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A Robust Load Balancing and
Routing Protocol for Intra-Car Hybrid

Wired/Wireless Networks
Wei Si, David Starobinski, and Moshe Laifenfeld

Abstract—With the emergence of connected and autonomous vehicles, sensors are increasingly deployed within cars to
support new functionalities. Traffic generated by these sensors congest traditional intra-car networks, such as CAN buses.
Furthermore, the large amount of wires needed to connect sensors makes it harder to design cars in a modular way. To
alleviate these limitations, we propose, simulate, and implement a hybrid wired/wireless architecture, in which each node is
connected to either a wired interface or a wireless interface or both. Specifically, we propose a new protocol, called
Hybrid-Backpressure Collection Protocol (Hybrid-BCP), to efficiently collect data from sensors in intra-car networks.
Hybrid-BCP is backward-compatible with the CAN bus technology, and builds on the BCP protocol, designed for wireless
sensor networks. We theoretically prove that an idealized version of Hybrid-BCP achieves optimal throughput. Our testbed
implementation, based on CAN and ZigBee transceivers, demonstrates the load balancing and routing functionalities of
Hybrid-BCP and its resilience to DoS attacks and wireless jamming attacks. We further provide simulation results, obtained
with the ns-3 simulator and based on real intra-car RSSI traces, that compare between the performance of Hybrid-BCP and a
tree-based data collection protocol. Notably, the simulations show that Hybrid-BCP outperforms the tree-based protocol on
throughput by 12%. The results also show that Hybrid-BCP maintains high packet delivery rate and low packet delay for
safety-critical sensors that are directly connected to the sink through wire.

Index Terms—Intra-Vehicular, Hybrid Networks, Load Balancing, Routing Protocol.
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1 INTRODUCTION

THE conventional intra-car communication model, in
which sensors communicate with Electronic Con-

trol Units (ECUs) via Controller Area Network (CAN)
buses, faces several limitations [1]. CAN buses are in-
deed stressed to their limit due to constant increase in
electrical contents and sensors. As electrical architec-
tures often serve over multiple vehicle platforms and
multiple model years, newly added electrical compo-
nents may increase traffic load over the network be-
yond its originally designed capacity requiring costly
and undesired network wired extensions. Thus, intra-
car wired network architectures come with attendant
costs of weight, traffic congestion, and maintenance [2],
[3], [4], [5]. Furthermore, since the CAN protocol is
broadcast in nature and based on message priority, it
is also vulnerable to Denial-of-Service (DoS) attacks.
Initially, such attacks were mounted by transmitting
high-priority messages [6]. Recent work shows that
CAN buses are vulnerable to other types of DoS attacks,
which are harder to detect [7].

To alleviate limitations of intra-car wired network,
we propose in this work a hybrid wired/wireless net-
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work architecture for supporting intra-car communica-
tion. A wireless extension of the wired CAN bus can
indeed enhance the electrical architecture flexibility of
cars, by allowing the integration of new remote sensors
without costly installation of physical wires or added
connectors and complexity to the CAN buses. A wire-
less interface also provides redundancy in the case of
a DoS attack on the wired interface. A key goal in this
context is to achieve reliable and efficient delivery of
packets from the sensors to a sink (ECU), a task also
known as data collection.

In contrast to prior work on hybrid wired/wireless
communication systems [8], [9], [10], [11], any node in
our architecture can be connected to either the wired
or wireless interfaces or both of them. Such a design
raises several research issues. The first issue is how to
implement routing. For instance, in the hybrid network
of Fig. 1, packets destined from node 2 to the sink can
be routed through either node 7, node 9, or node 12.

The second issue is how to implement load bal-
ancing. For instance, node 10 can communicate with
the sink either on the wired interface or the wireless
interface.

The third issue is how to deal with contention from
other nodes and (possibly malicious) interferences. For
instance, how should node 10 react if node 4 is con-
tending on the wired link? And what happens if an
adversary performs a DoS attack?
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Fig. 1: A 15-node intra-car hybrid wired/wireless net-
work. Each node is connected to either a wired interface
or a wireless interface or both. The data packets of the
sensor nodes (1-14) need to be delivered to the sink
(node 0).

In light of these challenges, we define the following
objectives for designing a collection protocol for hybrid
intra-car networks:

• Load balancing. The protocol should utilize avail-
able interfaces and balance packet transmissions
over the interfaces based on link conditions (e.g.,
bandwidth and congestion level) in order to
achieve a certain optimization objective. In our
case, the objective is throughput-optimality (see
discussion below).

• Routing. In the absence of a direct communica-
tion link between a sensor node and the sink, the
protocol should deliver the packets of the sensor
node in a multi-hop fashion.

• Robustness. The protocol should achieve reliable
data collection even when link qualities degrade
(e.g., due to contention, interferences, or DoS
attacks).

• Backward-compatibility. The protocol should not
require the replacement of existing technology
(e.g., CAN buses) in vehicles.

To address these issues, we propose a new data
collection protocol for hybrid intra-car networks, called
Hybrid-BCP. Hybrid-BCP belongs to the class of the
state-of-the-art backpressure algorithms [12], [13], which
have theoretically been proven to be throughput-
optimal. This property means that all the queues in the
network remain stable (i.e., do not grow indefinitely)
and packets get delivered to the sink, as long as this
is theoretically feasible. From a practical point of view,
throughput-optimality is closely related to the reliability
of packet delivery and network robustness. Indeed, a
throughput-optimal protocol can better sustain traffic
congestion or adversarial conditions affecting link qual-
ities than a protocol that is not throughput-optimal.

We implement Hybrid-BCP on a real testbed, com-
posed of CAN and ZigBee transceivers, and evalu-
ate its performance. Our testbed experiments demon-
strate the load balancing and routing functionalities
of Hybrid-BCP. The results show that Hybrid-BCP im-
proves throughput under DoS attacks on the CAN bus

by a factor of 10. They also show that Hybrid-BCP is
robust to jamming attacks on wireless links.

We further implement Hybrid-BCP in ns-3 for the
purpose of simulating a larger network. We com-
pare Hybrid-BCP with a tree-based collection proto-
col, which we refer to as Hybrid-Collection Tree Protocol
(Hybrid-CTP). Hybrid-CTP is based on the popular CTP
protocol [14] and relies on the computation and update
of end-to-end routing metrics at each node.

For the simulations, we use real RSSI (received
signal strength indication) traces collected in an intra-
car environment [15]. The simulation results demon-
strate that Hybrid-BCP achieves higher throughput
than Hybrid-CTP if both protocols use the same power
transmission. The results also show that Hybrid-BCP
maintains high performance for safety-critcal sensors
that are connected to the same bus as the sink.

We summarize the contributions of this paper as
follows:

• We design a new protocol, Hybrid-BCP, for data
collection in intra-car hybrid wired/wireless net-
works.

• We prove the throughput-optimality of an ideal-
ized version of Hybrid-BCP.

• We build a real testbed for evaluating the per-
formance of Hybrid-BCP. The tests demonstrate
the load balancing and routing functionalities of
Hybrid-BCP and its resilience to DoS attacks.

• We implement Hybrid-BCP and Hybrid-CTP in
the ns-3 simulator, and compare their perfor-
mance in terms of reliability for different trans-
mission powers.

The rest of the paper is organized as follows. Sec-
tion 2 reviews related work on hybrid wired/wireless
networks, load balancing algorithms for multiple inter-
faces, and collection protocols. Section 3 describes the
Hybrid-BCP protocol and its software implementation.
Section 4 presents our throughput analysis. Section 5
and 6 provide performance evaluation of Hybrid-BCP
in testbed experiments and simulations, respectively.
Finally, Section 7 concludes the paper and discusses
future research directions.

