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1. INTRODUCTION

With the increasing use of wireless devices and a fixed bandwidth of radio spectrum, it is important to
increase the utilization of spectrum in order to meet the demand. One of the underlying inefficiencies
in the spectrum market is the licensing regulations. Therefore, major efforts are underway to make
radio spectrum licensing more flexible, hence allowing license holders (e.g., network providers) to lease
spectrum to third parties [Akyildiz et al. 2006; Bykowsky 2003; Chapin and Lehr 2007]. In an effort to
promote more efficient usage of the electromagnetic spectrum, the FCC is promoting new paradigms
for spectrum sharing.

One such paradigm is the Private Commons, which is deemed both “commercially viable and techno-
logically feasible” [Buddhikot 2007]. This paradigm supports spectrum transactions, where ownership
of spectrum remains with the license holder providing service to its primary users, but this provider
may also provide spectrum access to secondary users for a fee. The Amazon’s Kindle model can be
viewed as an early realization of this paradigm, in which owners of Kindle e-readers make secondary
use of AT&T network to retrieve contents from the cloud. Other precursors include machine to machine
(M2M) communication and mobile virtual network operators (MVNOs), such as Republic Wireless, that
mainly rely on Wi-Fi and utilize the licensed spectrum of a cellular network as a fallback.

Private commons hold significant potential to increase spectrum utilization. For instance, cellular
networks are generally over-provisioned to cope with short-term spikes in their loads. Large-scale
measurement studies in the US and in Germany indeed indicate that the majority of base stations in
crowded areas, such as city centers, remain underloaded by its contracted users at all times [McHenry
and McCloskey 2005; Michalopoulou et al. 2011]. Another measurement based study by Kone et.
al. [2012] indicates that conservative policies that minimize interference to primary users (such as
one proposed by Jung and Liu [2012]) result in spectrum inefficiencies, where only 20-30% of the avail-
able spectrum is extracted for secondary use. Such studies suggest that providing spot-on service to
secondary users could increase spectrum utilization levels, thus translating into increased revenues
for the provider.

A network providing secondary spectrum access has two major challenges to resolve. The first such
challenge is to keep a profitable margin by making the correct strategic pricing decision. The difficulty
of this challenge lies with the uncertainty in the demand response to the advertised price, which is
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Fig. 1. Illustration of profitability and market sharing price intervals

generally stipulated by a so-called demand function. However, the exact form of this function is hard to
characterize (since it is derived from specific assumptions on the amount of utility consumers associate
with the provisions) and may also be time-varying.

The second challenge is the market competition that a provider faces in spectrum offerings. When
several providers offer secondary spectrum provisions, this opens up the possibility of market sharing
by advertising the same price. However, it is not clear whether such an action is favorable over trying
to capture the entire market by slightly lowering the price in turn. The outcomes of market competition
also determine whether these new spectrum sharing technologies will become monopolized or foster a
free market competition that benefits the users.

The main goal of our paper is to provide insight, applicable to general demand functions, into the
market outcomes of a game involving multiple providers offering secondary spectrum access in their
private commons. We consider an uncoordinated access setting, where each provider accepts secondary
users to enhance its revenue while minimizing the loss due to blocked primary users. Toward this end,
we identify two price thresholds playing a critical role for each provider, and establish a fundamental
relationship between them. Next, we consider a competitive scenario and seek to answer the question
whether a single provider will win the entire secondary market or several providers will choose to
share the market. Either way, how do network parameters such as traffic intensities and network
capacities affect this market outcome? Are there certain parameters that do not depend on the specific
shape of the demand function? Can we identify a unique set of prices that can be used to define a
market equilibrium?

The contributions of this paper are as follows: We start with identifying and analyzing two char-
acteristic prices which dictate provider behavior in secondary spectrum markets. First, we prove the
existence of a unique break-even price pBE that guarantees a positive profit as long as a provider sets
its price above it. Next, we derive another unique threshold price, called market sharing price pMS ,
below which a provider finds it desirable to share secondary demand with another provider. We then
establish that for general demand functions, there always exists a price interval in which a network
provider is profitable and is willing to share the market as illustrated in Fig. 1. Even though the ex-
pressions for the market sharing and break-even prices are implicit, we prove that the market sharing
price is always strictly greater than the break-even price, regardless of the demand function.

Next, we consider a duopoly competition where network providers make pricing decisions to max-
imize their revenues. We formally establish the best response strategy of each provider and list the
possible market outcomes in the form of Nash equilibrium (NE) : i) if the market sharing intervals
overlap, then the providers end up sharing the market; ii) if the market sharing intervals do not over-
lap, then the provider with the lower break-even price captures the entire market, which reflects the
result of a price war. The equilibria prices under the first case are possibly much higher than the
break-even prices of each provider, while under the second case the equilibrium price is roughly equal
to the higher break-even price. We provide an interpretation and possible refinement of our results by
taking into consideration payoff dominant strategies and demand redistribution according to observed
Quality of Service (QoS) metrics. We also discuss the possibility of extending our duopoly results to
multiple providers.

The rest of the paper is organized as follows. In Section 2, we survey previous work. In Section 3, we
present the network model used to conduct our analysis. Next, in Section 4, we establish the market
sharing interval and derive the break-even and the market sharing prices. In Section 5 we establish
the best response of a provider based on the break-even and market sharing prices and then list the
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market outcomes as NE. We provide a brief refinement of our model in Section 6. We conclude the
paper in Section 7.

2. RELATED WORK

Competition in a spectrum market takes place at two different levels. The first level of competition
is for the spectrum itself, as a resource to lease from a license holder (or the government). This level
of competition is analyzed commonly through auction methods. The second level of competition arises
after the said leasing of the spectrum, and consists of providers competing to offer services to end-users.

The majority of papers on secondary spectrum markets are concerned with the first level of competi-
tion. For instance, in the works by Duan et. al. [2010], Kasbekar and Sarkar [2012], Ren et. al. [2011],
Sengupta and Chatterjee [2009], Xing et. al. [2007] and Yang et. al. [2013] game theoretic approaches
to spectrum auctioning and leasing are analyzed. Papers by Chun and La [2013], Gao et. al. [2013],
Kash et. al. [2013], Sheng and Liu [2013] and Zhu et. al. [2013] are concerned with the effectiveness
of the employed sales mechanisms. The set-up in all of these papers is different from ours as they are
concerned with a spectrum owner leasing its spectrum to a secondary party based on availability. On
the other hand, we focus on the second level of competition, where the leased spectrum is available as
a consumption commodity for a specific provision.

The benefits of cooperation or forming coalitions at the auction level are analyzed by Berry et.
al. [2013] as a means to increasing coverage and by Xiao et. al. [2012] to better allocate the spec-
trum. While forming coalitions have benefits, the wireless communications market is highly concen-
trated1 [Commission 2013] and this brings antitrust concerns as well. In our model, while we indicate
the possibility of market sharing, this behavior is entirely the result of revenue driven market dynam-
ics rather than intentional cooperation.

Several papers analyze the two levels of competition in a combined fashion, where both the auction
side and the service side of the competition are considered over different time scales [Ileri et al. 2005;
Kim et al. 2011; Maille and Tuffin 2010]. The first focuses on the auctioning side of the competition
while the second paper considers different but substitute technologies. The third paper considers a
spatial distribution of single channels that turn on and off.

Profitability in secondary spectrum markets is studied in a work by Alanyali et al. [2011], where a
pricing policy that guarantees profitability under a monopolistic framework is provided. However, this
paper does not mention market competition. Niyato and Hossain [2008] derive market equilibrium
pricing by taking into consideration the demand and supply dynamics of spectrum auctions. However,
the model uses a very specific secondary demand based on the utility from owning the spectrum and
how much it costs to lease the spectrum. On the other hand, our results hold for general demand
functions. Drawing conclusions under general demand functions generally requires a more elaborate
analysis, as illustrated by several papers [Allon and Gurvich 2010; Andrews et al. 2013; Besbes and
Zeevi 2009].

A paper by Fortetsanakis et. al. [2012] considers the second level of competition, where providers
offer what the authors call the Flex Service. The simulation based results indicate that the welfare of
the market increases through the use of a central database which collects information about pricing
and quality of service. This work relies on explicit demand and utility functions. Our results hold
without making such assumptions.

In our previous work [Kavurmacioglu et al. 2012], we analyze provider competition for secondary
demand in private commons under the set-up of a coordinated access policy that throttles secondary
demand, unlike the uncoordinated access policy studied here. It is shown that the implementation of
an optimal coordinated access policy by each provider leads to a price war, irrespective of the demand
function. While the same work points out, via an example, the possibility of different market outcomes
(i.e., market sharing) under uncoordinated access, no comprehensive analysis is provided. In this paper
we provide a broader investigation of the uncoordinated case through a fluid traffic model.

1The current wireless market has a Herfindahl-Hirschman Index (HHI) of approximately 2800. Any value of this index greater
than 2500 indicates a highly concentrated market (i.e., few firms with large market shares).
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Fig. 2. Market model: Two providers i = 1, 2, each with capacity Ci and fixed primary demand λi, compete for secondary
demand stipulated by a general function of price p, σ(p).

3. MODEL

We consider two spectrum providers, where each provider i has a capacity Ci and a primary demand
of volume λi, which generates a revenue of Ki units per service. These providers compete for a stream
of secondary demand, whose volume depends of their pricing of secondary service as illustrated in
Figure 2 2. We assume a traffic model where if provider i receives a total demand of volume λi, then
it can accommodate the volume min(Ci, λi). The excess demand max(λi − Ci, 0) does not generate any
revenue for the provider.

