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Abstract—We study the delay performance of backpressure
routing algorithms using LIFO schedulers (LIFO-backpresaure).
We uncover a surprising behavior in which, under certain
channel conditions, the average delay of packets is high abw
traffic load and decreases as the load in the network increase
We propose and analyze a queueing-theoretic model under wéti
the scheduler can transmit packets only if the queue length eets
or exceeds a threshold, and we show that the model analytidgl
bears out the observed phenomenon. Using matrix geometric
methods, we derive a numerical solution for the average pa&k
delay in the general case, and, using-transform techniques,
we further provide closed-form solutions for a special case
Our analysis indicates that when the threshold is fixed (as ma
happen under lossless channel conditions), the average dglis
small at low traffic load and increases with increasing load,

as expected. On the other hand, when the threshold fluctuates

(as may happen under changing, lossy channel conditions)he

average delaymay be high at low load and decrease, sometimes

substantially, with the traffic load. We corroborate these fndings
with TOSSIM simulations on different types of networks, ushg

measured channel traces. Further, we propose a replication
based LIFO-backpressure algorithm (RBL) to improve the dehy

performance of LIFO-backpressure. Analytical and simulaion

results show that RBL dramatically reduces the delay of LIFG

backpressure at low load, while maintaining high throughpu

performance at high load.

Index Terms—Backpressure algorithms, queueing theory, data
collection protocols, wireless sensor networks.

I. INTRODUCTION
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Fig. 1. Average end-to-end packet delay of LIFO-backpnessua five-node
wireless sensor network simulation under lossless ang lcisannels.

mal utility-delay* tradeoff [4].

LIFO-backpressure has been implemented in the form of a
data collection protocol for wireless sensor networksledal
the Backpressure Collection Protocol (BCP) [3], which esut
packets toward a single destination (sink). Unlike minimum
cost tree routing algorithms (e.g., [5]), BCP makes rouéing
forwarding decisions based on local information and doés no
need to explicitly compute paths. Extensive simulationd an
testbed experiments show that LIFO-BCP drastically impsov
delay performance over the FIFO-based version of BCP.

Nevertheless, our own TOSSIM simulations (using the
source code of BCP in TinyOS [3]) show that LIFO-
backpressure can exhibit intriguing delay behavior inaiert

Backpressure routing algorithms promise throughputonditions, as illustrated in Fig. 1 (the simulation sefahich

optimal performance and provide elegant cross-layer isolsit yses real RSSI traces, is described in detail in Section VI).
for a wide range of networking problems [2]. Yet, they als@nder lossless channel conditions as shown in Fig. 1(a), the
notoriously suffer from high end-to-end packet delays.sThaverage delay of packets is small at low traffic and increases
problem is exacerbated at low traffic load due to the lack @fith the load, in a manner that is consistent with standard

sufficient pressure to drive packets toward their destinati

queueing models, such d¢/M /1. On the other hand, under

The work in [3] proposes an elegant solution to thissy channel conditions, wherein a non-negligible facti
delay problem by replacing the standard first-in-first-owif packets get lost and require re-transmissions, we observ
(FIFO) queueing schedulers at routing nodes by last-it-firsin opposite trendthe end-to-end average delay of delivered
out (LIFO) schedulers. LIFO-backpressure traps a few packgackets is high at low traffic load and decreases with the Joad
at each queue to establish a routing gradient and ensuttes #asleast initially. Thus, Fig. 1(b) indicates that the aggra

delivery of most other packets. This joint routing-schéuyl

delay of packets when packets are generated at a rate of one

policy has been analytically demonstrated to achieve an ogier second at each node is four times higher than that when
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packets are generated at rate of seven per second at each node
(i.e., 1,000 ms in the former case versus 250 ms in the latter
case).

The first goal of this paper is to explain this unexpected
behavior within the context of understanding the impact
of channel and traffic conditions on the delay behavior of

1The delay of a packet is defined as the time elapsing from itemggion
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(&-maof the average delay applies only to delivered packets, éxatiding those

packets which have not reached the destination.



LIFO-backpressure schedulers. We introduce and analyzéoa load. Section V describes our proposed RBL and provides

gueueing-theoretic model thafualitatively captures the be- corresponding analysis results. Section VI presents sitionl

havior of LIFO-backpressure. results for larger networks to support our analytical firgdin
Specifically, we initially focus on a two-node networkand compares performance of RBL-BCP and BCP. Finally,

consisting of one source node and one destination no&ection VIl concludes the paper.

This simple network turns out to be sufficient to reproduce

the observed effects. The behavior of the LIFO-backpressur Il. RELATED WORK

scheduler at the source node is modelled using a singleequau Backpressure algorithms

system with threshold. The threshold is related to the exeglec Th iain of back lqorith lies in th .
number of transmissions (ETX) needed for a successful packe € ongin of backpressure algorithms fies in the semi-
work of Tassiulas and Ephremides [8]. A backpressure

reception on a given channel. Thus the threshold may cha : : . o

over time, depending on channel conditions. The schedu gonthm 1S .mathemancally constructgd by minimizing the

can transmit packets only if the queue length (i.e., the ram yapunov drift that represents the difference _between the

of packets in the queue) meets or exceeds the threshé’l?il.ues of the_Lyapunov fu_nct|0n at the current time slot and

Under appropriate statistical assumptions on the traffit a the DEXt time SI.Ot‘. '_I'h|s Ieads.to a problem, _known as
xWeight, of maximizing the weighted sum of link rates,

channel dynamics, the evolution of such a system can . . ) ;
described using a multi-dimensional continuous-time Mark In W.h.'Ch the weights are represented by bac_klog_ differéitia
tuitively, data packets are sent over links with high saeed

chain (CTMC). We derive a numerical solution for the genert@ iahb ith low backlod. th hievi load balanci
case using matrix geometric methods [6]. Furthermore,gjsieﬁggg ors with low backlog, thus achieving a load balagc

z-transform techniques [7], we provide closed-form soluio The chief ad f back lqorith
for the special case where the threshold oscillates bet®een . e chiet advantages of backpressure algorithms are to
and 1. avoid explicit path computations and achieve throughput-

Next, we conduct a delay analysis of LIFO-backpressure ffptimal_ performance. However, backpressure algorithrfisrsu
a chain network in a low load regime. Our analysis indicat tom high end-to-end packet delays, due to lack of back-

N to push packets toward their destinations, soreeti
that the high delay of LIFO-backpressure at low load occu (essure 1o push packets foward their destinations, el

due to slow variations of the threshold. On the other han&ading to packet looping. These problems are more severe at
if the threshold is fixed (e.qg., if the channel is lossledsgnt light load. An extreme case Is of a packet entering an empty
the average delay is small at low load and increases with t%%two_rk a_md engaging into some kind of random walk unti
traffic load as expected. reaching its destination [9].

