation of this complexity is as follows. At each
step of the algorithm, one node is deleted from further con-
sideration. Thus, the algorithm consists of at most� steps.
At each of these steps the following computations are per-
formed:

1. A node of minimal degree is selected, an operation of
complexity ����.
2. The components of connectivity are determined. Using
a spanning tree construction algorithm, the complexity of
this operation is ����.
3. On the order of ���� turns are considered for permis-
sion/prohibition.

Therefore, the computational complexity of each step
is ����, and the overall complexity of the algorithm
is �����.

Irreducibility: We refer to a cycle-breaking algorithm
as irreducible if the removal of any turn from the Þnal set
of prohibited turns creates a cycle. The following theo-
rem shows that the TP-algorithm guarantees irreducibility,
if connectivity between non-deleted nodes is preserved at

a

b

c

G2 G1
d

Fig. 11. An example where the TP-algorithm is not irreducible.
Turn ��� �� �� is prohibited while it could be permitted. The
special node and special links are marked in bold.

every step. Note that the TP-algorithm reduces to the basic
version of Section IV-A, in such a case.

Theorem 6 The TP-algorithm is irreducible under the as-
sumption that, at each step of the algorithm, the graph con-
sisting of the non-deleted nodes remains connected.

Proof: Suppose that, at some step of the TP-algorithm, turn
��� �� �� is prohibited. According to the algorithm, all turns
originating from node � and involving either node � or
node � as a second node are permitted. Moreover, from
Theorem 3, there exists a path between node � and node �
which has no prohibited turns and does not include node �.
Thus, turn ��� �� �� cannot be permitted since a cycle would
be created otherwise.

In general, however, the TP-algorithm does not guaran-
tee irreducibility, which means that one of the prohibited
turns could in fact have been permitted without creating
any cycle. Figure 11 illustrates this fact. In this exam-
ple, �� and �� are two components of connectivity, links
��� � and ��� �� are special links, and node  is a special
node. Thus, the only turn permitted around node � is turn
��� �� �. However, turn ��� �� � could have been permitted
as well, since no cycle of nodes starts from node .

A considerably more involved version of the TP-
algorithm guaranteeing irreducibility is described in [29].
Our experimental results show that, for randomly gen-
erated networks, this irreducible version performs only
marginally better than the algorithm that was described
herein. The reason is that connectivity among non-deleted
nodes is rarely broken.

Note that even when irreducibility is guaranteed, the TP-
algorithm may not necessarily lead to a minimum solution,
that is, a solution with the smallest possible number of
prohibited turns. This is because the algorithm permits,
at Step 1, to select arbitrarily one among several nodes
satisfying the same constraints. The selection of different
nodes at a particular stage may lead to different Þnal sets
of prohibited turns with different number of elements.

Decentralized Implementation: The current implemen-
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tation of TP-algorithm requires knowledge of the full net-
work topology, unlike the spanning tree and up/down span-
ning tree algorithms. Nevertheless, the TP-algorithm can
still be implemented in a decentralized fashion as a link-
state algorithm, such as OSPF [21].

Routing: A set of prohibited turns constructed by the
TP-algorithm does not completely specify the routing
strategy since several valid routes may exist between any
source/destination pair (the connectivity property guaran-
tees that at least one route exists). A reasonable goal is
thus to develop a decentralized algorithm that can deter-
mine the shortest path between any source and destination,
while forwarding packets only over permitted turns.

It turns out that the traditional Bellman-Ford routing al-
gorithm can easily be generalized in order to perform this
task [13], [29]. The only difference with respect to the
original Bellman-Ford algorithm is that updates are now
forwarded only over permitted turns. The memory re-
quired by this algorithm is on the order of ����, at each
node, since a different vector of distances to the destina-
tions needs to be maintained for each of the  input ports.
We note that the problem of Þnding a good routing algo-
rithm is separate from the problem of constructing a set of
prohibited turns, which means that the same routing algo-
rithm can be used with up/down routing restrictions. An
example of a procedure for constructing a shortest-path
routing table is provided in Appendix B.

V. SIMULATION RESULTS

In this section, we present the results of simulations
comparing the performance of the spanning tree, up/down
routing, and turn-prohibition algorithms.