The total demand for provider i consists of its primary demand λi and, depending on its pricing and
the pricing of its competitor, a secondary demand σi. We shall assume that the two demand types access
the capacity in an uncoordinated fashion, as suggested by documentation on private commons [Bud-
dhikot 2007]3. ). In this context, primary users could be viewed as high paying legacy users rather than
users with higher priority. Specifically, the two types of demand share capacity on equal basis, such
that if the demand of provider i is composed of two types with respective volumes λi and σi, then the
overflow volume of each type is proportional to the intensity of demand of that type. That is, in view of
our previous assumption, a fraction min

(
1, Ci

λi+σi

)
of each type of demand is actually accommodated.

The steady-state primary and secondary demands, λi and σi, and the overflow assumption are consis-
tent with fluid models. Such models have widely been used in the literature to characterize network
traffic at the flow level [Kelly and Williams 2004].

We denote the price that provider i charges per unit of serviced secondary demand by pi. The volume
of the secondary demand is assumed to be determined by the minimum price min(p1, p2) stipulated
by the two providers. Specifically, the volume of secondary demand is σ(min(p1, p2)), where σ(·) is the
demand function. We make the mild assumption that this function is differentiable and non-increasing
( ∂∂pσ(p) ≤ 0). We shall also assume that there exists a positive demand when the service is offered
for free (σ(0) > 0) and the demand eventually becomes zero as the price becomes arbitrarily high
( lim
p→∞

σ(p) = 0).

It is assumed that the secondary demand is attracted to the provider that charges the lowest price.
This behavior can be explained by price aversion, a concept employed in marketing management [Tellis
and Gaeth 1990]. In the case when both providers charge the same price, the resulting secondary
demand splits between the two providers according to an arbitrary but fixed probability vector α =
[α1, α2] such that α1 + α2 = 1 and αi > 0, i = 1, 2 . Namely, in that case, each provider i receives
a secondary demand of volume αiσ(pi). We will relax this assumption in Section 6, where instead of
being randomly assigned the secondary demand will be split between the providers according to the
accommodation levels.

2In order to keep the model generic, we shall not adopt a particular choice of units for capacity and demand at this point. Rather,
we provide a discussion of possible choices at the end of this section.
3While the model considered in this paper is applicable in Private Commons, it does not necessarily represent the only way to
implement it.
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If provider i receives a secondary demand of volume σ(pi), its overall revenue is given by:

Wi(pi, σ(pi))
4
= piσ(pi) min

(
1,

Ci

λi + σ(pi)

)
+Kiλi min

(
1,

Ci

λi + σ(pi)

)
. (1)

In this case, the secondary profit (i.e., increment in revenue from secondary access) of the provider is:

Πi(pi, σ(pi))
4
= Wi(pi, σ(pi))−Wi(0, 0). (2)

Since the secondary demand that a provider receives depends on the prices of both providers, so does
the profit of the provider. We define the reward Ri(pi, p−i) of provider i as its profit when it charges
secondary access pi and its competitor charges p−i units. Namely,

Ri(pi, p−i)
4
=

{
Πi(pi, σ(pi)) if pi < p−i
Πi(pi, αiσ(pi)) if pi = p−i
Πi(pi, 0) if pi > p−i.

(3)

In the interest of space, the discussion of this paper is limited to the case when each provider’s net-
work is underloaded prior to inclusion of any secondary demand, that is λi < Ci, but can be overloaded
for low enough prices, that is λi + σ(0) > Ci. Though the omitted cases warrant their own respective
analyses, those are arguably less challenging and practical. For instance, if the maximum possible
total demand does not exceed the network capacity (i.e., λi + σ(0) ≤ Ci), then the network can accom-
modate the entire demand at any price. On the other hand, if the primary demand already exceeds
the capacity (i.e., λi ≥ Ci), then the revenue per serviced secondary demand would need to match or
exceed the revenue per serviced primary demand (i.e., pi ≥ Ki).

Discussion. We provide next a possible interpretation of our model. The service capacity Ci can rep-
resent the number of sub-carriers in an OFDM modulation scheme used in LTE or the number of radio
channels4 available for assignment for voice or data traffic in common 3G standards [Paul et al. 2011].
The steady primary and secondary demands, λi and σ(p), and the overflow assumption are consistent
with fluid models [Anick et al. 1982]. Such models have widely been used in the literature to character-
ize network traffic at the flow level [Fred et al. 2001; Kelly and Williams 2004; Hassidim et al. 2013].
This assumption is substantiated by traffic measurements in cellular networks, which show that mean
arrival rates do not show significant variations over the course of an hour [Paul et al. 2011; Willkomm
et al. 2008]. Obviously, specific values of λi and σ(p) depend on the hour of the day or day of the week.

4. CHARACTERISTIC PRICES & MARKET SHARING INTERVAL

In this section we present two characteristic prices and demand-invariant price relationships in a
secondary spectrum markets. This section focuses on the viewpoint of a single provider. Therefore for
simplicity, we omit the use of index i from of our notation throughout this section.

We define the break-even price pBE(α) as the price at which the profit of a provider is zero when
it attracts a fraction 0 < α ≤ 1 of the total demand, namely Π(pBE , ασ(pBE)) = 0. We start off by
providing a formal definition of a break-even price:

Definition 4.1 (Break-Even Price) A price pBE(α) ≥ 0 is called a break-even price if it satisfies the
following conditions:

Π(pBE , ασ(pBE)) = 0 and ασ(pBE) > 0.

Note that the latter condition in the above definition is to rule out any price that does not generate
any secondary demand.

We next define the market sharing price pMS(α), that asserts whether a provider finds it desirable
to share the secondary demand or not. Specifically, let

∆W (p) ,W (p, ασ(p))−W (p, σ(p)).

4This radio channel refers to any radio resource allocated to the user such as code, frequency or time slot.
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Definition 4.2 (Market Sharing Price) A price pMS(α) ≥ 0 is called a market sharing price if the
following is true:

∆W (p) = 0 for p = pMS(α).

These two prices characterize two important incentives for a network provider. We will show that
the break-even price determines provider profitability, where any price set greater is guaranteed to
result in a positive profit. We will also establish that, analogous to the relationship between the break-
even price and provider profitability, a provider finds it undesirable to share the secondary demand
at prices above the market sharing price, whereas the opposite is true for prices below the market
sharing price. Having defined the break-even and market sharing prices, we can proceed with stating
our main results in the following theorem:

Theorem 4.1 (Market Sharing Interval) For any secondary demand function, satisfying the as-
sumptions described in Section 3 and for all values of α : 0 < α ≤ 1, there exists a price interval

(P) ≡ (pBE(α), pMS(α)),

such that for all p ∈ (P):

(1) Π(p, σ(p)) > 0,
(2) Π(p, ασ(p)) > Π(p, σ(p)).

Theorem 4.1 states that no matter the specific shape of a secondary demand function, the existence
of the price interval (P) at which a network provider is profitable and finds it preferable to share the
secondary demand is guaranteed. In order to prove Theorem 4.1 we will first provide formulations for
break-even and market sharing prices in Sections 4.1 and 4.2 respectively. Afterwards, we bring the
proof of Theorem 4.1 in Section 4.3.

4.1. Profitability and Break-Even Price

In this section we seek to analyze a provider’s profit and the resulting break-even price. Our result
applies both to the cases when a network provider serves the entire secondary demand (i.e., α = 1) and
when it shares the market with another provider (i.e, α < 1).

Since a break-even price is a measure of a provider’s competitive ability in a price war, characterizing
this price is important. The following lemma restricts the price interval on which a break-even price
when the provider captures the entire secondary demand (i.e., monopoly) lies:

Lemma 4.1 For a given α such that λ+ ασ(0) > C, there exists a price p̄α, which is the minimum price
that satisfies ασ(p) = C − λ. Then, any break-even price pBE(α) satisfies the following inequality:

(1) pBE(α) ≤ p̄α for any demand function σ(p).
(2)

λ+ ασ(pBE(α)) ≥ C. (4)

PROOF. See Appendix A.

An intuitive explanation to Lemma 4.1 is that for all prices p such that λ+ασ(p) < C, the overflow of
either type of demand is zero. Thus, there is no associated penalty with serving additional secondary
demand. However, once the excess demand becomes positive, a provider observes a trade-off between
the revenue brought in by the secondary demand versus the potential revenue lost from the unserviced
primary demand. The break-even price reflects the price at which both sides of this trade-off are equal.

Lemma 4.1 demonstrates that for all such values of α, including the monopolistic case when α = 1,
we can limit our analysis to those prices that satisfy (4). At these prices the fraction of both types of
demand being accommodated is C/(λ + ασ(p)). Then, we can remove the min operators from Eq. (1)
and simplify Eq. (2) for the profit as follows:

Π(p, ασ(p)) = ασ(p)p · C

λ+ ασ(p)
+ λK

(
C

λ+ ασ(p)
− 1

)
. (5)
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The following theorem, leveraging our previous results from Lemma 4.1 and Eq. (5), provides an equa-
tion that allows the computation of the break-even price pBE(α) for the aforementioned values of α.
The theorem also establishes the uniqueness of this price and the region of profitable prices.

Theorem 4.2 (Break-Even Price)

(1) For a given 0 < α ≤ 1, such that λ+ ασ(0) > C:
(a) A break-even price pBE(α) is a solution to the following equation5:

p =
(ασ(p) + λ− C)λK

Cασ(p)
. (6)

(b) The break-even price pBE(α) is unique.
(c) The profit of a provider is such that:

Π(p, ασ(p)) > 0 if p > pBE(α)

Π(p, ασ(p)) < 0 if p < pBE(α).