The second main contribution of this work is to propose a Several approaches have be_en proposed to solve the qelay
novel lightweight mechanism, calledplication-based LIFO- problem of backpressure algorithms [10-14]. Instead afgisi

backpressure (RBLXo remedy the above problem. Throug 1uleiuer0d'gg;in:éalfesa:nme'gxs ﬁzstcv?tthaefgve;gg”ﬁ;ﬁﬁm’
the analysis of an approximate CTMC, that is asymptotical prop P g welg Y

exact at low load, we show that RBL improves delay perfoé/aCkets in the queues. The idea is that packets that have al-
mance over LIFO-backpressure at low load. We implemeretady experienced high delays are more likely to be schddule

the replication mechanism into BCP, and refer to the n 12(\)/ transmission in the next time slot, whereas the original

implementation as RBL-BCP. Our simulations of RBL-BC qckpressure -algonthm would give anger gueues higher pri
cgigty irrespective of the delay experienced by packets. The

géjthors in [12] describe a novel backpressure-based p&epa
. randomized routing framework. It leverages a shadow queue
throughput performance of BCP at high load. ) 2
N . structure that lowers complexity of maintaining queues. By
In summary, our contributions are the following: L ' :
minimizing the number of hops by packets, their routing
« We propose and analyze a queueing-theoretic modeldgorithms reduce delay drastically. [13] proposes a Itybri
elucidate the high delay problem of LIFO-backpressuiguting algorithm based on a shortest-path algorithm and
at low load; the backpressure routing. By forcing a set of constraints on
« We propose and analyze a replication-based LIFGhe number of hops that can be traversed by packets, this
backpressure algorithm that reduces the large delay fkthod prevents packets from long paths exploration. Simi-
LIFO-backpressure at low load; larly, the authors in [14] propose the use of combination of a
« Through extensive simulations, we demonstrate the exihortest-path algorithm and the backpressure method ir ord
tence of the high delay problem of LIFO-backpressure iy improve delay performance. Furthermore, they show that
large networks and show that RBL significantly mitigategnplementing per-neighbor queues instead of per-flow gsieue
this issue. can further reduce delays, as well as system implementation
The rest of this paper is organized as follows. In Section Bomplexity.
we review related work on backpressure routing algorithms
and describe the BCP protocol, upon which our analytical
model is based. In Section Ill, we formulate our CTMC model Based on the original backpressure algorithms, Neell.
and provide a matrix geometric method for numerically sohdeveloped so-called quadratic Lyapunov function based-alg
ing the general model. We also derive closed-form exprassiaithms (QLA) for general stochastic network utility optirar-
of the average delay for a special case. In Section IV, wi@en problems [2]. Instead of purely minimizing the Lyapuno
analyze the delay of LIFO-backpressure in a chain networkdift, QLA is constructed by minimizing the Lyapunov drift

The simulations also show that RBL does not compromi

Quadratic Lyapunov function based algorithms



plus a penalty (or the negative of a utility), in which théflgorithm 1 BCP
penalty is weighted by a parametér As V' gets larger, the 1: while Q; > 0 do
algorithm puts more emphasis on the resulting penalty ana: Compute the backpressure weight ; for each

less on network stability. The performance results of QLA ar neighbor;

given in the following[O(1/V),O(V)] utility-delay tradeoff  3: Find the neighboy* such thatj* = arg max; w; ;
form: backpressure is able to achieve a utility that is withi 4: if w; j« >0 then

O(1/V) of the optimal utility for any scala¥ > 1, while  5: Transmit one packet tg*

guaranteeing an average network delay th&x(ig’). QLAcan 6: UpdateET X, ;- andR;_, ;-

prevent packet looping when the penalty function is related 7: else

the number of transmissions since looping adds transmissio 8: Wait for a reroute period

However, a large delay may still prevail at low load due to theo: end if
lack of backpressure to push packets toward their destimati 10: end while

Much effort has been spent to reduce the la@g/ )

delay of QLA. The authors in [15] prove_that under QI'AI%‘BL in Section V. Note that the idea of injecting redundant
the network backlog stays close to a fixed value (calle

attractor), which is the dual optimal solution of a deteristic Foallglr(aerts |¥¥a?vsvo?:fso proposed in [16,17] for routing in delay-
optimization problem. While the attractor has orderfi’), '

the fluctuation of the network backlog around the attractor (ji d\é\ﬁoilf)t;noguurlsrrloth(';e%afeerliggggn?ggspggvﬂ?gg_ggémjgsby
bounded byO(log?(V)) with high probability. The authors, prop P

therefore, propose an algorithm that pre-fills queues wit nalgonthm. We also provide the analysis and simulationltesu

packets that play the role of attractor. Hence, the real ¢IackLoa§|? (Jrvgstsftje;te RBL improves delay performance over LIFO-
arrive into a queue whose length is boundedjog*(V)), P '
and the algorithm achieves an optim@l(1/V'), O(log*(V))] C. BCP explained

ut|I|ty-QeIay tradeofr. ] ) . BCP [3] is a practical, distributed QLA implementation,

Motivated by practical implementations of backpressuignere nodes independently make routing decisions based on
routing algorithms, the authors in [4] prove th2at LIFO1ocal information. The routing decisions are made per packe
backpressure achieves the optimg(1/V), O(log"(V))]  instead of routing all packets through the same computed pat
utility-delay tradeoff. Note that FIFO-backpressure wbul since all the packets are routed to the same destination,
achieve 40(1/V'), O(V')] utility-delay tradeoff since packets each node only needs to maintain one queue Q;etepresent
need to traverse a whole queue in order to get transmittggle backlog at nodé. ThenAQ, ; = Q; — Q; is the queue
The idea behind LIFO-backpressure is straightforwardk@®c jifferential (backpressure) between nodeand its neighbor
constituting the attractor are trapped in the queue foravelr noge;. Let Ri_,; denote the estimated link rate (measured in
serve the same role as that of null packets in the algoritkﬁgckets per seéond) frointo j and ETX,_,; be the average
described above. The delay improvement of LIFO over FIFQmper of transmissions for a packet to be successfully sent
is shown both through real experiments [3] and theoreticg{er the link. In the routing policy of BCP, nodecalculates
studies [4]. the following backpressure weight for each neighlor