2 RELATED WORK

2.1 Hybrid wired/wireless networks
Much of the existing work on hybrid wired/wire-
less networks assumes that all the devices (except for
bridges or relays) are connected to either a wired inter-
face or a wireless interface but not both.

For instance, [8] implements a hybrid wired/wire-
less network for greenhouse control and management
using CAN and ZigBee transceivers. In that system,
the central controller and a number of wireless bridges
are connected to a bus. The bridges receive data from
wireless sensors and forward them to the controller.
The work in [9] conducts a feasibility study of a hy-
brid wired/wireless network implementation based on
Ethernet and Bluetooth. In the implementation, sensors
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have either a wired or a wireless interface while the
sinks are connected to a bus. A bridge node communi-
cates between the wireless nodes and the wired nodes.
The work in [16] describes the design of a CAN-to-RF
bridge for automotive environments.

Similar hybrid network structures can be found
in [10], [11], where wireless nodes communicate with
wired nodes through access points. In the hybrid
wired/wireless models of [17], [18], a number of base
stations are interconnected with high-bandwidth wired
links and they serve as relays for the wireless nodes.

The issue of supporting two interfaces first raises the
challenge of selecting the right interface for each packet
in order to achieve an optimization objective. Beyond
that, the addition of a wireless interface should not add
significant protocol overhead or come at the expense of
increased latency for safety-critical messages.

2.2 Load balancing
There exist several protocols for aggregating bandwidth
and performing end-to-end load balancing. These pro-
tocols are implemented at the transport layer or above,
and rely on protocols at lower layers to provide the
routing functionality.

For instance, Multipath TCP (MPTCP) [19] uses
multiple TCP paths to increase the throughput of data
transfer. The earliest delivery path first (EDPF) [20]
estimates the packet delivery time on several paths and
schedules packets on the path with the shortest delivery
time. The work in [21] adds to EDPF by incorporating
transmission rates and losses in the estimation of the
delivery time of packets. Other algorithms based upon
EDPF include [22], [23], [24].

Different from the above work, Hybrid-BCP pro-
vides a joint load balancing and routing solution.

2.3 Multi-channel multi-interface wireless networks
There have been several works on designing channel as-
signment and routing protocols for multi-channel multi-
interface wireless networks [25], [26], [27]. For example,
J-CAR [25] selects the interface with the lowest load,
and assigns to that interface the channel with the lowest
amount of interference. The routing component of J-
CAR is based on AODV.

Our work differs from prior works in that the
interfaces considered in prior works have the same
communication media while we focus on a hybrid
heterogeneous multi-interface communication scheme.
Although prior works consider channel interference in
the protocol design, they do not provide demonstration
of robustness against attacks while we do so through
testbed experiments. In addition, we provide guaran-
tees on the throughput performance of the Hybrid-BCP
protocol through theoretical analysis.

2.4 Collection protocols
Collection protocols are routing protocols designed
specifically for routing data from sensor nodes to a

Algorithm 1 BCP
1: Compute backpressure weight wi,j for each neigh-

bor j
2: Find the neighbor j∗ such that j∗ = arg maxj wi,j
3: if wi,j∗ > 0 then
4: Transmit a packet to j∗

5: Update ETXi→j∗ and Ri→j∗
6: else
7: Wait for a reroute period and go to line 1
8: end if
9: Go to line 1

central collection node. There exist two well-known
collection protocols in wireless sensor networks. The
first one is the Collection Tree Protocol (CTP) [14].
CTP establishes a minimum-cost routing tree where
the cost on each link equals the expected number of
transmissions on that link (ETX).

The other one is the Backpressure Collection Pro-
tocol (BCP) [12]. BCP derives from backpressure rout-
ing algorithms [13], which achieve optimal throughput.
With BCP, nodes independently make routing decisions
based on local information. Routing decisions are made
on a per-packet basis rather than on a pre-computed
path. The work in [12] shows that BCP achieves higher
throughput and reliability than CTP under dynamic
network conditions (e.g., in the presence of external
sources of interferences). Since Hybrid-BCP is built
upon BCP, we briefly review how BCP operates in the
next section.

2.5 Backpressure Collection Protocol (BCP)

BCP does not calculate end-to-end routes. Rather
it relies on a distributed computation of backpressure
weights. Each node maintains a backpressure weight for
each of its neighbors, based on the link quality (noise
floor, packet collisions, etc.) and the differential of the
queue lengths. For each incoming packet, a node selects
the neighbor with the highest positive backpressure
weight as the next hop. If all the backpressure weights
are negative, then the node stores the packet in its
queue and waits until one of the backpressure weights
becomes positive.

Specifically, let Qi represent the backlog (i.e., num-
ber of packets stored) at node i. Let Ri→j be the
estimated link rate from i to j and let ETXi→j be
an estimate of the average number of transmissions
needed to successfully transmit a packet over the link.
According to the routing policy of BCP, node i calculates
the backpressure weight for each neighbor j as follows:

wi,j = (Qi −Qj − V · ETXi→j) · Ri→j ,

where V is a trade-off parameter.
The routing decision (i.e., the selected next hop

for the current packet) is determined by finding the
neighbor j∗ with the highest weight. Node i then makes
the forwarding decision: if wi,j∗ > 0, then the packet
is forwarded to node j∗, else the packet is held until
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the metric is recomputed. In other words, if the weights
for all neighbor nodes are zero or negative, the node
will do nothing but wait until the next recomputation
(after a reroute period). A pseudo-code of BCP is given in
Algorithm 1.

BCP aims to minimize the expected number of
packet transmissions (ETX) while guaranteeing network
stability. The parameter V (V ≥ 1) represents the
weight on minimizing ETX in the optimization prob-
lem.

BCP estimates ETX based on an exponential mov-
ing weighted average formula. Whenever a new sam-
ple of ETX is obtained, ETX is updated as follows:
ETXnew = αETXold+(1−α)ETX . The default value
of α is 0.9. The link rate is calculated as the reciprocal
of the packet transmission time (the time elapsing from
the first transmission to the reception of an ACK), and
the estimated link rate R is updated according to an
exponential moving weighted average formula similar
to that used for ETX .

In contrast to BCP, Hybrid-BCP is backward-
compatible with the existing CAN technology and in-
crementally deployable (i.e., not every node needs to be
hybrid). Moreover, Hybrid-BCP adds diversity and is
robust to DoS attacks on either one of the media. Since
BCP uses only the wireless medium, it does not have
such robustness.
3 HYBRID-BCP
In this section, we describe the protocol design of
Hybrid-BCP and its software implementation.

3.1 Protocol design
Hybrid-BCP can be viewed as two BCP algorithms
running in parallel, with one algorithm handling the
wired interface (e.g., CAN) and the other one handling
the wireless interface (e.g., ZigBee).

Next, we describe the handler of interface l, where
l ∈ {W,WL} (W represents the wired interface and
WL represents the wireless interface). Let Rli→j be the
estimated link rate from i to j over interface l and
let ETX

l
i→j be an estimate of the average number of

transmissions needed to successfully transmit a packet
over the interface. Note that ETX

l
i→j captures the ef-

fects of packet collisions and interferences. The interface
handler of node i calculates the backpressure weight for
each neighbor j on interface l as follows:

wli,j = (Qi −Qj − V · ETX
l
i→j) · R

l
i→j .