(2) For a given 0 < α < 1, such that λ+ ασ(0) ≤ C, the break-even price pBE(α) is 0.

PROOF. (1) (a) We know that at a break-even price the profit is given by Eq. (5). In order to ensure
Π(p, ασ(p)) = 0, it can be verified through simple algebra that a price p needs to satisfy the following
equation:

p =
(ασ(p) + λ− C)λK

Cασ(p)
.

Furthermore, we know that at price pBE(α), secondary demand will be positive by combining in-
equality (49) and the fact that λ < C:

σ(pBE(α)) ≥ σ(p̄) = C − λ > 0.

(b) We will proceed by demonstrating that the left hand side of Eq. (6) is strictly increasing with
respect to p and the right hand side is non-increasing with respect to p, hence meaning that this
equality only holds at a single value of p. Since the left hand side of Eq. (6) is p itself, we only need
to prove that the right hand side is non-increasing. Under the assumption that σ(p) is a differentiable
and non-increasing function of p, taking the derivative of the right hand side with respect to p yields:

∂

∂p

(
(ασ(p) + λ− C)λK

Cασ(p)

)
=

(
1

ασ(p)
− λ+ ασ(p)− C

α2σ2(p)

)
ασ′(p)

(
λK

C

)
=

(
C − λ
α2σ2(p)

)
ασ′(p)

(
λK

C

)
≤ 0. (7)

Eq. (7) holds because λ < C and σ′(pBE(α)) ≤ 0.
We also know that the lhs of Eq. (6) is continuous in p, which follows from the differentiability of the

secondary demand σ(p). Therefore, there can only be at most one solution for pBE(α) that satisfies Eq.
(6).

(c) From Eq. (5), it can verified that in order for Π(p, ασ(p)) > 0 to hold, p needs to satisfy the
following inequality:

p >
(ασ(p) + λ− C)λK

Cασ(p)
.

In part (b) of our proof, we have demonstrated that the right hand side of Eq. (6) is non-increasing with
respect to p. Therefore for p′ > pBE(α):

(ασ(pBE(α)) + λ− C)λK

Cασ(pBE(α))
≥ (ασ(p′) + λ− C)λK

Cασ(p′)
.

5This implicit equation can be solved with well-established fixed point iterations, such as Newton’s Method.
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Fig. 3. Market sharing revenue change regions in Theorem 4.3 with respect to the market sharing price pMS(α).

Then, since pBE(α) is the only value that satisfies Eq. (6),

p′ > pBE(α) =
(ασ(pBE(α)) + λ− C)λK

Cασ(pBE(α))
≥ (ασ(p′) + λ− C)λK

Cασ(′p)
.

To show that Π(p′, ασ(p′)) < 0 when p′ < pBE(α), the same argument follows in the reverse direction.
(2) For a given 0 < α < 1, such that λ+ ασ(0) ≤ C, Eq. (2) simplifies to the following:

Π(p, ασ(p)) = pασ(p).

Since σ(0) > 0 by assumption, the only price that satisfies both equations provided Definition 4.1 is
p = 0.

In the next lemma, we establish a useful bound on the break-even price pBE(1).

Lemma 4.2 The break-even price when not sharing the secondary demand (i.e., α = 1) is strictly
smaller than the revenue generated by primary demand:

pBE(1) < K.

PROOF. See Appendix A.

In general, there is no explicit expression for the break-even price for general demand functions.
However, it allows us to characterize two distinct price regimes by identifying whether or not a price p
generates a profit for the provider for any amount of secondary demand. We next provide an example
with a simple demand function, where obtaining an explicit expression is rather straightforward.

Example 4.1 We illustrate the relationship between the break-even price when α = 1 (i.e., one
provider captures the entire secondary demand) and network parameters under a constant elastic-
ity secondary demand function, σ(p) = σ0

p , where σ0 > 0 is a constant.

Under this given demand we can simplify Eq. (6) and obtain the following explicit formula:

pBE(1) =
σ0λK

Cσ0 + λK(C − λ)
. (8)

We have effectively formulated and characterized the unique break-even price that determines a
network provider’s profitability. However, profitability alone is not enough to determine a market out-
come. As was explained in the network model section, matching prices affects the reward a provider
faces in a non-linear fashion. In the next section, we take into account the results of a provider choosing
to share the market.

4.2. Market Sharing

We now turn our attention to the effects market sharing has on a provider’s revenue. In the next theo-
rem, we present our result on how market sharing affects a provider’s profit. The theorem establishes
the existence and uniqueness of the market sharing price pMS(α) and provides an implicit equation to
compute it. It also states that increased profit is achieved if and only if p < pMS(α).

Theorem 4.3 (Market Sharing Price) For any network provider there exists a unique market sharing
price pMS(α), which satisfies the following:
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(1) If λ+ ασ(K) ≤ C, pMS(α) is the solution to:

p =
(λ+ σ(p)− C)λK

(C − α(λ+ σ(p)))σ(p)
. (9)

(2) If λ+ ασ(K) > C,

pMS(α) = K. (10)

and for any given pMS(α) the following is true:

∆W (p) > 0 for p < pMS(α), (11)

∆W (p) < 0 for p > pMS(α). (12)

Before we prove Theorem 4.3, we first establish several useful results that will later facilitate our
proof. Since the general revenue function of a provider involves min operators, we need to make use of
some auxiliary prices that will simplify the expressions of W (p, σ(p)) and W (p, ασ(p)). In Lemma 4.1
we had already defined p̄α to be an auxiliary price that satisfies the equality λ + ασ(p̄α) = C. In this
section we provide another such auxiliary price to simplify our analysis. We let p̄ denote the price that
satisfies the following equation:

λ+ σ(p̄) = C. (13)

Since we assume that the secondary demand σ(p) is non-increasing in p for all 0 < α < 1 it follows that
p̄α < p̄, which is illustrated for a generic demand function in Figure 4.

By defining these prices we have effectively divided prices into three separate regions, i.e. [0, p̄α),
[p̄α, p̄), [p̄,∞), in each of which we have a simplified revenue function. Now, we can start our analysis
on how the revenue changes depending on which region a given price value p falls in.

a) We first consider the price region {p : p ≥ p̄}. Note that the price inequality corresponds to when the
total demand under price p does not exceed the provider’s service capacity. In the following lemma
we establish that in this region, it is never optimal for a provider to choose market sharing.

Lemma 4.3 Assume p ≥ p̄, then

∆W (p) < 0. (14)

PROOF. Note that our assumption p ≥ p̄ is equivalent to stating that λ+ σ(p) < C. Since p̄ > p̄α,
it is also true that p > p̄α. Then, the total arrival under market sharing is also less than provider i
capacity (i.e., λ+ ασ(p) < C). Simplifying Eq. (1) under these assumptions, we get:

∆W = W (p, ασ(p))−W (p, σ(p)) =

(
ασ(p)p+ λK

)
−
(
σ(p)p+ λK

)
= ασ(p)p− σ(p)p < 0.

Therefore we conclude that Eq. (14) holds.

b) Next, we cover the price region {p : p < p̄α}. Since price values need to be non-negative, we do
not consider the case p̄α = 0. In this price interval, there are two cases two consider. If the value
of K happens to be in this region, then the revenue change is positive for price values below K
and negative for price values above K. If K does not fall in this price interval, then the revenue
change is always positive and thus a provider will always find it desirable to share the market. We
formalize these results in the following lemma:

Lemma 4.4 Assume p̄α > 0 and p < p̄α, then
(a) If p̄α ≥ K:

∆W (p) > 0 if p < K; (15)
∆W (p) = 0 if p = K; (16)
∆W (p) < 0 if p > K. (17)

(b) If p̄α < K:

∆W (p) > 0 ∀p < p̄α. (18)
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Fig. 4. An illustration of the prices p̄ and p̄α under a generic secondary demand.

PROOF. Note that our assumption p < p̄α is equivalent to stating that:

λ+ ασ(p) ≥ C.

Since p̄α < p̄, it must also be true that p < p̄. Then the combined demand without market sharing is
greater than the provider’s capacity (i.e., λ+σ(p) ≥ C). Simplifying Eq. (1) under these assumptions,
we obtain:

∆W = W (p, ασ(p))−W (p, σ(p)) =
ασ(p)pC

ασ(p) + λ
+

λKC

ασ(p) + λ
− σ(p)pC

σ(p) + λ
− λKC

σ(p) + λ
.

After rearrangement we get:

∆W =
(1− α)σ(p)λC

(ασ(p) + λ)(σ(p) + λ)
(K − p). (19)

Eq. (19) only takes on the value zero when p = K. Additionally for price values p < K, ∆W is
positive and for p > K, ∆W is negative.

Remark 4.1 Lemma 4.4 considers prices for which the reduced secondary demand, when combined
with the primary demand, exceeds the capacity of a provider. In that case, this provider can increase
its revenue at prices up to K if p̄α ≥ K or all prices p if p̄α < K, by choosing to share the market
with another provider. On the other hand, if p̄α ≥ K, choosing to share the market decreases the
revenue at prices greater than K.

c) Finally, we cover the price region between the regions covered in parts a) and b), such that {p :
p̄α ≤ p < p̄}. Note that these are price values such that the combined demand of the primary and
secondary types exceed the service capacity without market sharing and do not exceed the service
capacity with market sharing. Once again, similar to the previous case, the revenue change depends
on the relationship between K and how this price interval is defined. If K ≥ p̄α, then the market
sharing price lies on this interval and the revenue change is negative for price values above and
positive for price values below. Otherwise, the revenue change is always in the negative direction
and market sharing is not desirable. We present the following lemma in this light:

Lemma 4.5 Assume p̄α ≤ p < p̄. Then,
1) If p̄α ≤ K:

∆W (p) > 0 if p < pMS(α);

∆W (p) ≤ 0 if p ≥ pMS(α), (20)

where pMS(α) denotes the solution to the following equation:

p =
(λ+ σ(p)− C)λK

(C − α(λ+ σ(p)))σ(p)
. (21)
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2) If p̄α > K:

∆W (p) < 0. (22)

PROOF. Note that p̄α ≤ p < p̄ is equivalent to stating that λ+σ(p) > C and λ+ασ(p) ≤ C. Under
these conditions the revenue change function becomes:

∆W (p) =

(
ασ(p)p+ λK

)
−
(
σ(p)p

C

λ+ σ(p)
+ λK

C

λ+ σ(p)

)
.