Most of the above studies focus on the optimal utility-delay - —
tradeoff in terms of the scalar parametér (or when the wij = (AQi; =V ETXij)  Rimsj.
parametell” becomes large). Little study has been conductgghere V' is a trade-off parameter.

on the effects of other network parameters on the delayThe routing decision (next hop of the packet) is determined
performance of backpressure routing algorithms, inclgdirpy finding the neighboy* with the highest weight. Then the
channel dynamics and traffic load in the network. As we haygyde needs to make the forwarding decisionvif;- > 0, the
shown in Section I, even though LIFO-backpressure achievgscket is forwarded to nodg, else the packet is held until
an optimal utility-delay tradeoff performance, its delay ahe metric is recomputedn other words, if the weights for all
low load may be very high. This work serves the goal afeighbour nodes are zero or negative, the node will do ngthin
better understanding the behavior of LIFO-backpressute asut wait till the next recomputation (after route period.
shedding light on the effects of network parameters (channepseudo-code of BCP is given in Algorithm 1. Since routing
conditions and network traffic) on its delay performance. decisions are made on a per-packet basis, at most one packet
The authors in [10] propose backpressure with adaptiean be transmitted at each iteration of the “while” loop ie th
redundancy (BWAR) in the context of delay-tolerant netvgorkalgorithm.
BWAR uses an adaptive redundancy mechanism to improveAs a QLA algorithm, BCP aims to minimize the number
the delay performance of backpressure at low load. While RRIf packet transmissions (ETX) while guaranteeing network
resembles BWAR, it differs in two key aspects: (i) BWAR isstability. The parameteV (V' > 1) represents the weight of
based on the original backpressure algorithm while BRL the penalty (ETX) in the optimization problem.
based on QLA, with a penalty function that aims to minimize QLA assumes that ETX is perfectly observed while BCP
the number of transmissions, and (ii) BWAR generates dastimatesET X based on an exponential moving weighted
plicates whenever the queue length falls below some preagerage 7T X is updated as follows whenever a new sample
threshold, whereas RBL generates replicas only when packet ET X is obtained:ET X o,y = aET X p1q+ (1 — @) ETX,
get stuck in the queue due to channel degradation. We detailwhich the default value ofv is 0.9. In TinyOS, a node




— alll 3]l 212 O%
Packet Packet

arrival T service

Dynamic threshold I
V- -ETX hae V- ETX min
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example, the threshold has the dynamic range [2,6] and tirertuthreshold 3t o—o Queue lengthl.
is 3. Due to LIFO policy and threshold range, packet 1 and @agkwill -
never have a chance to be served and stay in the queue forever. ‘ ‘ ‘ — V'?TX
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Time (seconds)
makes at most five attempts to transmit a packet to a neighbor.
Therefore,l < ETX < 5. The link rate is calculated as theFig. 3. Evolution of queue length and ETX of BCP over time with= 2
reciprocal of the packet transmission time. The estimated | from simulation. This illustrates the role & - ET X as the threshold on the
rate R is updated based on an exponential moving weightgaeue'
average. transiting in the queue will be transmitted. Ignoring thepwed
1. TWO-NODE ANALYSIS packets and assuming exponentially distributed servioe,ti
' the Markov chain describing the evolution of the number of
In this section, we model and analyze LIFO-backpressusackets in the queue will be the same as that of an M/M/1
(LIFO-BCP) in the context of a two-node network. Basedueue in the lossless case.
on the routing policy of LIFO-backpressure, we construct Next, suppose the channel has a dynafficX in the range
a system-level queueing model with dynamic threshold aigl [ETX 1in, ETX maz). Correspondingly, the threshold is
represent it with a CTMC. Then, we provide a matrix geadynamic within rang@V - ETX pin, V - ETX pmas)- ThenQ
metric method to numerically solve the CTMC and obtain thgill be lower bounded by - ETX i due to the threshold
average delay of packets in the queueing system. Meanwhilgage. Under FIFO, the average delay fis = Q/\ >
we usez-transform technique to analyze the average delay for . ETX nin/\. However, under LIFO, theé/ - ETX i
a special case. packets in the head of queue are trapped forever and the
: ) rest of the queue will be equivalent of a queue with dynamic
A. BCP in two-node network o . threshold in the range 40, V- ET X ;00 — V- ET X 1,5 ]. FOr
In the two-node network, packets are injected into the WUrgxample, in Fig. 2, the threshold range(3s6]. Under FIFO,
nodes and forwarded to the destination nodeUnder BCP, the packet needs to go through all the queue to get served and
the source node simply calculates the weight: the queue length is at least 2 due to the range of threshold.
Wey = (AQyy — V - ETX 1) - Reost However, under LIFO, packet 1 and packet? are in the queue
— — forever. Thus the rest of the queue is equivalent to a queue
=(Qs =V BT X t) - Rsse. with threshold rangé0, 4]. A snapshot of simulation (Fig. 3)
The second equation comes from the fact t@at= 0. Since illustrates the threshold effect of ETX on the queue length.
s only hast as its neighbor node;, does not need to choose We note that the number of the ignored packets is a constant
the next hop and only needs to make forwarding decisiod$: ET X i Therefore, the impact of the ignored packets on
Furthermore, we can drof,_,; because it does not affectthe packet delivery rate is negligible when the system is run
the sign of the backpressure weight. For ease of discussifaf, @ long time, as also shown by our numerical results in
we discard the subscripts in the formula. Based on BCP aféction VI-C.
the form of backpressure weight, the source node forwargs .
a packet only wher@ > V - ETX. WhenQ < V .- ETX, - Queueing madel
the source node is waiting either for the quedeo grow or Now we construct a queueing model with dynamic threshold
ET X to become smalleiThus, the value of - ET X serves based on the routing policy of LIFO-backpressure. Assume
as a threshold on the queue that the arrival process of packets is Poisson with pat€he
First, let's take a look at the scenario of a lossless chanmélannel is represented by the Gilbert model [18], a Markov
with fixed ET X. In this case, the threshold is static with valuehain that transits between two states, namely, good state a
V - ETX. Due to the forwarding policy of BCRY will be bad state. The transition rate from good state to bad state
lower bounded by - ET'X. Under FIFO, the average delayis o, and the transition rate from bad state to good state is
isD=Q/\>V-ETX/\ by Little’s Law, where\ denotes o». Under the good channel, the threshold is 0 and service
the packet arrival rate. This lower bound is consistent With time is exponentially distributed with rage, while under the
O(V') delay result in theoretical analysis, and reaches a highd channel, the threshold is a positive integérand the
value when the load is low. As \ increases, the lower boundservice time is exponentially distributed with rate (usually,
decreases. Under LIFO, a fraction of packets, the numberof > ). Thus in association with the channel model, the
which is equal to the threshold - ETX, is trapped in the threshold dynamic can also be represented by a two-state
head of the queue. These trapped packets will stay in theequdarkov chain. Let(n, ¢) (n € N, ¢ € {0, 1}) denote the system
forever and cannot be transmitted while all the other packestates:n is the number of packets in the queue= 0 and