Let j∗ denote the neighbor with the highest weight
on the wired interface, i.e., j∗ = arg maxj w

W
i,j . Let k∗

denote the neighbor with the highest weight on the
wireless interface, i.e., k∗ = arg maxk w

WL
i,k .

A higher backpressure weight represents a link of
higher quality and a neighbor with less backlog. A
necessary condition for the wired interface handler to
transmit a packet to neighbor j∗ is that wWi,j∗ > 0.
When both the wired and wireless interface handlers
are idle, an additional condition is that the weight of

Algorithm 2 Hybrid-BCP
1: procedure WIRED INTERFACE HANDLER
2: Wire busy← false
3: while Qi > 0 do
4: Compute the backpressure weight wWi,j for

each neighbor j on the wired link
5: Find the neighbor j∗ such that j∗ =

arg maxj w
W
i,j

6: if wWi,j∗ > 0 and (Wireless busy = true or
wWi,j∗ ≥ wWL

i,k∗ ) then
7: Wire busy← true
8: Transmit one packet to j∗ over the wired

interface
9: Update ETX

W
i→j∗ and RWi→j∗

10: Wire busy← false
11: else
12: Wait for a reroute period
13: end if
14: end while
15: end procedure
16:
17: procedure WIRELESS INTERFACE HANDLER
18: Wireless busy← false
19: while Qi > 0 do
20: Compute the backpressure weight wWL

i,k for
each neighbor k on the wireless links

21: Find the neighbor k∗ such that k∗ =
arg maxk w

WL
i,k

22: if wWL
i,k∗ > 0 and (Wire busy = true or

wWL
i,k∗ > wWi,j∗ ) then

23: Wireless busy← true
24: Transmit one packet to k∗ over the

wireless interface
25: Update ETX

WL
i→k∗ and RWL

i→k∗
26: Wireless busy← false
27: else
28: Wait for a reroute period
29: end if
30: end while
31: end procedure

the wired interface is the larger one, i.e., wWi,j∗ ≥ wWL
i,k∗ .

If one of these conditions is not satisfied, then the
wired interface handler waits for the next computation
of backpressure weights. Similar conditions apply for
the wireless interface handler. Algorithm 2 provides a
pseudo-code of Hybrid-BCP and Table 1 summarizes
its scheduling procedure. Thus, Hybrid-BCP performs
load balancing by selecting a link interface and next hop
for each outgoing packet based on current estimation of
the quality of each link and backlog at each possible
next hop.

3.2 Software implementation

The software implementation of Hybrid-BCP consists of
a routing engine, a wired forwarding engine, a wireless
forwarding engine and a beacon controller (see Fig. 2).
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wW
i,j∗ wWL

i,k∗ Operation
> 0 ≤ 0 Transmit the next packet to neighbor j∗

on the wired link.
≤ 0 > 0 Transmit the next packet to neighbor k∗

on the wireless link.
≤ 0 ≤ 0 The next packet is not transmitted.
> 0 > 0 If both interface handlers are idle, the

next packet is scheduled on the link
with the larger weight. If one of the in-
terface handlers is busy, the next packet
is transmitted on the interface which is
idle.

TABLE 1: Packet transmission scheduling of Hybrid-
BCP.

Routing Engine 

Beacon Controller 

Wired Communication API Wireless Communication API 

Wireless Forwarding Engine 

Packet Receiving Procedure 

Packet Sending Procedure 

Wired Forwarding Engine 

Packet Receiving Procedure 

Packet Sending Procedure 

Fig. 2: Software architecture of Hybrid-BCP.

The routing engine is responsible for calculating the
backpressure weights for each neighbor and interface.
It updates and maintains the routing table.

The forwarding engine is responsible for scheduling
packet transmissions and handling packet receptions.
It is further composed of a packet sending procedure
and a packet receiving procedure: the packet sending
procedure runs the interface handler described in Algo-
rithm 2, while the packet receiving procedure handles
ACK packets and provides information for the routing
engine to update the routing table.

The forwarding engine also keeps a count of trans-
missions for each packet. When the packet sending
procedure transmits a packet on the interface, it waits
to receive an ACK from the next hop until an ACK
timeout. If an ACK is not received before the timeout,
the packet sending procedure retransmits the packet on
the interface.

Hybrid-BCP utilizes beacon messages to propagate
backpressure information from a node to its neighbors.
The beacon controller is responsible for broadcasting
beacon messages on all available interfaces.

3.2.1 Protocol header
The protocol header of Hybrid-BCP contains the neces-
sary information for the protocol to operate. The format
of the protocol header is shown in Listing 1.

The Hybrid-BCP header consists of six fields:
origin, originSeqNo, bcpBackpressure,

struct hybrid_message_t
{

byte origin;
UInt16 originSeqNo;
byte bcpBackpressure;
byte nextHop;
byte lastHop;
byte type;

}

Listing 1: The protocol header of Hybrid-BCP.

nextHop, lastHop, and type. A data packet
is identified by its source node ID, represented
by origin, and its packet ID, represented by
originSeqNo. The bcpBackpressure field is
used to contain the backpressure information of the
sender of a packet. Whenever other nodes overhear a
packet, they extract the backpressure information of the
sender and update the routing table. The nextHop field
is set by the packet transmitter and when a neighbor
receives the packet, it will check this field to determine
whether it is the destined next hop. The lastHop field
is used to record the ID of the node who transmits
the packet. The type field represents the type of the
packet.

There are three types of packets in Hybrid-BCP:

• Data packet – The data packet contains the data
that should be delivered to the sink and is iden-
tified by its origin and originSeqNo fields;

• Beacon packet – The beacon packet contains the
backpressure information of the sender. Neigh-
bors of the sender who receive the beacon packet
can update the backpressure of the sender in the
routing table;

• ACK packet – The ACK packet is sent back
by the receiver to the transmitter to indicate
that the receiver has received the data packet.
The ACK packet contains the same origin and
originSeqNo fields as the corresponding data
packet.

Note that the beacon packet is specifically used for
broadcasting the backpressure information while other
two types of packets also carry the backpressure infor-
mation.

3.2.2 Packet sending procedure
In the packet sending procedure of the wired forward-
ing engine, the node first finds out the best neigh-
bor (i.e., with the highest backpressure weight) on the
wired bus. It then transmits a packet to the neighbor if
the transmission conditions (in Algorithm 2) are satis-
fied. During the procedure, the forwarding engine also
records the number of transmissions on the wired link
for each packet. The flow chart of the packet sending
procedure is shown in Fig. 3.

The forwarding engine uses a sending queue to store
the packets that wait to be transmitted. The push and
pop operations of the sending queue follow the last-in-
first-out (LIFO) policy.
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Fig. 3: Packet sending procedure of the wired forward-
ing engine.

In the beginning of the packet sending procedure,
the forwarding engine first checks whether there is a
packet just transmitted but not ACKed yet. If there are
no such packets and the sending queue is not empty,
then the forwarding engine requests the routing engine
to calculate the backpressure weights for the neighbors
on the wired links. If the transmission conditions for the
backpressure weights are not satisfied, the forwarding
engine starts the reroute timer, and re-enters the packet
sending procedure after a reroute period. Otherwise, a
packet is popped out from the sending queue and the
forwarding engine sets its next hop to the neighbor with
the highest backpressure weight.