Regrouping yields:

∆W (p) =

(
α(λ+ σ(p))− C

λ+ σ(p)
σ(p)p

)
+

(
λ+ σ(p)− C
λ+ σ(p)

λK

)
.

(1) Noting that α(λ+ σ(p)) < C, it can be verified that ∆W (p) = 0 is satisfied by the solution of the
following implicit equation:

p =
(λ+ σ(p)− C)λK

(C − α(λ+ σ(p)))σ(p)
. (23)

Furthermore, one can check that Eq. (23) is satisfied by a unique price p. Multiplying both sides of
Eq. (23) with the first term in the denominator we obtain:

(C − α(λ+ σ(p)))p =
(λ+ σ(p)− C)λK

σ(p)
. (24)

Taking the derivative of the left hand side of Eq. (24) we get:
∂

∂p
(C − α(λ+ σ(p)))p =

(C − α(λ+ σ(p)))− ασ′(p)p > 0.

Taking the derivative of the right hand of Eq. (24) side yields:

(λ+ σ(p)− C)λK

σ(p)
=

(
1

σ(p)
− λ+ σ(p)− C

σ2(p)

)
σ′(p)λK =

(
C − λ
σ2(p)

)
σ′(p)λK ≤ 0.

One side of the equation is strictly increasing with p, while the other is non-increasing in p. Since
both sides are continuous in p, we conclude that equality (23) holds for a unique value of p.
If p̄α ≤ K, Lemma 4.4 states that ∆W (p) > 0 for price values p < p̄α. By Lemma 4.3 we have
∆W (p) < 0 for p ≥ p̄. Therefore, it must be that pMS(α) ∈ [p̄α, p̄). Since ∆W (p) = 0 only when
p = pMS(α), by continuity of revenue it follows that ∆W (p) > 0 for all p < pMS(α) and ∆W (p) < 0
for all p > pMS(α).

(2) In the previous part of our proof we have demonstrated that on the price interval [p̄α, p̄], the only
possible price that sets ∆W (p) = 0 is given by:

p =
(λ+ σ(p)− C)λK

(C − α(λ+ σ(p)))σ(p)
. (25)

We will show that if p̄α > K, the solution to Eq. (25) lies outside the price interval [p̄α, p̄). Let p∗
denote a particular solution to Eq. (25). Assume p∗ ∈ [p̄α, p̄), which means that p∗ > K. Taking the
ratio of p

∗

K and substituting the right hand side of Eq. (25) for p∗ yields:

(λ+ σ(p∗)− C)λ

(C − α(λ+ σ(p∗)))σ(p∗)
> 1. (26)

After some rearrangement we get:

λ(λ+ σ(p∗)) > C(λ+ σ(p∗))− ασ(p∗)(λ+ σ(p∗)),

λ > C − ασ(p∗). (27)

which is a contradiction to our initial assumption p∗ ∈ [p̄α, p̄]. Therefore, no value of p yields
∆W (p) = 0 on the price interval [p̄α, p̄]. Additionally, since p̄α > K, Lemma 4.4 states that
∆W (p̄α) < 0. Due to the continuity of the revenue W (p) and the fact that there are no zero crossings
in this interval, it must also be true that ∆W (p) < 0 for p ∈ [p̄α, p̄].
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Having analyzed how the revenue changes under market sharing for the three price intervals we
have defined, we can finally move on to proving Theorem 4.3:

Proof of Theorem 4.3

(1) Case 1 - λ + ασ(K) ≤ C : By the way we have defined p̄α, this case is equivalent to stating that
p̄α ≤ K. Then by Lemma 4.3 and Lemma 4.4 we have that:

∆W (p) < 0 for p ≥ p̄, (28)
∆W (p) > 0 for p < p̄α. (29)

Therefore the market sharing price pMS(α) must lie on the price interval [p̄α, p̄). Lemma 4.5 states
that pMS(α) satisfies Eq. (21) such that ∆W (pMS(α)) = 0 and for p ∈ [p̄α, p̄):

∆W (p) < 0 if p > pMS(α), (30)

∆W (p) > 0 if p < pMS(α). (31)

Combining Eq.’s (28) to (31) we obtain the results stated in the proposition.
(2) Case 2- λ + ασ(K) > C: By the way we have defined p̄α, this case is equivalent to stating that

p̄α > K. Then by Lemma 4.3 and Lemma 4.5 we have that:

∆W (p) < 0 for p ≥ p̄α. (32)

Therefore the market sharing price pMS(α) must belong to the price interval [0, p̄α). Lemma 4.4
states that the revenue change is equal to zero when p = K, therefore we conclude that the market
sharing price pMS(α) = K. Additionally, we have that:

∆W (p) < 0 if p > pMS(α), (33)

∆W (p) > 0 if p < pMS(α). (34)

Combining Eq.’s (32) to (34) we obtain the results stated in the theorem. �

Theorem 4.3 yields a rather non-straightforward result such that for any network provider there
exists a unique price which acts as a threshold value: market sharing at all prices greater than this
threshold results in a profit decrease, while at prices below this threshold the network provider is guar-
anteed a profit increase by decreasing its secondary demand. In this way, it serves a similar function
to that of the break-even price: It further divides the price ranges into two regimes but this time by
identifying when serving the reduced secondary demand generates more profit that serving the full
demand.

In the next lemma, we establish an upper bound on the market sharing price, similar to what we did
in Lemma 4.2.

Lemma 4.6 The market sharing price is less than or equal to the revenue generated by primary de-
mand:

pMS(α) ≤ K.

PROOF. See Appendix A.

Example 4.2 We illustrate the relationship between the market sharing price and network parame-
ters under the same constant elasticity secondary demand function we used before, σ(p) = σ0/p.

Under this given demand and assuming σ0 ≤ (C − λ)K/α such that λ+ ασ(K) ≤ C, we obtain from
Eq. (9) the following explicit formula for the market sharing price:

pMS(α) =
λKσ0 + ασ2

0

σ0(C − αλ) + λK(C − λ)
. (35)

If σ0 > (C − λ)K/α, then pMS(α) = K by Eq. (10).

Theorems 4.2 and 4.3 provide implicit equations for the break-even price pBE(α) and market shar-
ing price pMS(α) that depend on the demand function σ(p). Strikingly, one can show through careful
analysis that the ratio of pBE(α) to pMS(α) is strictly smaller than 1 for any demand function.
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4.3. Proof of Theorem 4.1

(1) If pBE(α) > 0:
(a) Assume pMS(α) = K. In Lemma 4.2 we have established that pBE(1) < K. Let us rearrange Eq.

(6) as follows:

p =
λK

C
− λK(C − λ)

Cασ(p)

One can observe that the right hand side of Eq. (6) is increasing with α since λ < C. Therefore, the
solution to the implicit equation that yields the break-even price is increasing with α. Hence, we have

pBE(α) < pBE(1) ∀α ∈ [0, 1) (36)

Combining Eq. (36) with the results of Lemma 4.2 we conclude that pBE(α) < K.
(b) Assume pMS(α) is given by the solution to the implicit equation in Eq. (21). We will prove the

inequality by contradiction. Assume:

pMS(α) ≤ pBE(1).

Since secondary demand is non-increasing in p it follows that σ(pMS(α)) ≥ σ(pBE(1)). Taking the ratio
between Eq. (6) and Eq. (21) yields:

pBE(1)

pMS(α)
=

(σ(pBE(1)) + λ− C)σ(pMS(α))

(σ(pMS(α)) + λ− C)σ(pBE(1))
· (C − α(λ+ σ(pMS(α)))

C
. (37)

The first fraction in Eq. (37) is less than or equal to 1 while the second is strictly less than 1. Fur-
thermore, we know that both fractions must be positive since σ(pBE(1)) ≥ C − λ by Lemma 4.1 and
pMS(α) < p̄. We have:

pBE(1) < pMS(α), (38)

which contradicts our initial assumption that pMS(α) ≤ pBE(1). Hence, it must be true that pMS(α) >
pBE(1). In Eq. (36) we have established that pBE(α) < pBE(1) for α < 1. Hence it is true for all values
of α ∈ (0, 1] that pMS(α) > pBE(α).

(2) If pBE(α) = 0, we can show that the market sharing price is strictly greater than zero in both
cases. pMS(α) = K is self-explanatory and by Eq. (21), we conclude pMS(α) > 0 as σ(pMS(α))+λ−C > 0.

5. DUOPOLY COMPETITION

In the previous sections we have identified a provider’s competitive ability in a price war through
establishing the break-even price and its incentive to share the market through the market sharing
price. However, spectrum markets do not consist of a single provider, but rather several providers
competing with each other. Therefore, our previous results, while being important, are not enough
to determine the outcome of a secondary spectrum market. In this section, we consider the simplest
oligopoly possible, a duopoly where two providers compete to enhance their profits by first capturing
and then serving the secondary demand. To identify a market equilibrium, we utilize the concept
of Nash equilibrium (NE) from game theory. Since NE are classically determined by best response
functions, we will first seek to establish the best response dynamics of provider i to a fixed competitor
price p−i, where the notation −i signifies the competing provider.