System state: | Queue length, channel state
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Fig. 4. Markov chain of the single-queue system.

¢ = 1 represent good channel and bad channel, respectivé&ly. Matrix geometric method
Then Fig. 4 depicts the whole Markov chain for the queueing gased on the balance equations and the normalization

systler:n. H the simolistic Gilb H | model condition, we aim to obtain the steady-state distributiBy,
Although the simplistic Gilbert channel model assumes \y, first derive the balance equations at each state of the

that the channel can only be in two different states, it ETMC The balance equations at stafes) and (0, 1) are:
sufficient for qualitatively capturing the temporal dynasi ' ’ '

and correlation of more complex channel models. This chan- (01 +N)Po,o =02P1 + 11 P10,

nel model alsamplicitly captures the effect of interferences (02 + NP1 = 1Py .

between nodes, whereas good and bad channels respectively

imply low and high levels of interferences. We also note Define Q 2 o1 —02 A |A 0 M, A [ 0

that under a lossless channel with fixed threshold, the syste S mor o2 | [0 A te 0 0f

state has transitions restricted to the half of the Markaairch then the above balance equations can ied as:
i ichi 1.

corresponding to good channel, which is the sam&/ada// (Q+ APy = My Py.

e simpli

C. Probability generat.lng_ fur_]C'uon ] The balance equations at states0) and(n,1) (1 <n <
The steady-state distribution of the CTMC is denoted bj) are:

P,... Define P, £ [P, 0, P,.1]7. Then the steady-state distri-
bution of the queue length is A+ p1+01)Poo=APu10+ p1Pas1o+02P 1,

T = Pno+ Po1=e'P,. 1) (A+02)Poy = APnra 4 o1 Poo,

We define the following probability generating functions = (A+ M+ Q)P = APy + My Py

USLVO‘Q ztransform: Go(2) = 307 2"Pao, Gi(z) = The balance equations at statés, 0) and (K, 1) are:
D omeo 2" Pn,1, and

(A+p1 +01)Pro = APk—1,0 + 1 Pry1,0 + 02Prc 1,

Gle) = E?Ezg] B Z;)Zﬂ [1122(1)] - Zoznpn- @) (A+02)Pr1 = APg—11 + p2Pk 1,1 + 01 Pk 0.
" " : 0
The probability generating function of the steady-state di Define M, £ [%1 MJ’ then
tribution of queue lengthV is
0 oo (A+ My + Q)Px = APk 1 + M2Pr 1.
_ n _ n T _ T
Fn(z)=) #"mn=) 2"e"P.=e"G(2). ()  1he palance equations at states0) and (n,1) (n > K)

n=0 n=0

are:
Then the average number of packets in the queue can be

obtained fromFy (z) and the average delay can be calculated (A + 1+ 01)Poo = APu—1,0 + 1 Paj1,0 + 02 1,

by Little’s Law: A+ p2 +02)Po1 = APy—11 + p2Pui11 + 01 P,
E[N] = i o 4 = (A+ Mz + Q)Py = AP,y + MyPyy1.
n=0 In summary, the balance equations are the following:
= L) ©)
dz" . A+ Q)P = M1, (7)
E[T] = E[N]/A. (6) A+ M+ Q)P =AP, 1+ MiPy,1<n < K, (8)
(A My + Q)Px = APx_1 + MyPr 1, 9

Next we develop a matrix geometric method [6] for solving
the steady-state distribution of the CTMC and calculatimg t (A + M2 + Q)P = AP,y + MaPyyq, n> K. (10)
average delay by (4) and (6). In Section llI-E, we will derive Now we chooseP, as an unknown vector and expregs
closed-form solutions for the probability generating ftioes, . 5 |inear transform aP,. By (7), we have
(2) and (3), and compute the average delay based on (5) and
(6) for the special cas& = 1. Py=(Q+A)"'M,P, 2T\ P,.



We express’, in the matrix geometric form: E. z-transform method for special case

RILP, ifl1<n<K, Since BCP updates ETX by the exponential moving
P, = { RE K Py, ifn> K. weighted average and the defaultin BCP implementation
) o is 0.9, the change in the threshold - ET' X every time is
Then by takingPr 41 = Rz Pr into (9), we have: relatively small (e.g., +1/-1), which can also be seen from
P = (A+ M, +Q — MyRy) "APx_4 Fig. 3. Thus we analyze the special case where the threshold

varies between 0 and (= 1).

_ —1 K-—2
N (A+ M +Q— MaRo) ARy Py When K = 1, the balance equations are:
=TyP;.
The steady-state distribution can now be expressed as fol (A+ QR = MP, (16)
- istributi W X
ower Y P (A+ M + Q)P = ARy + My Py, (17)
TP, i n=0 (A+M2—|—Q)Pn =AP, —|—M2Pn+1,f0rn2 2. (18)
P, = R;z—fph if 1< n7< K, (11) Multiplying both sides of (17) and (18) witke™ and
RQ*KTgPl, if n>K. summing fromn = 1 to co, we can get
The sum ofP,, from 0 to oo is e i .
K1 o (A—FMQ—FQ)ZZnPn = Z(MQ—Ml)Pl—FAZZZn Pn,1
ZZO:O Pn70 _ n—1 n—K n=1 n=1
n=1 n=K +M2_ Zzn+ Pn+1,
Based on the normalization condition and the two-state Z o=

channel model, we have the following equation, from which According to definition ofG(z) in (2),
P, can be solved:

1 1 Yomeo Puo] _ |1 (A+ Mz +Q)[G(2) — By] = 2(Ma — My) Py + A2G(2)
[ ] [Zflo—g P"al] a [0] . (12) + M2%[g(2) — Py — zP].