Next, if the transmission count (txCount) of the
packet (a new packet, or a packet just transmitted but
not ACKed) has reached a limit (five by default in
our implementation), the packet is pushed back into
the sending queue. The aim of having a limit on the
transmission count is to prevent trying to constantly
transmit a packet to neighbor which might have reached
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Fig. 4: Packet receiving procedure of the wired forward-
ing engine.

out of communication range (e.g., due to disconnection
from the wired bus or intensive noise on the wireless
links). If the transmission count of the packet has not
exceeded the limit, the forwarding engine then trans-
mits the packet to the selected next hop and incre-
ments the transmission count. After finishing the packet
transmission, the ACK timer is started and the packet
sending procedure will be re-entered after an ACK
timeout. During the ACK timeout, if the ACK packet
of the data packet is received, the ACK timer stops
and the forwarding engine enters the packet sending
procedure again to check whether more packets need
to be transmitted. As packet collisions and interferences
get more severe, the transmission count of a packet will
increase. Thus ETX in the calculation of backpressure
weights captures the effects of packet collisions and
interferences.

3.2.3 Packet receiving procedure

When receiving a packet from a neighbor node, the
packet receiving procedure of the forwarding engine
handles differently depending on the type of the packet.
The packet receiving procedure of the wired forwarding
engine is depicted in Fig. 4.

If the received packet is a data packet and the sink
is the next hop of the data packet (by checking the
nextHop field), the sink delivers the data packet. If it
is a sensor node that receives the data packet as the
next hop, the sensor node pushes the data packet into
its own sending queue. For both sensor nodes and the
sink, an ACK packet corresponding to the data packet is
sent back to the data packet transmitter. If the packet is
an ACK packet and it is the corresponding ACK packet
to the data packet that was just transmitted, it indicates
that the data packet has been successfully received by
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the next hop. Then the ACK timer will be stopped and
routing information (ETX and link rate) of the neighbor
on the wired link will be updated. The forwarding
engine then enters the packet sending procedure to
check whether more packets need to be transmitted. If
the packet is a beacon packet, the forwarding engine
simply extracts the backpressure information from the
beacon packet and provides it to the routing engine for
updating the routing table.

4 THROUGHPUT-OPTIMALITY

In this section, we show that an idealized version
of Hybrid-BCP, which we call Multi-Interface Dynamic
Backpressure Algorithm (MIDBA), achieves optimal
throughput performance. The proof uses techniques
presented in [13]. Our work differs from prior works
in that prior works consider only one interface while
we consider multiple interfaces.

We consider a network with penalties. In our case,
penalties correspond to transmissions. The goal is to
design a network control algorithm that minimizes the
time average penalties while guaranteeing network sta-
bility, i.e., the time average queue sizes do not go to
infinity. The capacity region represents the set of arrival
rates that can be stabilized by any algorithm. An algo-
rithm is called throughput-optimal if it can stabilize the
network for all the rates in the capacity region.

The derivation of MIDBA is closely related to the
Lyapunov drift, the differential of the Lyapunov function
between the current time slot and the next time slot.
MIDBA is motivated by the Lyapunov Optimization
Theorem, which states that if, at each time slot, the Lya-
punov drift plus the penalty function is upper bounded
by a quantity related to the queue sizes, the time av-
erage queue sizes will not go to infinity. The theorem
suggests minimizing on the Lyapunov drift plus the
penalty function at each time slot. Next we describe
the network model, using notations similar to [13], and
define the Lyapunov function and Lyapunov drift. The
steps used to minimize the bound on the Lyapunov drift
plus penalty lead to the design of MIDBA.

Assume that the network evolution is time slotted.
The network consists of N nodes. At each time slot
t, the network topology state is S(t) (such as noise
power, interface connection status and wireless link
gains). The backlog of the nodes in the network is
Q(t) (i.e., [Q1(t),Q2(t), ..,QN (t)]). The arrival process
is A(t) (i.e., [A1(t), A2(t), .., AN (t)]).

Assume that there are L interfaces at each node. We
further assume that the communication media of the
interfaces are independent and the control on different
interfaces are therefore independent. The network con-
troller can apply control I l(t) ∈ IlS(t) on interface l (e.g.,
whether to transmit or not, and set the transmission
power), which yields a link transmission rate function
Clab(I(t), S(t)).

At time t, node a transmits Rlab(t) packets to node
b on interface l, where 0 ≤ Rlab(t) ≤ Clab(I(t), S(t)).
Assume that Ai(t) and Rlab(t) are bounded, i.e., 0 ≤

Ai(t) ≤ Amax, 0 ≤ Rlab(t) ≤ Rmax. The cost of
the communication is gab(Rlab(t)). We use a linear cost
function Rlab(t)P lab(t), where P lab(t) is the price paid
for transmitting a packet on the interface l. More specif-
ically, in our scenario, P lab(t) represents the number of
transmissions for a packet to be successfully received
from node a to b on interface l. The goal of the network
controller is to minimize the long-term time average
of the cost function while guaranteeing the network
stability.

The quadratic Lyapunov function is defined as fol-
lows:

L(Q) =
∑
i

Q2
i . (1)

The Lyapunov drift is

∆(Q(t)) = L(Q(t+ 1))− L(Q(t)). (2)

Then the Lyapunov drift plus the penalty is

∆(Q(t)) + V p(t), (3)

where p(t) =
∑
l

∑
abRlab(t)P lab(t) and V indicates

how much emphasis is put on the cost function.
Next we state the Lyapunov Optimization Theorem

(Theorem 5.4 in [13]).
Theorem 1 (Lyapunov Optimization Theorem [13]).
Suppose there are constants B > 0, ε > 0, V ≥ 0, p∗

such that for all t and all possible vectors Q(t) the following
drift-plus-penalty condition holds:

E{∆(Q(t))+V p(t)|Q(t)} ≤ B+V p∗−ε
N∑
i=1

Qi(t). (4)

Then for all t > 0 the time average penalty and time average
queue sizes satisfy:

1

t

t−1∑
τ=0

∑
i

E{Qi(τ)} ≤ B + V p∗

ε
+

E{L(Q(0))}
εt

,

1

t

t−1∑
τ=0

E{p(t)} ≤ p∗ +
B

V
+

E{L(Q(0))}
V t

.

The Lyapunov Optimization Theorem states that if
the drift plus penalty is upper bounded by the right-
hand side of (4), then the time average queue sizes will
not go to infinity, and network stability is guaranteed.
The Lyapunov Optimization Theorem motivates us to
minimize on the Lyapunov drift plus the penalty. Next
we first describe the backlog dynamic and then derive
a bound on the Lyapunov drift plus the penalty.

The backlog dynamic at node i is described as fol-
lows:

Qi(t+ 1) ≤ max[Qi(t)−
∑
l

∑
b

Rlib(t), 0] +Ai(t)

+
∑
l

∑
a

Rlai(t). (5)

The backlog of node i at the next time slot is obtained
by reducing the number of transmitted packets from
the backlog at the current time slot and then adding
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exogenous and endogenous packet arrivals. The back-
log dynamic is described by an inequality because some
neighbor a might transmit less data packets than the as-
signed transmission rate

∑
lRlai(t) if its queue backlog

is less than the transmission rate, i.e., Qa <
∑
lRlai(t).