Definition 5.1 (Best Response) Given two providers, provider i’s best response to competitor’s pricing
decision p−i is the payoff maximizing strategy such that:

pBRi (p−i) = arg max
p
i

Ri(pi, p−i). (39)

Definition 5.2 (Nash Equilibrium) A pricing strategy profile (p∗1, p
∗
2) is a Nash equilibrium (NE) if

and only if both prices are a best response to each other such that:

p∗1 = pBR1 (p∗2) and p∗2 = pBR2 (p∗1). (40)

Facing a competitor price p−i, the strategies available to provider i consist of either matching this
price and sharing the secondary demand or not matching it and trying to capture all of the secondary
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Fig. 5. Best response of network provider i: a) When the competitor price is below pBEi , the provider sets its price to pBEi ; b)
When the competitor price is within the market sharing interval, the provider matches the price; c) When the competitor price
is above pMS

i , the provider sets its price slightly lower.

demand. While setting the price below or above the competitor’s price follows a rather straightforward
approach, the case of matching the competitor’s price requires a more detailed analysis due to the
discontinuity in the profit function. The next lemma states that if it is possible to increase the profit
by capturing all of the secondary demand σ(pi) at a certain price pi, then it is also desirable to capture
the secondary demand at a slightly lower price p′i < pi. We will then utilize this result in establishing
provider i’s best response for prices pi > pMS

i (α).

Lemma 5.1 For any pi such that ∆Wi(pi) < 0 holds, there exists a price p′i such that pMS
i (α) < p′i < pi

and

Wi(p
′
i, σ(p′i)) > Wi(pi, αiσ(pi)). (41)

PROOF. See Appenix A.

The next theorem presents provider i’s best response, which we shall utilize later to determine NE.

Theorem 5.1 (Best Response) Provider i best response to its competing provider pricing decision p−i
is:

pBRi (p−i) =

 pmi (p−i) for p−i > pMS
i (α)

p−i for pBEi (αi) ≤ p−i ≤ pMS
i (α)

pBEi for p−i < pBEi (αi),

where pmi (p−i) < p−i satisfies Eq. (41) in Lemma 5.1 to the optimality such that

Wi(p
m
i , σ(pmi )) = max

pi∈(pMS
i (α),p−i)

Wi(pi, σ(pi)). (42)

Remark 5.1 The exact value of pmi (p−i) depends on where the revenue is being maximized over the
interval (pMS

i (α), p−i). If the revenue is monotonically increasing up until p−i, we can simplify Eq. (42)
to the following:

pmi (p−i) = p−i − ε,
where ε is a sufficiently small discretization step, which is used when working with continuous prices.
This assumption is a well-known approach used in game theory [Osbourne 2004] because otherwise,
a best response does not technically exist. On the other hand, it is possible that provider i’s revenue
attains a maximum at a lower price point, in which case pmi (p−i) is as given in Eq. (42) and its exact
value depends on the price elasticity of secondary demand.

PROOF. We will consider each price condition described in Theorem 4.3 separately.
(1) In the first price condition, such that ∆Wi(p−i) < 0, provider i can either choose to match, lower or

increase its price. Lowering the price such that p′i < p−i is clearly better than price matching (pi = p−i)
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since we have demonstrated in Lemma 5.1 that:

Wi(p
′
i, σ(p′i)) > Wi(p−i, αiσ(p−i)).

Lowering the price to p′i is also better than increasing the price to pi > p−i since the following is true:

Wi(p
′
i, σ(p′i)) > 0 = Wi(pi, p−i), for all pi > p−i.

Hence, lowering the price to p′i is the best response of provider i.

(2) In the second competitor price condition such that pBEi (αi) ≤ p−i ≤ pMS
i (α), we know that the

following holds:

∆Wi(p−i) = Wi(p−i, αiσ(p−i))−Wi(p−i, σ(p−i)) ≥ 0. (43)

Selecting a price above the competitor’s price such that pi > p−i does not attract any secondary demand
and therefore yields a profit of zero. Thus matching p−i is better than increasing the price to pi > p−i:

Πi(pi, 0) = 0 ≤ Πi(p−i, αiσ(p−i)), ∀pi > p−i.

Next, we compare matching the price at p−i to lowering the price to any price {pi : pi < p−i}. We
seek to find the price that maximizes the revenue function Wi(pi, σ(pi)) on the interval [0, p−i]. We
know from Lemmas 4.4 and 4.5 that pMS

i (α) < p̄. Hence any price p on the interval [0, p−i] where
p−i < pMS

i (α) satisfies λi + σ(p) > Ci. Simplifying Eq. (1) and by taking the derivative with respect to
pi we can show that:

∂

∂pi
Wi(pi, σ(pi)) =

∂

∂pi

(
σ(pi)pi

Ci
λi + σ(pi)

+ λiKi
Ci

λi + σ(pi)

)
= (σ(pi) + σ′(pi)pi)

Ci
λi + σ(pi)

− σ′(pi)σ(pi)pi
Ci

(λi + σ(pi))2
− σ′(pi)λiKi

Ci
(λi + σ(pi))2

.

Regrouping the terms yields:
∂

∂pi
Wi(pi, σ(pi)) = σ(pi)

Ci
λi + σ(pi)

+ λiCiσ
′(pi)

pi −Ki

(λi + σ(pi))2
> 0,

for pi ≤ Ki since σ′(pi) ≤ 0.
We also know from Lemma 4.6 that pMS

i (α) ≤ Ki. Therefore, the revenue maximizing price (which
is also profit maximizing) is given by pi = p−i such that for all 0 ≤ pi ≤ p−i:

Wi(p−i, σ(p−i)) ≥Wi(pi, σ(pi)).

By Equation (43), it follows that for all pBEi (αi) ≤ pi ≤ p−i, which demonstrates that matching the
price at p−i is better than lowering it to any pi < p−i:

Wi(p−i, αiσ(p−i) ≥Wi(pi, σ(pi)).

Hence, we conclude that pBRi (p−i) = pi.

(3) Lastly, we consider the case when p−i < pBEi . Fortunately, this case can be quickly analyzed
through the definition of the break-even price. If provider i chooses to match or lower its price by
definition of the break-even price we have that:

Πi(pi, p−i) < 0, for all pi ≤ p−i.
At any price pi > p−i provider i profit will be zero. However setting the price to pBEi prevents the other
provider from increasing its price further, thus we establish it as the best response.

Theorem 5.1 establishes that for any network provider, a price interval, in which market sharing is
the best response, is guaranteed to exist. Above this price interval, a provider will lower its price below
the competitor’s price, as in a typical price war. Below this price interval, profitability conditions from
Section 4.1 are violated. While this interval is guaranteed to exist, whether the market equilibrium is
established in this interval warrants further analysis. In the next theorem, we determine the different
market outcomes by providing the resulting NE from the best response functions of the two providers.

Theorem 5.2 (Nash Equilibrium) In a market with two network providers, a pricing strategy profile
(p∗1, p

∗
2) is a NE such that:
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Fig. 6. Illustration of the two possible types of market outcomes.

(1) If max(pBE1 (α1), pBE2 (α2)) ≤ min(pMS
1 , pMS

2 ), then p∗1 = p∗2, and for i = 1, 2

p∗i ∈[max(pBE1 (α1), pBE2 (α2)),min(pMS
1 (α1), pMS

2 (α2))].

(2) If max(pBE1 (α1), pBE2 (α2)) > min(pMS
1 (α1), pMS

2 (α1)) and without loss of generality pBE2 (α2) < pBE1 (α1)

p∗1 = pBE1 (α1) and p∗2 = pm2 (pBE1 (α1)).

where pmi (p−i) < p−i is defined as in Theorem 5.1.

PROOF. See Appendix B.

Next, we discuss the implications of Theorem 5.2 and provide examples that illustrate our results:

Interpretation of the NE. As stated in Theorem 5.2, the exact price profiles that give the NE depend
on the relationship between the market sharing intervals of the two providers. If two price intervals
overlap, as illustrated in part (a) of Fig. 6, any equal price pair in that interval will give us a NE. As a
result, two providers share the market and set their prices at a value above their respective break-even
prices but always less than the smaller of the two market sharing prices, a value which is guaranteed
to be no greater than Ki, the primary reward collected by provider i.

On the other hand, if the market sharing price intervals of the two providers do not intersect, as
illustrated in part (b) of Fig. 6, the market outcome is the same as the result of a price war, where
the provider with the lower break-even price captures all of the secondary demand by pricing slightly
below its competitor’s break-even price. The losing provider cannot match this price without making a
negative profit. In this case, even though both providers find it desirable to go into market sharing as
the prices approach their break-even prices, the gap between the two market sharing intervals does
not allow them to converge to a market sharing point.

Examples. In the following two examples, we seek to illustrate different market outcomes depending
on the placement of the market sharing intervals on the price line. In the first example, we will use a
constant elasticity demand function as in our previous examples. In the second example, we will use
an exponentially decreasing demand to illustrate the fact that our results hold over general demand
functions. Both types of demand functions are commonly used in the economics literature [Talluri and
Ryzin 2004].

Example 5.1 Suppose the secondary demand is given by σ(p) = 20/p. We consider two network
providers whose parameters are:

(λ1, C1,K1, α1) = (6, 10, 4, 0.5) and (λ2, C2,K2, α2) = (5, 10, 4, 0.5).