Before solving (12), we need to determiRe andR.. They
can be numerically solved as follows. By (8), we have

(A+ My + QR P, = AP, + MyR2P,.  (13)  [F°A—2(A+ Mo+ Q) + Ma]G(2) =
(1 —2)[Ma(Q 4+ A) ™My + 2(My — My)|Py. (19)

To simplify, we rewrite (19) as:

01 —02

We then replace? by (Q + A)~1M; P, from (16):

A sufficient condition to satisfy (13) is

(A+ M+ Q)Ry = A+ MiR3. (14)
To find R, we can iteratively calculate the following until A(2)9(2) = (1 = 2)B(2) A,
convergence: where
Rigy = (A+ M+ Q)™ A+ MRy, A(z) = 2°A — 2(A+ My + Q) + Moy,
whereR,; is the approximation t®R; at thej-th step. B(z) = M2(Q + A) 7'My + 2(M> — M).
[6] has shown that by starting witiR,y = 0, the se-  Then
quence{R (o), Ri(1), R1(2), ---} IS @ monotonically increasing (2) = adjA(2) B(z)P (20)
sequence that converges to the minimal nonnegative solutio detA(z)/(1 — 2) !
o é14)| | Iso be found th hi vel | In order to obtaing(z), we need to solvé’;. Since it is a
at imilarly, R, can also be found through iteratively calcuy,_gimension vector, we need to find two equations. The first
ating equation is the normalization condition, i.&y (z)].=1 = 1,
Ragy = (A4 Mo+ Q)M (A + MaR3; 1)) and by (3), we have
With R., R» and P, known and by (1), (4), (6), and (1), of— 2dAG = g by (21
the average delay of packets in the queueing system is [detA(2)/(1 — 2)].=1
K-1 oo The second equation is obtained by finding a root of
E(T) = eT(Z nRY ! 4 Z nRE“ET) Py /A (15) detA(z) = 0 such that the root, satisfies0 < z < 1.
1 Py Then the second equation is
The computation of the geometric sum in (15) can be e’adjA(z0)B(20)P1 = 0. (22)

conveniently carried out through diagonalization and eige
decomposition ofR; and R.. The method we describe here
applies directly for the case ok > 2. The average packet adjA(z) =

dhelay whenK =1 can alsho (tj)e nﬁme_ricallyhcomputed usi_ngI 1= A+ p+ o)z + 222 .

the matrix geometric method with minor change. Numerica o f— A+ p+a)z+ 2|

results obtained by the matrix geometric method will be 5
presented in Section VI. detA(z) = (1 = 2)(n = A2) [ = (A + p+ 20)z + Az7),

Assumingoy = 09 = o, pu1 = w2 = i, We have
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hannel

s (23) Fig. 5. The steady state of a four-node chain network unddfOLI
backpressure with/ - ET' X i, = 1.

20= (20 + XN+ — /(20 + X+ )2 — 4uX) /2.
By solving (21) and (22), we obtain

_ 1_ 2\
Pl = 7A(MM A) l# QA#EI

Er

whereEy = A+ 4o +2p0 — (A +20) B2 +3)\* +40® and  packets arrive into nodeV and are routed towards node

By = /(A + p1 +20)2 — 4p. 0 by LIFO-backpressure. The lossy channel has a dynamic
By substituting (23) into (20) and using (3), (5), and(6k ththreshold ¢ - ETX) varying betweenV - ETX,,;,, and

average delay of packets in the queueing system wienl . ETX, .. asin the Gilbert model while the lossless channel

IS has a fixed threshold - ETX,,,;,. For ease of discussion,
2\ we assume that’ - ET X ,,;,, andV - ET X ., are positive
E[T] T3+ (1 +40)\ — Eo\ — 2E90 + (2uo 4 40?) integers. The service time (transmission time) of each oblan
1 is assumed to be exponentially distributed. We are intedest
+ m (24) i the average packet delay of LIFO-backpressure at low, load

) ) ) ) i.e., when\ — 0. Before analyzing the delay, we characterize
Expanding the Maclaurin series of (24) apwe obtain the 0 steady-state queue occupancy at each node.
following approximation of the average delay at low load:
Lemma 1. As A\ — 0, the steady-state queue occupancy in
2 1 (+4o)(u+ o)

E[T] = (= +—)— ——2C X1 o()\). (25) the chain network under LIFO-backpressure is almost surely
w200 2p0*(p+ 20) (as.)

By (25), the first term in the series (which is independent Qi =iV - ETXmin,¥i=1,2,..., N, (26)
of \) is sensitive to channgl dynamics as captured by t'?& both lossless and lossy channel models.
parameters. If o is small (i.e., the channel and threshold
are slowly varying), then the average delay at low load,(i.e.  Proof: See the Appendix. ]
A — 0) may get high. For example, suppose that the averageFig. 5 illustrates the steady state of a four-node chain
service timel/u is on the order of dozens of millisecondsetwork under LIFO-backpressure, whéfe ET X i, = 1.
while the average time that the channel stays in the safieese packets will stay in the network forever while all othe
statel/c is on the order of a few seconds. Then, the averagackets will reach node 0 within a finite time a.s. As explédine
delay will be on the order of seconds. This stands in contrastthe proof of Lemma 1, there can be at most one untrapped
to the lossless case where the average delay is on the oyghzket in the network at any time when— 0. The packet
of milliseconds. Furthermore, the first-order derivativéhw will go through N hops to get deliveredN — N —1 —
respect to\ of the average delay is strictly negative. ThusV —2 — ... — 1 — 0. If we ignore the trapped packets
the average delay decreases with load under light traffis Tln all the queuesthen, under lossless channel, each queue is
is consistent with the counter-intuitive behavior of LIFOequivalent of a queue with threshold 0. Under lossy channel,
backpressure observed in simulations. each queue is equivalent of a queue with dynamic threshold in

An intuitive explanation of the delay behavior is that théhe range of0, K|, whereK =V - ET X .00 — V- ET X 1.
packet at the head of queue is stuck when the threshold is Next, we detail the models for the lossless and lossy
(bad state) and only gets served when the threshold retornghannels. In the lossless channel model, we assume that the
0 (good state). Thus, the queueing delay of the stuck packietesholds of all the channels, 2, ..., N, are fixed to0 and
is mostly determined by the transition time of the thresholtie packet service time is exponentially distributed wier
from 1 to O, which can be large when the channel is slowly. In the lossy channel model, the channels of each node
varying. As the traffic load increases, the proportion otktu are identically and independently represented by a Gilbert
packets decreases, thus reducing the overall average delaynodel, a Markov chain that transits between good state and

As discussed in Section IlI-A, the number of undeliverefad state. The transition rate from good state to bad state
(trapped) packets in the queue is a constant, which is nbgig is o1 and the transition rate from bad state to good state is
over the long run. However, the probability that an arriving;. Under the good channel, the channel thresholf &nd
packet finds the threshold set to 1 is abewyf (o1 + 02) at service time is exponentially distributed with rate while
low load. Hence, a large number of packets may experienseder the bad channel, the thresholdAs and the service
very high delay. time is exponentially distributed with raje, (with 11 > p2).