Our simulator is based on randomly generated, con-
nected graphs. Every node in these graphs has a Þxed de-
gree . The links have identical weights.

Once a random graph is generated, each of three cycle-
breaking algorithms are run on top it in order to determine
a set of prohibited links/turns. Routing matrices are then
determined using the generalized version of the Bellman-
Ford algorithm. All the results presented correspond to
averages over 100 graphs with identical parameters.

A. Fraction of Prohibited Turns

We Þrst compute the fraction of turns prohibited by each
scheme, as a function of the total number of nodes with
 	 �. This metric gives a good indication on the amount
of unused network resources. Ideally, the fraction of pro-
hibited turns should be as small as possible.

The performances of the three schemes are compared
in Table I. We remark that the TP-algorithm prohibits
about 10% to 20% fewer turns than the up/down scheme.

# nodes TP-alg up/down sp. tree
16 0.23 0.27 0.72
32 0.23 0.27 0.73
64 0.22 0.26 0.73

128 0.21 0.26 0.73
255 0.21 0.25 0.73

TABLE I
FRACTION OF TURNS PROHIBITED BY EACH SCHEME AS A

FUNCTION OF THE TOTAL NUMBER OF NODES. ALL THE

NODES ARE OF DEGREE FOUR.

Degree TP-alg up/down sp. tree
4 0.21 0.26 0.73
6 0.23 0.29 0.86
8 0.25 0.30 0.91
10 0.26 0.31 0.93

TABLE II
FRACTION OF TURNS PROHIBITED BY EACH SCHEME AS A

FUNCTION OF THE DEGREE OF THE NODES, FOR NETWORKS

OF 120 NODES.

The simple spanning tree algorithm performs signiÞcantly
worse than the two other algorithms. Interestingly, the re-
sults seem to be rather insensitive to the total number of
nodes in the network.

Table II shows that the performance of the spanning tree
algorithm worsens when the degree of the nodes  is in-
creased, for networks of 120 nodes. On the other hand,
we observe that the TP and up/down algorithms are less
sensitive to the degree of nodes.

B. Throughput

We now consider the throughput achieved by the three
different schemes. This metric is computed as follows.
We assume that a ßow is established between each pair
of nodes in the network, in both directions. Each ßow
is routed along the shortest path over the turn-prohibited
graph (if multiple paths of same length are available, then
one of them is arbitrarily selected). Next, we determine
the bottleneck link, which is the link shared by the maxi-
mum number of ßows. The throughput is then deÞned as
the capacity of the bottleneck link divided by the number
of ßows sharing it. In other words, the throughput is the
maximum possible rate at which each ßow can be trans-
mitted without saturating the network.

Notice that ßows that do not traverse the bottleneck link
could in fact be transmitted at a higher rate. We may then
resort to a max-min criterion [2], or any other similar crite-
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# nodes TP-alg up/down sp. tree
16 1 0.95 0.31
32 1 0.92 0.28
64 1 0.88 0.23

128 1 0.82 0.19
255 1 0.74 0.16

TABLE III
THROUGHPUT OF EACH SCHEME. THE VALUES ARE

NORMALIZED BY THE THROUGHPUT OBTAINED WITH THE

TP-ALGORITHM.

ria, to determine the appropriate transmission rate for each
ßow. In such a case, our deÞnition of throughput corre-
sponds to the minimum possible rate allocated to any ßow.
This deÞnition is consistent with the notion of determinis-
tic guarantees.

Table III compares the throughput achieved by the three
algorithms as a function of the total number of nodes, with
 	 � . We present results that are normalized by the
throughput obtained with the TP-algorithm. We remark
that the performance of both the up/down and spanning
tree algorithms degrades, as a function of the total number
of nodes, compared to the TP-algorithm. The probable rea-
son for this behavior is that spanning trees become deeper
with the increase in the number of nodes, and therefore
links close to the root get more and more congested.