Given these parameters it follows that λi + αiσ(0) > Ci and λi + αiσ(K) < Ci for i = 1, 2. Under these
conditions, by making use of the explicit formulas provided in Eqs. (8) (substituting σ(p) with ασ(p))
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and (35), we obtain the following break-even and market sharing prices of both providers:

pBE1 (0.5) = 1.225, pMS
1 (0.5) = 2.881,

pBE2 (0.5) = 1.000, pMS
2 (0.5) = 2.400.

Clearly pBE1 (0.5) > pBE2 (0.5) and pMS
2 (0.5) < pMS

1 (0.5). Furthermore, it is also true that pBE1 (0.5) <
pMS
2 (0.5). Therefore, both providers’ market sharing price intervals are overlapping. Then, part one

of Theorem 5.2 states that all NE price profiles (p∗1, p
∗
2) have the form: p∗1 = p∗2 ∈ and lie in the price

interval [1.225, 2.400].

Example 5.2 In this example we consider an exponentially decreasing secondary demand given by
σ(p) = 20e−0.2p. This time we consider two similarly loaded providers with significantly different pri-
mary rewards. We choose the network parameters of these providers as such:

(λ1, C1,K1, α1) = (6, 10, 6, 0.5) and (λ2, C2,K2, α2) = (8, 10, 14, 0.5).

Notice that this time provider 2 has a higher primary demand and a higher associated reward collected.
Once again, network parameters and the secondary demand satisfy λi+αiσ(0) > Ci and λi+αiσ(K) <
Ci for i = 1, 2. Solving for the Eq. (6) in Theorem 4.2 and Eq. (9) in Theorem 4.3, we obtain the following
break-even and market sharing prices of both providers:

pBE1 (0.5) = 2.098, pMS
1 (0.5) = 4.984,

pBE2 (0.5) = 5.050, pMS
2 (0.5) = 9.241.

Clearly pBE1 (0.5) < pBE2 (0.5) and pMS
2 (0.5) > pMS

1 (0.5). However, this time pBE2 (0.5) > pMS
1 (0.5). There-

fore, the market sharing price intervals of the two providers do not intersect. As a result, these two
providers will go into a price war and provider 1, having the lower break-even price will be the winner.
In this light, part 2 of Theorem 5.2 states that the NE is given by p∗1 = 5.050− ε and p∗2 = 5.050.

Best Response Dynamics. While Theorem 5.2 states that the NE exist and gives the pricing profiles
of such, depending on the initial conditions one might never reach that equilibrium if best response dy-
namics change the prices in a different direction. In our case, the convergence to the NE is guaranteed
from the way best response dynamics work. In both cases, for any price above the described NE prices,
the best response dynamics lowers the price as each provider tries to capture the secondary demand
by setting their price lower than the competitor’s. For any prices below the NE, since this yields a
negative profit for at least one provider, the best response dynamics now work to increase the prices to
the break-even price of each provider, which in turn fall in the range of the NE given by Theorem 5.2.

Payoff Dominant Strategy Refinement. In part (1) of Theorem 5.2 we identified a price range in which
all possible NE could lie. While all price pairs are viable NE , it is desirable to be able to characterize
the market outcome through a single price pair. A possible refinement of the case when facing multiple
NE is through the consideration of Payoff Dominant Strategy (PDS) equilibrium:

Definition 5.3 Let S denote the set of price pairs {(p∗1, p∗2) : p∗1 = p∗2} that give the NE in part (1) of
Theorem 5.2. Then, the PDS equilibrium (pD1 , p

D
2 ) is a NE with the following refinement condition:

Ri(p
D
1 , p

D
2 ) = max

(p1,p2)∈S
Ri(p1, p2) for i = 1, 2,

In other words, when multiple NE are present, a PDS yields the maximum possible payoff for both
providers [Straub 1995]. Using this condition we can identify the PDS equilibrium (pD1 , p

D
2 ) ∈ S. Since

the prices in S are equal, we know from Eq. (3) that the payoff is equal to the profit under reduced
demand. (Ri(p1, p2) = Πi(pi, αiσ(pi))). If σ′(p) < 0, let p̂ denote the solution to:

p = −σ(p)/σ′(p). (44)

Otherwise we set p̂ = ∞. Note that Eq. (44) corresponds to the price elasticity of demand. Through
careful analysis, we can state the following:

Theorem 5.3 For relatively inelastic demand such that p̂ > max(pMS
1 (α1), pMS

2 (α2)), there exists a
unique PDS equilibrium (pD1 , p

D
2 ) given by:

pD1 = pD2 = min(pMS
1 (α1), pMS

2 (α2)) (45)
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PROOF. See Appendix C.

6. QUALITY OF SERVICE EXTENSION

In our model we have made the assumption that secondary users always choose the lowest price adver-
tised and when the prices are the same arriving secondary traffic randomly choose a provider. While
we have argued that price aversion might be a possible explanation for choosing the lower price, Qual-
ity of Service (QoS) might also have an impact on the customer’s decision process. In this subsection
we extend our model to take QoS into consideration.

We consider a simple QoS performance metric: the acceptance rate of the incoming traffic. Then we
extend our model as follows: When both providers charge the same price and the secondary demand
at this price is sufficiently large that the total demand in the market exceeds the total capacity (i.e.,
λ1 + λ2 + σ(p) > C1 + C2), secondary demand is split between the two providers according to a vector
α = [α1, α2] such that α1 + α2 = 1, α1, α2 > 0 and satisfying the following equality:

C1

λ1 + α1σ(p)
=

C2

λ2 + α2σ(p)
. (46)

Namely, instead of randomly choosing a provider, secondary demand distributes itself in a fashion that
the accommodation level it faces is homogeneous across both providers. In the case of two providers,
let α1 = α and α2 = 1− α. Then we can obtain an explicit expression for α:

α =
C1(λ2 + σ(p))− C2λ1

(C1 + C2)σ(p)
. (47)

and substituting Eq. (47) for α in ασ(p) we obtain:

ασ(p) = β1 + γ1σ(p), (48)

where βi = Ciλ−i−C−iλi

Ci+C−i
and γi = Ci

Ci+C−i
for i = 1, 2.

Under this new model, the previous results stated in our theorems still hold. Since we consider all
values of α ∈ (0, 1], we can simply replace ασ(p) in our equations with Eq. (48). We illustrate this result
in the following example and extend our analysis in Appendix D.

Example 6.1 Suppose the secondary demand is given by σ(p) = 30e−10p. We consider two network
providers whose parameters are:

(λ1, C1,K1) = (10, 20, 1) and (λ2, C2,K2) = (8, 10, 1).

Suppose that secondary demand is split between the providers in a way that satisfies Eq. (46). Then,
using Eq. (48), we have the following reduced demand functions:

α1σ(p) = 2σ(p)/3 + 2 and α2σ(p) = σ(p)/3− 2.

Observe that α1σ(p) + α2σ(p) = σ(p). We can check that λi + αiσ(0) > Ci and λi + αiσ(K) < Ci for
i = 1, 2. Under these conditions, we need to use Eq. (6) for calculating the break-even price and (9) for
the market sharing price for both providers. Doing the necessary calculations, one finds:

pBE1 = 0.184, pMS
1 = 0.529,

pBE2 = 0.317, pMS
2 = 0.417.

Clearly pBE1 < pBE2 and pMS
1 > pMS

2 . Thus, providers 2’s market sharing interval is a subset of provider
1’s. Then, part one of Theorem 5.2 states that all NE price profiles (p∗1, p

∗
2) have the form p∗1 = p∗2 and

lie in the price interval [0.162, 0.235].

7. CONCLUSION

In this paper, we investigated critical price values that determine the outcomes in a secondary spec-
trum market where multiple providers compete to attract secondary demand. We focused on an unco-
ordinated access setting for secondary spectrum under private commons, and carried out our analysis
based on a fluid model.

Since market outcomes are determined by break-even and market sharing prices, we carefully de-
fined and analyzed these two characteristic prices. We demonstrated existence and uniqueness of these
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prices for each provider, under general demand functions. We further provided implicit formulas to
compute both of these prices as a function of the system parameters. The results of the paper show
that below the break-even price, no secondary user will be admitted. Similarly, in between the break-
even and market-sharing prices, it is possible that only a fraction of the total secondary demand will
be admitted by each provider. Thus, a provider treats secondary users equally to primary users, only
when they pay a high enough price (i.e., above the market sharing price).

A significant result is the existence of a market sharing interval under general forms of demand
functions, implying that the incentive to share a spectrum market always precedes the incentive to exit
the market due to negative profits. Using the notions of best response and Nash equilibrium, we then
built on our results and showed the emergence of two markedly different possible market outcomes,
depending on the secondary demand function σ(p) and the network parameters of each provider (i.e,
the service capacity C, primary demand λ, and primary reward K).

If the market sharing price intervals of the two providers intersect, as described in part one of
Theorem 5.2, then the providers converge to a price profile where they will share the market. All
prices falling between the maximum break-even price and minimum market sharing price among the
two providers are possible NE. On the other hand, if the market sharing price intervals do not intersect,
as described in part two of Theorem 5.2, then the NE reflects a price war wherein the winning provider
sets its price slightly below the break-even price of its competitor and gets all the profit.

We have presented several refinements on our results, particularly through the consideration of the
Payoff Dominant Strategy (PDS) equilibrium and the Quality of Service (QoS) extensions. Through
PDS we were able to characterize the market outcome through a unique price pair for both cases in
Theorem 5.2. We have also introduced a QoS extension, in which the secondary demand’s decision
were affected by the accommodation levels. We observed that our previous results held under this QoS
model, suggesting their applicability in real world markets.