Then by squaring both sides of (5) and based on
Lemma 4.3 of [13], we have(
Qi(t+ 1)

)2
≤
(
Qi(t)

)2
+
(∑

l

∑
b

Rlib(t)
)2

+
(
Ai(t) +

∑
l

∑
a

Rlai(t)
)2

+ 2Qi(t)Ai(t)

− 2Qi(t)
(∑

l

∑
b

Rlib(t)−
∑
l

∑
a

Rlai(t)
)
. (6)

Next by summing (6) over all nodes, we have

∑
i

(
Qi(t+1)

)2
−
∑
i

(
Qi(t)

)2
≤ B+2

∑
i

Qi(t)Ai(t)

− 2
∑
l

∑
ab

Rlab(t)
(
Qa(t)−Qb(t)

)
, (7)

where B = N(A2
max+2NLAmaxRmax+2N2L2R2

max).
After adding the penalty function to (7), the Lya-

punov drift plus the cost is

∆(Q(t)) + V p(t) ≤ B + 2
∑
i

Qi(t)Ai(t)

− 2
∑
l

∑
ab

Rlab(t)
(
Qa(t)−Qb(t)− V P lab(t)

)
. (8)

Minimizing the upper bound on the Lyapunov drift
plus the cost is equivalent of minimizing the right-
hand side of (8). Since the term B is constant and
2
∑
iQi(t)Ai(t) is observed at each time slot, minimiz-

ing the right-hand side of (8) is further equivalent of
maximizing:∑

l

∑
ab

Rlab(t)
(
Qa(t)−Qb(t)− V P lab(t)

)
. (9)

Since the interfaces are independent, maximiz-
ing (9) is equivalent of simply solving L maximiza-
tion problems, i.e., for each interface l, maximiz-
ing

∑
abRlab(t)(Qa(t) − Qb(t) − V P lab(t)). This yields

the Multi-Interface Dynamic Backpressure Algorithm
(MIDBA), as shown in Algorithm 3.

MIDBA falls under the category of backpressure
algorithms, thus it has the following performance (The-
orem 6.2 of [13]).

Theorem 2 (Algorithm Performance [13]). Assume that
the network topology state S(t) is i.i.d. from slot to slot and
there exists a value εmax > 0 together with a stationary ran-
domized algorithm (choosing control variables I l(t), Rlab(t)
based only on the current network topology state S(t)) such
that for all t and all node i we have:∑
l

∑
a

E{Rai(t)}+εmax+E{Ai(t)} =
∑
l

∑
b

E{Rib(t)}.

Algorithm 3 MIDBA
1: For all links (a, b), calculate the backpressure

weight:

W ∗ab(t) = max[Qa(t)−Qb(t), 0].

2: For each interface l, choose I l(t) ∈ IlS(t) to maxi-
mize:∑

ab

Clab(I
l(t), S(t))[W ∗ab(t)− V P lab(t)].

3: Over each interface l and each link (a, b) such
that W ∗ab(t) > V P lab(t), transmit Rlab(t) =
Clab(I

l(t), S(t)) units of data (using idle fill if
necessary).

Then under MIDBA, we have:

lim sup
t→∞

1

t

t−1∑
τ=0

∑
i

E{Qi(τ)} ≤ B + V Pmax
εmax

,

lim sup
t→∞

1

t

t−1∑
τ=0

E{p(τ)} ≤ p∗ +
B

V
,

where Pmax is a constant such that p(t) ≤ Pmax for all
t and p∗ is the optimal cost over all stationary randomized
policies.

Theorem 2 states that whenever a stationary ran-
domized algorithm stabilizes the network, MIDBA
can also achieve network stability. Thus MIDBA can
achieve any rate in the capacity region and is therefore
throughput-optimal.

Hybrid-BCP is an asynchronous, distributed ver-
sion of MIDBA with a wired interface and a wire-
less interface, i.e., L = 2. Under Hybrid-BCP,
for each transmission chance, each node a maxi-
mizes

∑
l∈{W,WL} C

l
ab(I

l(t), S(t))[W ∗ab(t) − V P lab(t)]

with Clab(I
l(t), S(t)) and P lab(t) being replaced by

Rla→b and ETX
l
a→b, respectively. Thus Hybrid-BCP

inherits the high throughput performance of MIDBA.

5 EXPERIMENTS

In this section, we demonstrate the load balancing and
routing functionalities of Hybrid-BCP in the testbed.
We also show that Hybrid-BCP can be used to protect
against DoS attacks on the CAN bus and jamming
attacks on the wireless links.

5.1 Performance metrics

Before presenting the experiments, we provide the def-
inition of metrics for evaluating the performance of
Hybrid-BCP.

Suppose a test lasts for T seconds. Let N denote
the total number of generated packets. Let Nu denote
the number of delivered packets, excluding packet du-
plicates, and let Sd represent the set of the uniquely
delivered packets.
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ACK timeout for CAN link 30 ms
ACK timeout for ZigBee link 80 ms

Reroute period 50 ms
Beaconing period 1500-2000 ms
Queue capacity 48

TABLE 2: Parameters in the implementation of Hybrid-
BCP for the testbed.

The delivery rate is defined to be the percentage of
packets that are delivered, i.e., Nu

N ·100%. The throughput
is defined to be the number of unique packets delivered
to the sink per second, i.e., Nu

T pkts/sec. The delay of
a packet Di is defined as the time elapsing from its
generation at the source node to its delivery at the sink.
The average delay is calculated as 1

Nu

∑
i∈Sd Di.

If a node is directly connected to the sink through
both wired and wireless interfaces, the fraction of pack-
ets delivered through the wired link for this node is

NW

NW+NWL
, where NW and NWL are the number of

packets delivered though the wired and wireless links
respectively.

5.2 Experimental setup
We build a hybrid CAN/ZigBee network to test Hybrid-
BCP. We use VN1610 CAN interfaces [28], manufac-
tured by Vector Informatik GmbH, as CAN transceivers.
We use TelosB motes [29] as ZigBee transceivers. The
CAN bus is configured to operate at the rate of 33,333
baud. The transfer rate of a ZigBee transceiver is 250
Kb/s.

To emulate a node (a sensor or an ECU), we use
a laptop to which one or both types of transceivers
are connected. Our testbed has two kinds of lap-
tops: Lenovo X220 (Intel Core i5-2520@2.50GHz, Win-
dows 7) and Lenovo B590 (Intel Premium Dual-Core
2020M@2.4GHz, Windows XP). A laptop runs a Win-
dows Presentation Foundation (WPF) application [30]
to manage the interfaces. Hybrid-BCP is implemented
in C#, as a component of the WPF application.

The first set of tests is conducted on the networks A,
B, and C, whose topologies are shown in Fig. 5. Fig. 6
shows the testbed setup of network C.

We choose the ACK timeout for a CAN/ZigBee link
to be slightly larger than the round trip time (RTT)
of the link under light load conditions. The RTT of a
CAN link is around 15 ms and that of a ZigBee link
ranges from 50 ms to 70 ms. The ZigBee link has a
higher RTT than a CAN link because ZigBee is based on
CSMA/CA (Carrier Sense Multiple Access / Collision
Avoidance) while CAN is based on CSMA/CD (Carrier
Sense Multiple Access / Collision Detection).

Every time a beacon packet is transmitted, Hybrid-
BCP waits for a beaconing period to transmit a new
beacon packet. The beaconing period is chosen to be
sufficiently large so that beacon packets do not cause
congestion on the links. It is also uniformly randomly
selected within a range of possible values to avoid
possible synchronization of beacon packets between dif-
ferent nodes and contention on the links. Table 2 lists the
parameters used in the Hybrid-BCP implementation.

Node 1 Node 0 
CAN bus 

Node 2 

Network A

Node 1 Node 0 
CAN bus 

ZigBee 

Node 2 

Network B

Node 1 Node 0 Node 2 
CAN bus 

ZigBee 

Network C

Fig. 5: The network topologies used for demonstrat-
ing the load balancing and routing functionalities of
Hybrid-BCP on the testbed.