As A — 0, a packet arriving to the network sees each queue
in steady state. Thus, for the lossless channel case, thegave

In this section, we analyze the average packet delay @élay per hopid /i and the total average packet delayigy:.
LIFO-backpressure for a chain network at low load. For the For the lossy channel case, suppose a new packet arrives to
network analysis, we use similar notations as in Sectian llinodei. Let (n,¢) (n,c € {0,1}) denote the possible system

Consider a chain network consisting/8f-1 nodes, labelled states for nodé. Here,n corresponds to the number of packets
{0,1,2,..,N}. There is a bidirectional wireless channel in the queue of node, while ¢ = 0 andc = 1 respectively
between nodé and node: — 1. We assume that exogenousepresent good and bad states of the channel at hoSte

IV. NETWORK ANALYSIS



transitions can be described by the first two columns of tfdgorithm 2 RBL-BCP

Markov chain in Fig. 4. 1: REP_FLAG = false // This flag indicates whether a
Just after the arrival of a new packet, the system can either replica has been generated or not

be in state(1,0) (i.e., one packet and good channel) with 2: while Q; > 0 do

probabilityos /(o1 +02), or in state(1, 1) (one packetand bad 3:  Compute the backpressure weight ; for each

channel) with probabilityr; /(o1 +02). The system transits to neighbor;
the state of no packets and good channel, i.e., (0,0), when th: Find the neighboy* such thatj* = arg max; w; ;
packet gets transmitted to node- 1. Thus the delay that the 5: if w; ;«~ >0 then
packet experiences in the queue is the time that the systedn Transmit one packet tg*
needs to transit from eithefl,0) or (1,1) to (0,0), which 7 Update ET'X ;- andR;_ ;-
we denote byl'; andTs, respectively. Lefl;, denote the time 8&: REP_FLAG = false
taken for transition from the current state to the next state 9: else
If the system is at statél,0) after the packet arrival, the 10: if |[ETX,-;~| has increase@nd Q;- has not
average delay of the packet is increasecand REP_FLAG is falsethen
11: call Replicate
E[Tl] = E[To] + Pr{next state= (1, 1)}E[Tg] 12: end if
+ Pr{next state= (0,0)} -0 13: Wait for a reroute period
1 o1 14: end if
T tou * i+ UI]E[TQ]' (27) 15 end while
16:

On the other hand, if the system is at stétel) after the

) 4 17: function REPLICATE
packet arrival, the average delay of the packet is

18: Wait for a replication period; exit upon packet arrival

E[Ty] = E[Ty] + Pr{next state= (1,0)}E[T}] 19:  Copy the packet at the tail of queue
1 20: Place the replica at the head of queue
= — +E[T1]. (28) 21 REP_FLAG = true
72 22: end function
Solving (27) and (28), we have
+ + 02 +
ET] = 2 02, E[Ts] = G T can be served immediately since the queue length is largar th
7211 7211 1 after adding the replica. Algorithm 2 gives the pseudoecod
Therefore, the expected packet delay for one hop at Iy RBL-BCP, an implementation of RBL.
load is In general, the threshold at a node depends both on the
02 o1 queue length of its neighbors and on the link quality to its
E[T] = o1+ UQ]E[Tl] + o1+ aQE[TQ] neighbors. Therefore, the threshold may increase under two
1 scenarios: (1) the queue length of the selected neighbor has
e (29) (1) the g 9 g

increased; (2) the ETX to the selected neighbor has incdease
In the former case, adding packets to the network would only
exacerbate congestion. In the latter case, however, atjolic

tation. the total ket del der | may help. As a result, RBL works as follows: if packets gets
expectation, the total average packet delay under lossynetha stuck in the queue solely due to increasing ETX (see line 10),

is N(2/n + 1/20). As in the two-node network case, we ket at the tail of th . licated onto th
observe that the delay gets highvifis small, i.e., the channel eh a packet at Ine fall of the queue s replicated onto the

dynamics are slow. Note that channel contention b_etvyeen.rhe replication is delayed by a certain amount of time,
different neighbors does _not oceur b_ecause_ the analysts is lfhe replication period to avoid congesting the network (see
onv Ioad._ However, our simulations in Section VI do capturg, o 18). More precisely, if new packets arrive to the queue
wireless interference effects. during the replication period, then the replica generaimn
V. REPLICATION-BASED LIFO-BACKPRESSURE cangellgd. In Section VI, we will show how the Iength_of the
replication period affects the number of generated replaced
delay performance. In the case that the threshold incrégses
Our previous analysis indicates that the high delay ofore than one, RBL-BCP generates only one replica to avoid
LIFO-backpressure at low load is due to threshold dynamiasausing congestion. A binary variable RER.AG is used for
Consider again a scenario where the threshold varies betveehis purpose. As explained in Section llI-E, fluctuationgha
and 1. The idea underlying RBL is as follows: when a pack#tresholdV - ET' X are generally small and this situation is
at the tail gets stuck due to threshold increasing from O tmcommon.
1, we do not wait indefinitely till the threshold returns to 0. Under static channel conditions, where the ETX remains
Rather, after a certain period of time, we generate a replicaconstant, the replication condition will never be satisfatl
the stuck packet and place it at the head of the queue. Ndiere will be no replicas generated. In these cases, the RBL-
that due to the LIFO scheduling policy, replicas have lowdCP reverts to the original BCP, meaning that the replicatio
priority than the original packets for transmission. Based mechanism does not affect the delay performance of BCP for
the routing policy of LIFO-backpressure, the original petck lossless channels.