We next compare the throughput achieved by the TP-
algorithm with the maximum theoretical throughput in a
network. The maximum throughput is achieved when no
network resources are prohibited. In this case, we can
employ a �shortest-path� scheme, where every ßow takes
the shortest possible path from any source to any destina-
tion. Note that the throughput achieved with the shortest-
path scheme represents an upper bound on the best possi-
ble achievable throughput in any feed-forward routing net-
work. Of course, a shortest-path scheme can not be imple-
mented in practice as network stability is not guaranteed.

Table IV shows that with up to 64 nodes of degree
 	 �, the throughput achieved by the TP-algorithm is
within a factor of about two of the maximum theoretical
throughput. Table V shows that the difference between
the TP-algorithm and the shortest-path scheme becomes
smaller when the degree of the nodes is increased, for net-
works of 120 nodes. These results indicates that the re-
striction of network calculus to feed-forward routing net-
work may not be too signiÞcant for small to mid-size net-
works, in terms of utilization of network resources.

# nodes shortest-path TP-algorithm
16 1 0.85
32 1 0.62
64 1 0.45

128 1 0.32
255 1 0.21

TABLE IV
COMPARISON BETWEEN THE THROUGHPUT OF THE

TP-ALGORITHM AND THE, SO-CALLED, SHORTEST PATH

SCHEME THAT ACHIEVES THE MAXIMUM THEORETICAL

THROUGHPUT.

Degree shortest-path TP-algorithm
4 1 0.33
6 1 0.44
8 1 0.52

10 1 0.59

TABLE V
COMPARISON BETWEEN THE THROUGHPUT OF THE

TP-ALGORITHM AND THE SHORTEST PATH SCHEME AS A

FUNCTION OF THE DEGREE OF THE NODES, FOR NETWORKS

OF 120 NODES.

C. Delay Bounds

Finally, we compare the performance of the TP-
algorithm and the up/down routing algorithm with respect
to delay bounds. We assume the same setting as in Ex-
ample 1 of section III-B, except that we now consider ran-
dom graphs. The end-to-end delay bound �� for a ßow
is computed as follows. Suppose that a ßow traverses �
links and the number of ßows on each link is ��, where
� � � � � . Then, an expression for the end-to-end delay
bound is given by �� 	

��
�������� .

In Fig. 12, we depict the fraction of ßows with delay
bound exceeding some threshold of � time units, for net-
works of �� nodes of degree  	 � (a time unit corre-
sponds to the quantity ���). The results are consistent
with those of the previous section, where the TP algorithm
is shown to outperform the up/down algorithm. For in-
stance, in the case of up/down, 18% of the ßows have a
delay bound exceeding 600 time units, while this fraction
is reduced to 10% for the TP-algorithm.

VI. CONCLUDING REMARKS

In this paper, we have addressed and proposed a con-
crete solution to the problem of using network calculus in
networks of arbitrary topology. We introduced the turn-
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Fig. 12. Delay bound: turn-prohibition versus up/down.

prohibition (TP) algorithm that breaks all the cycles in
any given network, and prohibits the use of at most 1/3
of the turns. We showed that the TP-algorithm can be gen-
eralized to networks with weighted links. Moreover, the
computational complexity of the algorithm was shown to
be only quadratic in the number of nodes. Using anal-
ysis and simulations, we showed that the TP-algorithm
achieve higher performance, in terms of throughput and
delay, than other algorithms used for breaking cycles, such
as the spanning tree and the up/down routing algorithms.
We note, though, that the difference between the TP and
spanning tree algorithms is much more signiÞcant than be-
tween the TP and up/down algorithms. Our simulations
also revealed that, for networks of moderate size, the net-
work utilization achieved by the TP-algorithm is reason-
ably close to the maximum theoretical network utilization.
SpeciÞcally, our simulations showed that, for networks of
up to 50 nodes of degree four, the network utilization ob-
tained with the TP-algorithm is at least half the highest
possible network utilization. The difference turns out to
be even smaller for nodes of larger degrees. Thus, in many
practical cases, the restriction of network calculus to feed-
forward routing networks may not represent a signiÞcant
limitation, rendering this framework particularly appealing
for implementation in practical QoS architectures, such as
DiffServ [3], [7].