Node 2 
Node 1 

Node 0 

CAN bus 

TelosB 

Fig. 6: Testbed setup for network C.

In the tests, each sensor node periodically generates
data packets and transfers them to Hybrid-BCP, which
delivers the packets to the sink. Sensor nodes generate
packets at the same rate. Each test is run for five times
to obtain an average and a 95% confidence interval for
the metrics. Each run lasts from three to five minutes.

5.3 Load balancing

To demonstrate the load balancing functionality of
Hybrid-BCP, we perform tests on network A (a CAN
network) and network B (a hybrid CAN/ZigBee net-
work).

Fig. 7(a) shows that at a packet generation rate of
80 pkts/sec, Hybrid-BCP improves the delivery rate of
node 1 from 80.15% to 99.63% thanks to the additional
wireless link. Moreover, the delivery rate of node 2
also improves, from 78.99% to 84.82%. This is because
Hybrid-BCP transmits a fraction of packets of node 1 on
the ZigBee link for the purpose of load balancing, hence
reducing MAC contention on the CAN bus.

In network B, when the packet generation rate of
node 1 is low, Hybrid-BCP schedules most of its packets
on the CAN interface, as shown by Fig. 7(b). This is be-
cause the CAN link has a smaller RTT and thus a higher
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Fig. 7: Performance of Hybrid-BCP on network A (CAN
only) and network B (hybrid).

link rate than the ZigBee link. When the packet rate
increases, the backlog of node 1 grows and Hybrid-BCP
starts scheduling packet transmissions on the ZigBee
link. When the packet rate reaches a certain threshold,
the proportions of packets delivered through the CAN
and ZigBee interfaces do not change further because
both links are saturated.

At a packet generation of 90 pkts/sec, the CAN bus
is saturated in both network A and network B. Thus,
one would expect that the delivery rate of node 1 in
network A should be the same as that of node 2 in
networks A and B. However, the experimental results
show that the former is slightly higher than the latter.
We conjecture the cause of this discrepancy to be that
node 1 has a faster CPU than node 2 (i.e., Lenovo X220
vs. Lenovo B590).

5.4 Routing

To demonstrate the routing functionality of Hybrid-
BCP, we perform tests on network C. In network C,
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Fig. 8: Delivery rate versus packet generation rate of
Hybrid-BCP on network C.

Node 1 Node 0 
CAN bus 

Attacker  

(a) DoS attack on the CAN
bus.

Node 1 Node 0 
CAN bus 

Attacker  

(b) DoS attack on the hybrid
network.

Node 1 Node 0 

Jammer 

(c) Wireless jamming on the
ZigBee link.

Node 1 Node 0 

Jammer 

(d) Wireless jamming on the
hybrid network.

Fig. 9: DoS attacks and wireless jamming attacks.

there is no direct communication link between node 2
and the sink. The packet delivery rates of node 1 and
node 2 are plotted in Fig. 8. The results show that the
delivery rate of node 2 is 98.93% at a packet generation
rate of 20 pkts/sec. Thus, Hybrid-BCP can successfully
route packets from node 2 to the sink via node 1. The
ns-3 simulations in Section 6.2 demonstrate the routing
functionality of Hybrid-BCP in a larger hybrid network.

5.5 Robustness
5.5.1 DoS attacks on CAN
The CAN protocol is a priority-based protocol: a high-
priority message gets transmitted ahead of a low-
priority message. Previous work in [31] shows that
the injection of malicious CAN messages can be done
by remotely compromising and controlling nodes on
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Fig. 10: Performance of the native CAN protocol and Hybrid-BCP under DoS attacks on the CAN bus. The attacker
generates high-priority messages at a rate of 300 pkts/sec.
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Fig. 11: Performance of the native ZigBee protocol and Hybrid-BCP under wireless jamming attacks. The attacker
generates high-priority messages at a rate of 100 pkts/sec.

the bus (via the radio, the tire pressure monitoring
system or the Bluetooth component). In this section, we
evaluate the effects of such DoS attacks on a legitimate
node (or a non-compromised node).

We implement a DoS attack by having an attacker
transmit high-priority messages on the CAN bus, at a
rate of 300 pkts/sec. We compare Hybrid-BCP to the
native CAN protocol, a transmission scheme in which a
legitimate node periodically generates data packets and
transfers them to the CAN transceiver. The performance
of the native CAN protocol is tested in the network of
Fig. 9(a) and the performance of Hybrid-BCP is tested
in the network of Fig. 9(b).

Fig. 10(a) shows the average delay of packets by
node 1 under the native CAN protocol and Hybrid-
BCP. We see that the average delay of the native CAN
protocol under the DoS attack reaches high values ex-
ceeding 3 sec (e.g., 3.81 sec at a packet generation rate
of 15 pkts/sec by a legitimate node). The low-priority
legitimate node is almost starved and must wait for
a long time between each successful transmission. The
delay experienced by a low-priority packet is also un-
predictable and thus the variance of the average delay
is very large. This result indicates that the DoS attack

dramatically increases the MAC delay of a legitimate
node.

On the other hand, under the same DoS attack,
Hybrid-BCP achieves higher packet delivery rate and
higher throughput than the native CAN protocol, as
shown in Fig. 10(b) and 10(c). More specifically, Hybrid-
BCP achieves a throughput of 19.87 pkts/sec at a packet
generation rate of 20 pkts/sec by a legitimate node,
more than ten times higher than that of the native CAN
protocol. This gain is achieved because Hybrid-BCP
measures a high ETX on the CAN link and schedules
packet transmissions on the ZigBee link instead. These
results demonstrate that Hybrid-BCP can protect the
CAN bus against DoS attacks.

5.5.2 Wireless jamming
In the wireless jamming tests, a wireless jammer per-
forms protocol-compliant jamming attacks on the Zig-
Bee link. The jammer periodically generates packets and
broadcasts them on the ZigBee link. In our tests, the rate
the wireless jammer generates packets is 100 pkts/sec.
We compare Hybrid-BCP with the native ZigBee protocol,
which simply periodically generates data packets and
sends them on the wireless link to the sink. The native
ZigBee protocol is tested in the network of Fig. 9(c)
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Ethernet data rate 4Mbps
Wi-Fi standard 802.11b
Wi-Fi mode Ad hoc
Wi-Fi data rate DSSS 11Mbps
Ethernet ACK timeout of Hybrid-BCP 1 ms
Wi-Fi ACK timeout of Hybrid-BCP 2 ms

TABLE 3: The parameters in ns-3 simulations of Hybrid-
BCP.

and the hybrid wired/wireless protocol is tested in the
network of Fig. 9(d).

Comparisons of performance between the native
ZigBee protocol and those of Hybrid-BCP are shown
in Fig. 11. The results show that Hybrid-BCP achieves
lower delay and higher delivery rate than the native
ZigBee protocol. For example, under wireless jamming,
the delivery rate of the ZigBee protocol is at most
54.90% at a packet generation rate of 50 pkts/sec, while
Hybrid-BCP achieves a delivery rate of 99.95%.

6 SIMULATIONS

In this section, we provide performance evaluation of
Hybrid-BCP in ns-3 simulations. We compare Hybrid-
BCP to a tree-based routing protocol in a simu-
lated intra-car hybrid wired/wireless network. We also
demonstrate the load balancing functionality of Hybrid-
BCP under a higher wireless data rate.