While it is possible to extend our analysis of the duopoly to any number of providers, there are
several challenges to overcome. Since we considered a monopoly, network providers would either share
the market at a certain fraction or not. When more providers enter the market, there rises a need
to consider many different sharing scenarios. Furthermore, as the market share of a provider grows
or shrinks due to other providers entering or exiting the market, this changes the break-even and
market sharing prices. Since the calculation of these prices depend on the secondary demand function,
it is challenging to predict whether these changes would alter the market dynamics. Specifically, one
can envision a case where as a result of a provider exiting the market the characteristic prices of the
remaining providers increase to a point that the exiting provider would re-enter the market, only to
once exit again. Such cyclic behavior in the market could pose serious barriers to the analysis. We plan
to consider the case of multiple providers in the future.

In summary, this paper is aimed to shed light into demand-invariant governing price relationships
and the resulting outcomes of a spectrum market in a private commons competition under uncoor-
dinated access. Future work could focus on the regulatory implications of the results (e.g., whether
market sharing at a high price, even though inadvertent, may raise antitrust concerns amongst policy
makers), and the extension of the results to oligopolies.
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Appendix A - Lemmas

PROOF OF LEMMA 4.1. The existence of p̄α follows from the assumption λ+ασ(0) > C and that the
demand is non-increasing with the limit lim

p→∞
σ(p) = 0.

(1) Let p′ be such a price that ασ(p′)+λ ≤ C. Since we know that secondary demand is non-increasing
in p it also follows that p′ must satisfy the following inequality: p′ ≥ p̄α. We know that setting price
equal to p′ results in a non-negative profit since by Eq.’s (1) and (2) we have that:

Π(p′, ασ(p′)) = ασ(p′)p′ ≥ 0.

Given that any price greater than or equal p̄α yields a non-negative profit for a provider, we can con-
clude that p̄α is an upper bound on the break-even price pBE(α) (i.e., pBE(α) ≤ p̄α).

(2) From part 1 of our proof we know that:

pBE(α) ≤ p̄α.
Then, through our assumption that the secondary demand is non-increasing in p, the following is also
true:

ασ(pBE(α)) ≥ ασ(p̄α). (49)

Thus, from Eq. (49) and the definition of p̄α we obtain: λ+ ασ(pBE(α)) ≥ C.

PROOF OF LEMMA 4.2. We can check this claim by taking a look at the right hand side of Eq. (6):
(σ(p) + λ− C)λK

Cσ(p)
.

In order for the claim to hold, we need (σ(p) + λ− C)λ < Cσ(p), which can be rewritten as: λ(λ+σ(p)) <
C(λ+ σ(p)). This is true under our initial assumption λ < C.

PROOF OF LEMMA 4.6. The inequality holds when pMS
i (α) = Ki. When pMS

i (α) is given by the
solution to the implicit equation in Eq. (21), we prove it by showing the following:

pMS
i =

(λi + σ(pMS
i (α))− Ci)λiKi

(Ci − αi(λi + σ(pMS
i (α))))σ(pMS

i (α))
≤ Ki.

After some simple algebra and regrouping of terms we get:

λi ≤ Ci − αiσ(pMS
i (α)).

Note that if pMS
i (α) is given by the solution to the implicit equation in Eq. (21), by Lemma 4.5 it

also follows that pMS
i (α) ∈ [p̄αi , p̄i). From the way we have defined p̄αi in Lemma 4.1 we conclude that

λ+ ασ(pMS
i (α)) ≤ C.

PROOF OF LEMMA 5.1. Since we know that Wi(x, σ(x)) is differentiable in x, we can always a pick a
price qi < pi such that on the interval [qi, pi), the functionWi(x, σ(x)) is either monotonically increasing,
constant or monotonically decreasing with respect to x6.

We break our proof into two cases:
(1) Assume that for a given qi such that qi < pi, the following is true for any p̂i ∈ [qi, pi):

Wi(p̂i, σ(p̂i)) ≥Wi(pi, σ(pi)).

Then it follows by our assumption ∆Wi(pi) < 0 that Wi(p̂i, σ(p̂i)) > Wi(pi, αiσ(pi)), and p′i = p̂i.
(2) Assume for a given qi such that qi < pi, the following is true for all p̂i ∈ [qi, pi):

Wi(p̂i, σ(p̂i)) < Wi(pi, σ(pi)). (50)

Then by the definition of continuity, the following can be stated for Wi(pi, σ(pi)): ∀ε > 0, ∃δ(ε, pi) > 0
s.t. if |pi − p̂i| < δ then

|Wi(pi, σ(pi))−Wi(p̂i, σ(p̂i))| < ε.

6It should be noted that differentiability is not a necessary condition for this statement; local monotonocity of Wi(x, σ(x)) would
suffice. However, as we need differentiability elsewhere in the paper, we simply use it here as well.
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Making use of Eq. (50) and our assumption that p̂i ∈ [qi, pi), we can remove the absolute value from
the previous equation and simplify it to:

Wi(pi, σ(pi))−Wi(p̂i, σ(p̂i)) < ε. (51)

Taking ε = Wi(pi, σ(pi)) − Wi(pi, αiσ(pi)) and cancelling the terms Wi(pi, σ(pi)) on both sides of the
inequality (51) we obtain:

−Wi(p̂i, σ(p̂i)) < −Wi(pi, αiσ(pi)),

Wi(p̂i, σ(p̂i)) > Wi(pi, αiσ(pi)),

and p′i = p̂.

Appendix B - Nash Equilibrium

PROOF OF THEOREM 5.2.
(1) Without loss of generality, assume that pBE1 (α1) < pBE2 (α2). Now suppose pMS

1 (α1) > pMS
2 (α2),

such that we have the following relationship between the break-even and market sharing prices:

pBE1 (α1) < pBE2 (α2) < pMS
2 (α2) < pMS

1 (α1).

We will establish NE by determining when p∗1 = pBR1 (pBR2 (p∗1)). In order to do so we first give provider
2’s best response:

pBR2 (p∗1) =


pBE2 (α2) for p∗1 < pBE2 (α2)

p∗1 for pBE2 (α2) ≤ p∗1 ≤ pMS
2 (α2)

pm2 (p∗1) for p∗1 > pMS
2 (α2),

(52)

where pm2 (p∗1) satisies Eq. (42) in Theorem 5.1.
We can now formulate provider 1’s best response to provider 2’s best response:

pBR1 (pBR2 (p∗1)) =



pBE1 (α1) for p∗1 < pBE1 (α1)

pBE2 (α2) for pBE1 (α1) ≤ p∗1 < pBE2 (α2)

p∗1 for pBE2 (α2) ≤ p∗1 ≤ pMS
2 (α2)

pm2 (p∗1) for pMS
2 (α2) < p∗1 ≤ pMS

1 (α1)

pm1 (p∗2) for p∗1 > pMS
1 (α1).

(53)

Therefore the only price interval where

p∗1 = pBR1 (pBR2 (p∗1))

can be satisfied is [pBE2 (α2), pMS
2 (α2)] and from Eq. (52) in this interval we have that p∗2 = p∗1, hence giv-

ing us the NE. The other case where pMS
1 (α1) ≤ pMS

2 (α2) can be proven following the same argument.
(2) Suppose that pBE1 (α1) > pMS

2 (α2). Then, by Theorem 4.1, we also know the following relationship
between the break-even and market sharing prices of both providers:

pBE2 (α2) < pMS
2 (α2) < pBE1 (α1) < pMS

1 (α1).

This time we will establish NE by determining when p∗2 = pBR2 (pBR1 (p∗2)). In order to do so we first give
provider 1’s best response:

pBR1 (p∗2) =


pBE1 (α1) for p∗1 < pBE1 (α1)

p∗2 for pBE1 (α1) ≤ p∗2 ≤ pMS
1 (α1)

pm1 (p∗2) for p∗2 > pMS
1 (α1).

(54)

We can now formulate provider 2’s best response to provider 1’s best response:

pBR2 (pBR1 (p∗2)) =



pBE2 (α2) for p∗2 < pBE2 (α2)

pBE1 (α1) for pBE2 (α2) ≤ p∗2 ≤ pMS
2 (α2)

pm2 (pBE1 (α1)) for pMS
2 (α2) < p∗2 < pBE1 (α1)

pm2 (p∗2) for pBE1 (α1) ≤ p∗2 ≤ pMS
1 (α1)

pm2 (pm1 (p∗2)) for p∗2 > pMS
1 (α1).

(55)
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A careful look yields the result that the only time p∗2 = pBR2 (pBR1 (p∗2)) is possible when p∗2 = pm2 (pBE1 (α1)),
given in the third pricing interval in Eq. (55). From Eq. (54) we have that

p∗1 = pBR1 (pm2 (pBE1 (α1))) = pBE1 (α1), (56)

thus completing the pricing strategy profile of the only NE possible in this case. Note that since
pBE1 (α1) > pMS

2 (α2), it follows from Theorem 4.1 that pBE1 (α1) > pBE2 (1). Since ε can be chosen ar-
bitrarily small, we can extend this result to pBE1 (α1)− ε > pBE2 (1), therefore provider 2 is profitable at
this NE as a monopoly. We can use the same argument to prove the case when pBE1 (α1) ≤ pMS

2 (α2).

Appendix C - Payoff Dominant Strategy (PDS) Equilibrium

PROOF OF THEOREM 5.3.
Combining Lemmas 4.4, 4.5 and Theorem 4.3 we know the following:

(i) If pMS
i is given by Eq. (9), then p̄αi

i ≤ pMS
i (αi) < p̄i.