We conclude this paper by noting that the TP-algorithm
represents a universal method for breaking cycles, and, as
such, can potentially improve the performance of many
other networking applications. In particular, it brings the
potential of signiÞcantly improving the performance of lo-
cal area networks, such as Gigabit Ethernet, where packet-
forwarding loops and deadlocks need to be prevented [14],

[25]. These networks currently implement the simple
spanning-tree algorithm [21]. It can also be useful for pre-
venting the appearance of deadlocks in wormhole routing
networks, such as networks of workstations (NOWs) [30],
[31]. These examples illustrate the general problematic
nature of cycles in networks, and the promise of turn-
prohibition to provide a unifying solution methodology.
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APPENDIX A

Theorem 7 For any network, the generalized TP-
algorithm prohibits at most 1/2 of the total weight of turns.

Proof: First, we prove the equivalent of Theorem 2 (that
is, when no special nodes are present in the network). At
each step, the algorithm selects a node 	� with the incident

links of minimum total weight �� 	
���

������ , where
the neighbors of node 	� are denoted as 	�� 	�� 
 
 
 � 	�� .
The total weight of prohibited turns around node 	� is���

���

���
��������� 	 �� � ����.

By deÞnition, node 	� has � neighbors. For each neigh-
bor 	� , �� 	

���
������ � ��. The total weight of per-

mitted turns starting from node 	� and involving a neigh-
bor 	� is

���
���	� ������� 	 �� � ����� � �� . Since

� � � (nodes of degree 1 can always be removed from
the graph without prohibiting any turns), we obtain that
the total weight of permitted turns starting from node 	�
and involving a neighbor 	� is greater or equal to ��. The
total weight of permitted turns starting from node 	� is thus
greater or equal to ���. This quantity is greater than the
weight of prohibited turns around node 	�. Thus, at most
1/2 of the total weight of turns is prohibited. Note that
if the maximal degree of nodes in the network is , then
at most � � ����� � �� of the total weight of turns is
prohibited.

Now, let prove the equivalent of Theorem 5. From the
proof of Theorem 5, we know that the only complication
arises when the special node is one of the neighbors of
node 	�, and the total weight of the incident links to the
special node is smaller than ��. However, it is still the
case that each of the � � � other neighbors of 	� permits
turns of total weight that is greater or equal to ��. The to-
tal weight of permitted turns starting from node 	� is thus
greater or equal to �� � ���� which corresponds to the
weight of prohibited turns. Thus, at most 1/2 of the total
weight of turns is prohibited.

APPENDIX B

In this appendix, we describe a simple procedure for
constructing a shortest-path routing table over a turn-
prohibited graph. For simplicity, we consider the case
of non-weighted graphs, but a similar approach applies to
weighted graphs as well. We assume that every node has
up to  neighbors, and the total number of nodes in the
network is � .

Initially, every network node (router) knows whether
each pair of its ports represents a permitted or prohibited
turn. This information can be maintained in a  �  ma-
trix � , where � ��� �� 	 � if the turn from port � to port �
is permitted, and � ��� �� 	 � if the turn is prohibited.
In addition, every node maintains a routing matrix � and
a distance matrix �, both of size  � � . SpeciÞcally,
���� 	� 	 � if a message coming from input port �, and
destined to node 	, should be forwarded to output port �.
The entry ���� 	� represents the current estimate of the
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length of the path from port � to the destination 	.
The matrices� and� of some node � are initialized as

follows for each port �:

���� 	������ 	� 	

�
� for 	 	 �
� for 	 �	 �




At each step, the elements of the matrices � and �
of node � are updated using the matrices ������ 
 
 
 ���
and ������ 
 
 
 ��� of each of its neighbors. Here ��
corresponds to the matrix � of a neighbor that is con-
nected by a link to port � of node �. A similar deÞnition
holds for��.

After � steps, all paths of length smaller or equal to �
hops are determined. The updating rule at step � is as fol-
lows. Suppose ���� 	� 	 �. If there exists a port �
such that � ����� 	 � (i.e., the turn is permitted) and
������ 	� 	 � � � then ���� 	� 	 � and ���� 	� 	 �.
The notation �� represents the input port of the neighbor
connected by a link to port � of node �.

Note that the connectivity property of the TP-algorithm
guarantees that all the entries of � will ultimately be de-
termined. The procedure terminates after at most � steps.