6.1 Simulation setup

In the ns-3 simulations, we use the built-in Ethernet
and Wi-Fi ns-3 libraries to simulate wired and wireless
links. To mimic the behavior of CAN/ZigBee links, we
configure the ns-3 simulations such that the Wi-Fi link
has a higher rate but a larger RTT than the Ethernet link.
Table 3 describes the simulation configuration and the
parameters of Hybrid-BCP. The simulation configura-
tion is used throughout the simulations except for Sec-
tion 6.4, where we compare the performance of Hybrid-
BCP for different Wi-Fi rates. Each simulation is run 15
times to obtain average and 95% confidence intervals of
the measured metrics. The seed of the random number
generator is set to a different value in each run.

While our simulations use the standard version
of Ethernet, we note that in practice Original Equip-
ment Manufacturers (OEM) may prefer to use a deter-
ministic version, based on Time-Sensitive Networking
(TSN) [32].

6.2 Routing and robustness

We use intra-car RSSI traces obtained from real ex-
periments [15] to simulate a 15-node intra-car hybrid
wired/wireless network. The trace records the link
gains between each pair of nodes over time. The net-
work topology is shown in Fig. 1. In this hybrid net-
work, the sink is located on the driver seat, three sensors
are placed in the engine compartment, four sensors are
attached to the four wheels, three sensors are placed on
passenger seats, and the rest is placed on the chassis.

Node Avg. delay Delivery Throughput #Hops
(ms) (%) (pkts/sec)

1 42.08 97.79 58.64 3.05
2 43.49 97.74 58.64 3.06
3 60.54 91.86 55.08 2.44
4 0.50 99.98 59.82 1.00
5 2.33 99.26 59.39 1.00
6 1.91 99.98 59.97 1.00
7 3.92 97.93 58.76 2.01
8 36.43 93.08 55.80 2.98
9 31.90 97.94 58.65 2.43
10 1.01 99.98 59.88 1.00
11 0.69 99.98 59.85 1.00
12 31.72 98.01 58.64 3.03
13 0.79 99.98 59.85 1.00
14 43.25 93.23 55.81 2.88

Network 21.00 97.62 818.80 1.97

TABLE 4: Performance statistics of Hybrid-BCP in the
simulated 15-node intra-car hybrid wired/wireless net-
work. The radio power is -27 dBm and the packet
generation rate is 60 pkts/sec per node.

We compare Hybrid-BCP to a tree-based routing
protocol, that we call Hybrid-CTP. Hybrid-CTP is a
variant of CTP tailored for a hybrid network (see the
appendix for a description of this protocol). In the simu-
lations, each sensor periodically generates and transfers
data packets to the underlying protocol (Hybrid-BCP or
Hybrid-CTP), which routes the packets to the sink.

Fig. 12(a)-12(d) show the packet delivery rate,
throughput, average hop count, and average delay of
Hybrid-BCP and Hybrid-CTP under two different radio
power levels. Fig. 12(a) and 12(b) show that Hybrid-
BCP achieves higher delivery rate and throughput. At
a packet generation rate of 140 pkts/sec, Hybrid-CTP
achieves a throughput of 1206 pkts/sec while Hybrid-
BCP achieves a throughput of 1354 pkts/sec, which
improves by 12%.

Hybrid-CTP only considers the expected number
of transmissions (ETX) while Hybrid-BCP minimizes
both ETX and the queue backlog at different nodes.
Hence, Hybrid-BCP is more responsive to congestion
than Hybrid-CTP and achieves higher throughput.

The routing functionality of Hybrid-BCP is further
illustrated by statistics on the number of hops, as shown
in Fig. 12(c). The figure shows that when the radio
transmission power increases, the average number of
hops decreases, which is to our expectation.

Fig. 12(d) shows that at low load, Hybrid-BCP has
higher average delay than Hybrid-CTP, especially if
the channel is lossy. As the load increases, the average
delay of Hybrid-BCP decreases while that of Hybrid-
CTP increases. This behavior of Hybrid-BCP is typical of
backpressure algorithms (see [33] for more details and
possible approaches to reduce delay at low load). As the
network gets congested, Hybrid-BCP is more reponsive
to network congestion than Hybrid-CTP. Hence, its
average delay performance is superior in that regime.

Table 4 shows per-node performance statistics of
Hybrid-BCP according to the simulations. The radio
power is -27 dBm and the packet generation rate is
60 pkts/sec at each node. We note that sensors that
are connected to the same bus as the sink (i.e., nodes
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Fig. 12: Performance of Hybrid-BCP and Hybrid-CTP in a simulated 15-node intra-car hybrid wired/wireless
network. Hybrid-BCP achieves 12% higher throughput than Hybrid-CTP when the packet generation rate is 140
pkts/sec and the radio power is -27 dBm.

4, 6, 10, 11 and 13) achieve average delay smaller
than 1 ms and reliability above 99% . As the distance
(i.e., the number of hops) from the sink increases, the
average delay increases and the throughput decreases.
The results indicate that the proposed architecture can
satisfy sensors with critical QoS requirements, if those
sensors remain connected to the same bus as the sink.

6.3 Number of wireless interfaces

We study the impact of the number of wireless inter-
faces and their locations on the performance of Hybrid-
BCP. We compare three different network topologies: (1)
the original network as in Fig. 1; (2) the original network
without wireless interfaces at nodes 12 and 13; (3) the
original network without wireless interfaces at nodes 7,
12, and 13. The radio power is -27 dBm. The delivery
rates of Hybrid-BCP on the three networks are shown
in Fig. 13. The results show that removal of wireless
interfaces from node 12 and 13 has small impact on
the delivery rates, while removal of a wireless interface
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Fig. 13: Delivery rates of Hybrid-BCP with different
number of wireless interfaces in the network.

from node 7 has larger impact. This is because packets
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Fig. 14: The network topologies used for demonstrat-
ing the load balancing functionality of Hybrid-BCP in
simulations.
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Fig. 15: Delivery rates of Hybrid-BCP on network D
(Ethernet only) and network E (hybrid) in ns-3 simula-
tions. The throughput improvement by load balancing
of Hybrid-BCP is more significant as the wireless data
rate gets higher.

from the front-side Ethernet bus are routed through
nodes 7 and 9. With no wireless interface at node 7,
the number of routing paths is reduced and so is the
throughput.

6.4 Load balancing

We next show how Hybrid-BCP efficiently performs
load balancing to aggregate more bandwidth, when
such bandwidth is available. Hybrid-BCP is tested on
network D (an Ethernet network) and network E (a
hybrid Ethernet/Wi-Fi network), as shown in Fig. 14.
We run simulations in the following three scenarios:
(1) network D (no wireless link); (2) network E with
Wi-Fi rate equal to 11 Mbps (802.11b); (3) network E
with Wi-Fi rate equal to 18 Mbps (802.11a). The radio
power is set to 10 dBm. The packet delivery rates under
the three scenarios are plotted in Fig. 15. At a packet
generation rate of 6,000 pkts/sec, Hybrid-BCP achieves
a delivery rate of 61.71% when there is no wireless link.
With an extra Wi-Fi link at the rate of 11 Mbps, the
delivery rate is increased to 82.25%. The delivery rate
is further increased to 99.90% when the Wi-Fi data rate
is increased to 18 Mbps. The results show that Hybrid-
BCP is able to take advantage of the additional capacity
provided by the wireless links.

6.5 Wired DoS attacks and wireless jamming at-
tacks

We implement the wired DoS attack by having an at-
tacker on the bus. The simulation setup the same as Fig.
9(a) and 9(b). The simulation setup of wireless jamming
attacks is the same as Fig. 9(c) and Fig. 9(d). The attacker
(jammer) periodically generates and broadcasts packets
on the bus (wireless link). We refer to the native Ethernet
(Wi-Fi) protocol as the transmission scheme in which
the legitimate node periodically generates and transfers
data packets to the Ethernet (Wi-Fi) transceiver. The
rates at which the wired attacker and the wireless
jammer generate packets are set to 5,000 pkts/sec.