o2 w1 oa(o1 +o2)’

Assumingo; = o2 = o and u; = pu, the average packet
delay per hop is2/u + 1/20. Thus, by the linearity of

A. Algorithm description




and (0,1, NR) together,

fr?a"r?nel AMPo,o,Nr+Po1,nr) = 1 Pronr+ 1 Poor > piProNE,
No S S - Sincepo_’()yNR + PQ_LNR <1, we haVGPLQ_’NR = O()\)
replica Another balance equation is
channel
APy i,Nnr+ (01 +N)Piong = piPaonr +02Pi1 NR
+ 1 Poo,r > 02P1 1, NR-
HenceP; 1 vr = O(N).
We also have
E::nnel Ao = 1 ProNg + pePrir+ 1 Pror
One  __ _\.7 o > po(Pronr+Piir+Pior)
replica
Good Thus Py o nr + Pi1.r + Pio.r = O(\) and furtherm, =
channel o). i i o
Similarly, from the balance equations we can obtain=
O(A\?) andm,, = O(\") for n > 3.
Fig. 6. Truncated Markov chain of RBL for low load analysis The average delay is thus
o0
B. Analysis of RBL E(T) = —]E(N) = ! n

We analyze the average delay of RBL on the two-node

network when the threshold varies between 0 and 1, i.e.,, _ 1(771 T2 + i”” )

K = 1. Note that there could be at most one replica in the A = "
queue whenkK = 1. Let the tuple(n,c,7) (n € N,c € . hich

{0,1},r» € {NR,R}) denote the system states: is the n whic - - ; ,

number oforiginal packetsin the queue (excluding replicas); o SAT =2\ 3
¢ =0 andc = 1 represents good channel and bad channel, gmr” = 2371)\ (1= N2 OX).
respectively;r = NR means that there is no replica in " "

the queue and- — R means that there is one replica in' "€N the average delay can be calculated by

the queue. Note that the queue length (i.e., the number of 1 2

packets including replicas) is + I;,—r), wherel,, is the E(T) = X(m +2m2) + O,

indicator function. Fig. 6 depicts a truncated Markov chafin This indicates that we can assign zero probability to system

the queueing system under RBL. states with queue length over 2 and obtain the same first-orde
In RBL, a replica is generated whenever packets get stullaclaurin series, justifying the truncation method.

in the queue due to threshold increasing. Since the thréshol After obtaining the steady-state distribution of the tratec!

varies between 0 and 1, the only possible stuck packetGIMC, we can calculate the average delay by

the packet at the head. When the packet gets stuck, i.e., at

state(1, 1, NR), RBL waits for a replication period, which is  E(T) = —(m; + 2m3)

assumed to be an exponential random variable with yaté

there is no packet arrival during the replication period,LRB =—[Piong+Piinr+Piir+Ponr

generates a replica and the system transits to $late R). A ' ' '

Since the replica is put in the queue head, the LIFO scheduler +2(ProNg + Prane + Prur+ Pror)) (30)

will serve the original packets first. The system transigsrr ~ Assuming thato;, = 05 = o, 1 = us = p, the average

the states with one replica to the states with no replica ahlydelay of RBL at low load is approximated by

(0,0, R), where the threshold is 0 and the replica is the only

—_>| =

packet in the queue. E(T) = 5+o l] {i_ o(p—20)
Next, we calculate the average delay based on the average Y+o)+po pl [p? 2(y(p+ o)+ po)?

number of original packets in the queue. We do not use i+ 4p2o + 6uc? + 8o N N 31

average queue length because the delay of the replica does - 2uo(p+20)(y(p + o) + po) +o(d). (31)

not contribute to the average delay and is thus ignored. Let\Nheny -0
the steady-state distribution of the CTMC be denoted by ’
P, .- Then the steady-state distribution of number of original  |;,, E(T) = (z i) _ (n+4o)(n+0) A+o(N)
packets ist, = Py, onr + Pni.nvR + Poi,r + Pho.g- 7—0 w20 2u0?(p + 20) ’

The same as LIFO-backpressure, the CTMC of RBL haghich is the same as the original LIFO-backpressure.
infinite number of states. However, we can still use the From (31), E(T)|n—o is monotonically decreasing with
truncated CTMC of 12 states in Fig. 6 and obtain corregicreasingy. Thus withy > 0 and A being small enough,
first-order Maclaurin series. To see this, note that we hage tthe average delay of RBL is smaller than that of the original
following balance equation by considering states0, NR) LIFO-backpressure.
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Fig. 7. Average packet delay versus packet arrival ratdfiftreoad) \ for
different threshold transition rates and fixed service ratg = 1. Fig. 8. Average delay versus load with fixed noise power -83ndB a
25-node grid network.

V1. NUMERICAL AND SIMULATION RESULTS introduction of the paper. The simulations use real RSSI

In this section, we provide numerical results obtainedvt%ecewed signal strength) traces collected from a vehicul

the matrix geometric method described in Section Il
also provide simulation results of (LIFO-)BCP to verify th

nvironment, where each sensor node is attached to a differe
éNheeI of a car and the root node is placed on the driver

existence of the high delay of LIFO-backpressure at low loagat [20]. For the lossless channel, we configure the noise

in large networks. Simulation results comparing BCP ar{boyverto be -95 dBm, while for the Ioss_y channel, we use real
RBL-IgCP are also provided paring noise traces collected from the Meyer Library of Stanfort][2

These traces exhibit complex temporal dynamics, wherein th
A. Numerical results noise floor is at about -98 dBm and spikes are at about -86
Numerical results for the average packet delay in the twgBm. The results are consistent with our analytical findings
node queueing model are depicted in Fig. 7 (a) and (b), fé1at is, the high delay at low traffic load and initial deceeas
the casesk = 1 and K = 10 respectively. Forik = 1, the Of the delay with load occurs under bursty channel condtion

delay at\ — 0 increases as gets smaller, which is consistent?Ut not under perfect channel conditions.