(ii) If pMS
i (αi) = Ki, then pMS

i < p̄αi
i .

Therefore, we need to consider two different formulations of the profit Πi(pi, αiσ(pi)). One can observe
from Eq. (2) that:

∂

∂pi
Wi(pi, αiσ(pi)) =

∂

∂pi
Πi(pi, αiσ(pi)).

Therefore, we will use the derivative of revenue with respect to price in our calculations instead of
profit.

Case 1 - pi < p̄αi
i

The price condition is equivalent to stating that λi + αiσ(p) > Ci. Simplifying Eq. (1) and by taking
the derivative with respect to pi we can show that:

∂

∂pi
Wi(pi, αiσ(pi)) =

∂

∂pi

(
αiσ(pi)pi

Ci
λi + αiσ(pi)

+ λiKi
Ci

λi + αiσ(pi)

)
= αi(σ(pi) + σ′(pi)pi)

Ci
λi + αiσ(pi)

− αiσ(pi)pi
Ciαiσ

′(pi)

(λi + αiσ(pi))2
− λiKi

Ciαiσ
′(pi)

(λi + αiσ(pi))2
.

Regrouping the terms yields:
∂

∂pi
Wi(pi, αiσ(pi)) = αiσ(pi)

Ci
λi + αiσ(pi)

+ λiCiαiσ
′(pi)

pi −Ki

(λi + αiσ(pi))2
> 0, (57)

for pi ≤ Ki since σ′(pi) ≤ 0.
Case 2 - pi ≥ p̄αi

i

Simplifying Eq. (1) and by taking the derivative with respect to pi we can show that:
∂

∂pi
Wi(pi, αiσ(pi)) =

∂

∂pi
(αiσ(pi)pi + λiKi)

= αi (σ(pi) + σ′(pi)pi) .

If σ′(pi) = 0, then ∂
∂pi

Wi(pi, αiσ(pi)) > 0 for all pi ≥ p̄αi
i . On the other hand, if σ′(pi) < 0 we have the

following:

∂

∂pi
Wi(pi, αiσ(pi))

{
> 0 if pi < p̂
= 0 if pi = p̂
< 0 if pi > p̂,

(58)

where p̂ denotes the solution to:

p = −σ(p)/σ′(p).

Note that p̂ is the same for both providers. Now we consider the cases (pMS
1 (α1) = K1, p

MS
2 (α2) = K2),

(pMS
i (αi) = Ki, p

MS
−i = g−i(p−i)) and (pMS

1 = g1(p1), pMS
2 = g2(p2)) separately, where gi(pi) represents

the right hand side of Eq. (9).
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(1) Assume pMS
1 (α1) = K1, p

MS
2 (α2) = K2. Recalling condition (ii) in the beginning of our proof, we have:

pMS
i (αi) < p̄αi

i , for i = 1, 2. (59)

From Eq. (57) we know that for p < p̄αi
i the profit is increasing on the interval [0,Ki]. Therefore, both

providers obtain their maximum revenue rates at their respective market sharing prices. Then, the
PDS equilibrium is:

pD1 = pD2 = min(K1,K2) = min(pMS
1 (α1), pMS

2 (α2)). (60)
(2) Assume pMS

1 (α1) = K1, p
MS
2 (α2) = g2(p2). From Eq. (57) we know that provider 1’s payoff is max-

imized at K1. Recalling condition (i), we have pMS
2 (α2) > p̄α2

2 . Then from Eq. (58) we know that
provider 2’s payoff is increasing until p̂. Since we assume that p̂ > pMS

2 (α2), and we consider price
strategy profiles that are upper bounded by min(pMS

1 (α1), pMS
2 (α2)), the PDS equilibrium is given

by:
pD1 = pD2 = min(pMS

1 (α1), pMS
2 (α2)). (61)

(3) pMS
1 (α1) = g1(p1), pMS

2 (α2) = g2(p2). From Eq. (58) we conclude that both providers’ profits are
increasing until p̂. Once again recalling our assumption that p̂ > max(pMS

1 (α1), pMS
2 (α2)) and the

upper bound min(pMS
1 (α1), pMS

2 (α2)) on S, we conclude that the PDS equilibrium is given by:

pD1 = pD2 = min(pMS
1 (α1), pMS

2 (α2)). (62)

Appendix D - Quality of Service (QoS) Extension

Before we begin our proof of Theorem 4.2 we need to revisit the two prices we have created before: p̄ and
p̄α. By definition p̄ is the same, while substituting Eq. (47) for α we get the new following relationship:

λ1 + α1σ(p̄α) = C1 ⇐⇒ λ1 + λ2 + σ(p̄α) = C1 + C2. (63)

Therefore, our previous result pBE(α) ≤ p̄α from Lemma 4.1 is equivalent to the following:

λ1 + λ2 + σ(pBE(α)) ≥ C1 + C2 (64)

PROOF OF THEOREM 4.2 REVISITED.
Parts 1 & 3 of the proof remain unchanged. The following is a revision of part 2 in our proof:
(2) Let us rearrange the terms in Eq. (6) and reintroduce index i to get the following:

Ci
λiK

p− 1 =
λi − Ci
αiσ(p)

. (65)

We will proceed by demonstrating that the left hand side of Eq. (65) is strictly increasing with respect
to p and the right hand side is non-increasing with respect to p, hence meaning that this equality only
holds at a single value of p. Since the left hand side of Eq. (6) linearly increasing in p, we only need
to prove that the right hand side is non-increasing. Under the assumption that σ(p) is a differentiable
and non-increasing function of p, substituting

αiσ(p) = βi + γiσ(p), (66)

and taking the derivative of the right hand side with respect to p yields:
∂

∂p

(
λi − Ci

βi + γiσ(p)

)
= γi

Ci − λi
(βi + γiσ(p))2

σ′(p) ≤ 0. (67)

Eq. (67) holds because λi < Ci and σ′(p) ≤ 0. Therefore, there can only be at most one solution for
pBE(α) that satisfies Eq. (6).

PROOF OF THEOREM 4.3 REVISITED. From the way we have defined the new distribution vector
α in Eq. (47), our model does not extend to prices are greater than p̄α as the total demand does not
exceed the total market capacity, and can be fully accommodated. Therefore, we keep our assumption
of the random splitting of the secondary demand for these price values. Lemmas 4.3 and 4.5 remain
unchanged. We need to revisit the price values where p : p < p̄α, and update the corresponding Lemma
4.4.
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Lemma 7.1 Assume p̄α > 0 and p < p̄α, then

(1) If p̄α ≥ K:

∆Wi(p) > 0 if p < K; (68)
∆Wi(p) = 0 if p = K; (69)
∆Wi(p) < 0 if p > K. (70)

(2) If p̄α < K:

∆W (p) > 0 ∀p < p̄α. (71)

PROOF. Note that our assumption p < p̄α is equivalent to stating that:

λ1 + λ2 + σ(p) > C1 + C2

Since p̄α < p̄, it must also be true that p < p̄. Then the combined demand without market sharing is
greater than the provider’s capacity (i.e., λi + σ(p) ≥ Ci). Simplifying Eq. (1) under these assumptions,
we obtain:

∆Wi = Wi(p, αiσ(p))−Wi(p, σ(p)) =
αiσ(p)pCi
αiσ(p) + λi

+
λiKCi

αiσ(p) + λi
− σ(p)pCi
σ(p) + λi

− λiKCi
σ(p) + λi

.

After rearrangement and substituting αiσ(p) with βi + γiσ(p) we get:

∆Wi =
(β−i + γ−i)σ(p))σ(p)λiCi

((βi + γi)σ(p) + λ)(σ(p) + λ)
(K − p). (72)

Eq. (72) only takes on the value zero when p = K. Additionally for price values p < K, ∆Wi is positive
and for p > K, ∆Wi is negative.

Since the results of Lemma 7.1 and Lemma 4.4 are the same, the revised proof of Theorem 4.2
remains the same as before.

Having demonstrated that the main results stated in Theorems 4.2 and 4.3 hold under the extended
model, we revisit Theorem 4.1.

PROOF OF THEOREM 4.1 REVISITED. The only part of the proof we need to revisit is for prices p <
p̄α. If the market sharing and the break-even prices are in the price range [0, p̄α), then from Lemma
4.4 we conclude that pMS(α) = K. Further, by substituting the right hand side of Eq. (47) for α in Eq.
(6), we can demonstrate that pBE(α) is given by the solution to the following equation:

p =
(λ1 + λ2 + σ(p)− C1 − C2)λ1K

C1(λ2 + σ(p))− C2λ1
.

Then we need to demonstrate that:
(λ1 + λ2 + σ(p)− C1 − C2)λ1K

C1(λ2 + σ(p))− C2λ1
< K.

After rearranging and collecting the terms we obtain the following:

λ1(λ1 + λ2 + σ(p))− C2λ1 < C1(λ1 + λ2 + σ(p))− C2λ1,

which is true for since λ1 < C1 in our initial assumptions.

The results stated in Section 5, once the break-even and market sharing prices are determined, do
not depend on the specific value αi takes. The results stated Lemma 5.1 depends of continuity of the
price pi and the sign of the revenue change ∆Wi(pi). The proof Theorem 5.1 builds on Lemma 5.1
and utilities the revenue rate without sharing (Wi(pi, σ(pi))). The proof of Theorem 5.2 is based on the
game theoretic interpretation of the results stated in Theorem 5.1. All of these results hold as long as
αi takes on a value in the interval [0, 1), which our extended model does not violate.
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