The performance of the native Ethernet (Wi-Fi) pro-
tocol and Hybrid-BCP under wired DoS attacks and
wireless jamming attacks are shown in Fig. 16. Fig.
16(a) and 16(b) show that Hybrid-BCP achieves higher
delivery rate than the native Ethernet protocol and
the native Wi-Fi protocol under the attacks. Fig. 16(c)
shows the percentage of packets delivered through the
wired link by Hybrid-BCP under wired DoS attacks and
wireless jamming attacks, respectively. It shows that at
low load, Hybrid-BCP schedules most packets on the
link which is not attacked. This indicates that Hybrid-
BCP estimates the link qualities on both interfaces and
chooses the link with better quality to transmit pack-
ets. As the traffic load increases, the non-attacked link
becomes congested and Hybrid-BCP starts to schedule
packet transmissions on the attacked link.

6.6 Attacks on intra-car network

We evaluate the performance of Hybrid-BCP and
Hybrid-CTP on a large network under both wired DoS
attacks and wireless jamming attacks. The network
topology is the same as Fig. 1. A wired attacker periodi-
cally generates and broadcasts packets on the front-side
Ethernet bus. A wireless attacker periodically generates
and broadcasts packets on the wireless link. We assume
that wireless paths exist between the wireless jammer
and the wireless interfaces of nodes 9, 10, 13. The gain
of each path is 60 dB. Both the wired attacker and the
wireless jammer generate packets at 60 pkts/sec. The
radio power is set to -27 dBm.

Fig. 17 shows the delivery rates of Hybrid-BCP and
Hybrid-CTP under the attacks. At a packet generation
rate of 100 pkts/sec per node, the attacks reduce the
delivery rate of Hybrid-CTP from 78.92% to 68.25%,
while the delivery rate of Hybrid-BCP is only reduced
from 80.01% to 79.69%. These results demonstrate that
Hybrid-BCP is more robust to DoS/jamming attacks
than Hybrid-CTP.

At a packet generation rate of 120 pkts/sec (where
the network is highly congested), the delivery rate
of Hybrid-BCP under DoS attacks is higher than that
of Hybrid-CTP under no DoS attack. This is because
Hybrid-BCP is more responsive to network congestion
than Hybrid-CTP.
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versus its packet generation rate under
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(b) Delivery rate of the legitimate node
versus its packet generation rate under
a wireless jamming attack.
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Fig. 16: Performance of Hybrid-BCP under wired DoS attacks and wireless jamming attacks in ns-3 simulation.
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Fig. 17: Delivery rates of Hybrid-BCP and Hybrid-CTP
under DoS attacks on a 15-node intra-car network.

7 CONCLUSION

In this paper, we designed and implemented Hybrid-
BCP, a joint load balancing and routing solution for
data collection in intra-car hybrid wired/wireless net-
works. Hybrid-BCP is backward-compatible with exist-
ing intra-car wired technologies since no modification of
the CAN protocol is needed. Using Lyapunov optimiza-
tion techniques, we proved the throughput-optimality
of a centralized and slotted version of Hybrid-BCP.

We demonstrated the load balancing and routing
functionalities of Hybrid-BCP in testbed experiments
as proof of concept. We showed that Hybrid-BCP can
be used to alleviate the impact of DoS attacks on the
CAN bus. We also showed that Hybrid-BCP is robust to
jamming attacks on the wireless links.

Through simulations of large intra-car hybrid net-
works based on dynamic RSSI traces collected from
real experiments, we showed that Hybrid-BCP can
relieve traffic congestion from the CAN bus, and
achieves higher throughput than Hybrid-CTP. Hybrid-
BCP maintains high performance for safety-critical sen-
sors that are connected to the same bus as the sink

while delivering packets of other sensors through multi-
hop routing. Our results indicate that it is necessary
for safety-critical sensors to have both interfaces to be
robust while other sensors can be equipped with any
interface.

Intra-vehicular systems have a natural requirement
that data generated by some sensors have higher pri-
ority than data generated by others. For example, data
from airbag system sensors should have higher priority
than data from light sensors because the former are
more safety-critical. Hence, it would be useful to in-
corporate packet prioritization into the load balancing
and routing functionalities of Hybrid-BCP. One should
also consider extending Hybrid-BCP to support data
collection with multiple sinks. We leave these tasks as
areas for future work.
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Algorithm 1 Hybrid-CTP
1: procedure WIRED INTERFACE HANDLER
2: while Qi > 0 do
3: Compute the ETXW

i,j for each neighbor j
on the wired link

4: Find the neighbor j∗ such that j∗ =
argminj ETXW

i,j

5: if ETXW∗

i < ETXWL∗

i + T then
6: Transmit one packet to j∗ over the wired

interface
7: Update ETX

W
i→j∗ and ETXi

8: else
9: Wait for a reroute period

10: end if
11: end while
12: end procedure
13:
14: procedure WIRELESS INTERFACE HANDLER
15: while Qi > 0 do
16: Compute the ETXWL

i,k for each neighbor k
on the wireless link

17: Find the neighbor k∗ such that k∗ =
argmink ETXWL

i,k

18: if ETXWL∗

i < ETXW∗

i + T then
19: Transmit one packet to k∗ over the

wireless interface
20: Update ETX

WL
i→k∗ and ETXi

21: else
22: Wait for a reroute period
23: end if
24: end while
25: end procedure

APPENDIX A
PROTOCOL DESIGN OF HYBRID-CTP

In this section, we describe Hybrid-CTP, a variant of
CTP designed for data collection in hybrid wired/wire-
less networks.

The same as Hybrid-BCP, Hybrid-CTP has two pro-
cedures handling the wired and wireless interfaces,
respectively. Suppose for node i, node j is a neighbor on
interface l, where l ∈ {W,WL} (W represents the wired
interface and WL represents the wireless interface). Let
ETX

l
i→j denote an estimate of the average number of

transmissions needed to successfully transmit a packet
from i to j over interface l.

Each node i records its end-to-end path cost to the
sink, denoted by ETXi. To obtain ETXi, node i first
calculates the path cost through interface l via node j as
follows:

ETX l
i,j = ETXj + ETX

l
i→j .

The minimum path cost from node i to the sink node
through interface l is ETX l∗

i = minj ETX l
i,j .

Then node i calculates its path cost to the sink by:

ETXi = min{ETXW∗

i , ETXWL∗

i }.

The path cost information is propagated to neigh-
bors by beacon messages, the same as the backpressure
information in Hybrid-BCP. The sink broadcasts path
cost of zero.

In Hybrid-CTP, the wired interface handler sched-
ules a packet transmission when ETXW∗

i <
ETXWL∗

i + T , where T is a positive number (set
to 0.5 in our implementation). Similarly, the wireless
interface handler schedules a packet transmission when
ETXWL∗

i < ETXW∗

i +T . Therefore, when ETXW∗

i is
much smaller than ETXWL∗

i , only the wired interface
handler will schedule packet transmissions. This could
happen either when the wireless link quality is bad or
when all the neighbors on the wireless link select this
node as their next hop. When ETXW∗

i and ETXWL∗

i

are close to each other, both interface handlers will
transmit packets. Algorithm 1 provides a pseudo-code
of Hybrid-CTP.
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