with the first term of the analytical result derived using the o\ second set of simulations are conducted for a network
transform method in Eq. (25). In addition, the average del@ynsisting of 24 sensor nodes and one root node. The topology
decreases with\ at low load, as predicted by the negativgs 55 x 5 grid where the root node is located at the center.
first-order derivative of (25). o o In this topology, a link only exists between direct neigtsor
For K = 10, the results are qualitatively similar to the casg, other words, nodes that are two hops away cannot hear
K =1wheno is small (e.9.p = 0.01). However, with faster gach other. We fix the noise power to be -85 dBm while we
channel dynamics (e.gqg = 1), we observe that the delayiest gifferent received signal powers, namely -80 dBm and
is small at low traffic load and increases with As pointed _75 gBm. The packet error probability at signal-to-noiatier
out in Section IlI-E, fluctuations in the threshold are gafigr (SNR) of 10 dB is close to zero while that at SNR of 5 dB
small (e.g., +1/-1) and, therefore, the cae= 1 appears is varying in the range between 0 and 1/2 in the simulator.

more realistic. Therefore, the two different received powers represestéss
Finally, we note that for both the cas&S= 1 and K =10, g4 lossy channels.

all the curves merge a& — 1. This means that temporal

channel dynamics do not have as much effect at high load. Fig. 8 shows results for the two different received powers
under differenta values. Recall that BCP updates ETX by

B. Simulation results of BCP ETX pew = «ETX o1q+ (1 — ) ET X . Each point represents
We next describe simulations of the BCP protocol (witAn average taken over 10 simulations, and 95% confidence
V = 2). Our goal is to verify that our analysis qualitativelyintervals are also depicted. In Fig. 8(a), when the charmsel i
captures the behavior of this protocol under different ehalossy and the threshold is dynamic, the average delay is as
nel conditions. Our simulation is run on TOSSIM [19], théiigh as 3710.92 ms at 0.5 pkts/sec/node and decreases with
standard TinyOS simulator for wireless sensor networkg Tthe load. In Fig. 8(b), on the other hand, when the channel
simulated network consists of a root node and some sensoiossless and the threshold is static, the average delay is
nodes, both of which use the sensor model MICAz. In enly 31.46 ms at 0.5 pkts/sec/node and is non-decreasing
simulation, the sensor nodes are first initialized unifgrmiwith the load. The average delay at low load in the dynamic
randomly within one second. After initialization, all thersor case is at least two orders of magnitude larger than in the
nodes periodically generate packets and inject them irgo thtatic case. This phenomenon occurs even though the average
network layer, where BCP routes the packets toward the ragatmber of transmissions in the dynamic case is only at most
node. The goal of the random initialization is to reduce thgvice larger than that in the static case. These results ey
amount of MAC contention and MAC delays that would occuthe manifestation and significance of channel-sensitivayde
if all the nodes generated packets at the same time. behavior of LIFO-backpressure in large networks. We note
Our first set of simulations are performed on a five-nodbat increasing the value af somewhat helps to alleviate this
network. The results are depicted in Fig. 1, shown in th@oblem, but does not eliminate it.
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Fig. 9. Performance of BCP and RBL-BCP on a simulated 15-nioila-car wireless sensor network.
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Fig. 10. Performance of BCP and RBL-BCP in the 25-node gritvork.
C. Simulation results of RBL-BCP 500 ms is larger than with replication period 2 s. Since

In the implementation of RBL-BCP, we design the repncatransmissio_ns of more replicas consumes more power, t_his
tion period to be an exponential random variable with a gertacould be viewed as a tradeoff between power consumption
average value. In the following, we compare three protocoNd delay. From Fig. 9(c), we can also see that the number
(1) original BCP; (2) RBL-BCP with average replicationof r(_apllc_as vamshe_s as load increases, which confirmslleat t
period 2 s: (3) RBL-BCP with average replication perioae_pllcatlon m_echanlsm does no_t_further congest the_ netabrk
500 ms. In addition to evaluating average delay, we aldigh load. This can also be verified by thg observation that th
consider two other important metrics: the packet delivatgy average delays (Fig. 9(a)) and packet delivery rates (ki) 9
i.e., the ratio of the number of delivered original packets ©f the three protocols are undistinguishable at high load.
the number of generated original packets; and the repltag ra  Fig- 9(b) shows that both BCP and RBL-BCP achieve high
i.e., the ratio of the number of generated replicas to thebmrm Packet delivery rates (around 98% or higher), at low load.
of generated original packets. Th|s. result ijlf:ates that the impact of trapped packets is

Our simulation models a 15-node intra-car wireless send&iatively negligible. In fact, one can observe that RBLBBC
network. The network consists of 15 nodes, in which the rogghieves higher packet delivery rates than BCP. Indeed-RBL
is on the driver seat, three sensors are placed in the endife® replicates and delivers packets that would be trapped
compartment, four sensors are respectively attached tfotine Under BCP.
wheels, three sensors are placed on passenger seats a@st the fOUr second comparison is on the saine 5 grid network
placed on the chassis. We use the same real noise traces ad$h@escribed in the second simulation of VI-B. We fix the
first simulation in VI-B. The simulation results (averagdage Noise power to be -85 dBm and the received signal power is
packet de”very rate and rep"ca ratio) are p|0tted in FLg 9 Configured to be -80 dBm. The simulation results are plotted

Fig. 9(a) shows that at low load, the average delay #F Fig. 10, which are similar with the first simulation on the
RBL-BCP is much lower than BCP. For example, at a loatp-node intra-car wireless sensor network.
of 0.5 pkts/sec/node, the average delay of BCP is 2,237 ms
while that of RBL-BCP (500 ms) is 1,067 ms, which is
almost a two-fold improvement. From Fig. 9(c), the number of We developed a queueing-theoretic model and solved it
replicas generated with replication period 2 s is less thiin wusing matrix geometric numerical methods, to elucidate the
replication period 500 ms, as expected. With more replicabannel-sensitive delay behavior of LIFO-backpressure. W
generated, the reduction on the delay with replicationgakerialso provided closed-form analytical results on the awerag

VIl. CONCLUSION
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delay that showcases the high delay problem due to chanpatket will be transmitted to nod¥€ — 1, with the service time
dynamics. The results were extended to a chain network,breing exponentially distributed. For the lossy case, sihee
a low load regime. Through simulations, we further verifiedhannel threshol&/- ET' X y_, y_1 Will returnto V- ET X .5,
the existence and significance of the channel-sensitiv@ydeWithin a finite time a.s. and the service time is exponertiall
behavior of LIFO-backpressure in large networks. Thersfodistributed, the packet will move to nodé — 1 within a finite
an important finding of this paper was to show that, undéme a.s. Likewise, the packet will experience finite delas; a
lossy channel conditions, LIFO-based backpressure mdgrsufit the next hops before leaving the network. As— 0, the
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