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Channel Sensitivity of LIFO-Backpressure:
Quirks and Improvements

Wei Si, David Starobinski, Morteza Hashemi, Moshe Laifenfeld, and Ari Trachtenberg

Abstract—We study the delay performance of backpressure
routing algorithms using LIFO schedulers (LIFO-backpressure).
We uncover a surprising behavior in which, under certain
channel conditions, the average delay of packets is high at low
traffic load and decreases as the load in the network increases.
We propose and analyze a queueing-theoretic model under which
the scheduler can transmit packets only if the queue length meets
or exceeds a threshold, and we show that the model analytically
bears out the observed phenomenon. Using matrix geometric
methods, we derive a numerical solution for the average packet
delay in the general case, and, usingz-transform techniques,
we further provide closed-form solutions for a special case.
Our analysis indicates that when the threshold is fixed (as may
happen under lossless channel conditions), the average delay is
small at low traffic load and increases with increasing load,
as expected. On the other hand, when the threshold fluctuates
(as may happen under changing, lossy channel conditions), the
average delaymay be high at low load and decrease, sometimes
substantially, with the traffic load. We corroborate these findings
with TOSSIM simulations on different types of networks, using
measured channel traces. Further, we propose a replication-
based LIFO-backpressure algorithm (RBL) to improve the delay
performance of LIFO-backpressure. Analytical and simulation
results show that RBL dramatically reduces the delay of LIFO-
backpressure at low load, while maintaining high throughput
performance at high load.

Index Terms—Backpressure algorithms, queueing theory, data
collection protocols, wireless sensor networks.

I. I NTRODUCTION

Backpressure routing algorithms promise throughput-
optimal performance and provide elegant cross-layer solutions
for a wide range of networking problems [2]. Yet, they also
notoriously suffer from high end-to-end packet delays. This
problem is exacerbated at low traffic load due to the lack of
sufficient pressure to drive packets toward their destinations.

The work in [3] proposes an elegant solution to the
delay problem by replacing the standard first-in-first-out
(FIFO) queueing schedulers at routing nodes by last-in-first-
out (LIFO) schedulers. LIFO-backpressure traps a few packets
at each queue to establish a routing gradient and ensures fast
delivery of most other packets. This joint routing-scheduling
policy has been analytically demonstrated to achieve an opti-
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Fig. 1. Average end-to-end packet delay of LIFO-backpressure in a five-node
wireless sensor network simulation under lossless and lossy channels.

mal utility-delay1 tradeoff [4].
LIFO-backpressure has been implemented in the form of a

data collection protocol for wireless sensor networks, called
the Backpressure Collection Protocol (BCP) [3], which routes
packets toward a single destination (sink). Unlike minimum-
cost tree routing algorithms (e.g., [5]), BCP makes routingand
forwarding decisions based on local information and does not
need to explicitly compute paths. Extensive simulations and
testbed experiments show that LIFO-BCP drastically improves
delay performance over the FIFO-based version of BCP.

Nevertheless, our own TOSSIM simulations (using the
source code of BCP in TinyOS [3]) show that LIFO-
backpressure can exhibit intriguing delay behavior in certain
conditions, as illustrated in Fig. 1 (the simulation set-up, which
uses real RSSI traces, is described in detail in Section VI).
Under lossless channel conditions as shown in Fig. 1(a), the
average delay of packets is small at low traffic and increases
with the load, in a manner that is consistent with standard
queueing models, such asM/M/1. On the other hand, under
lossy channel conditions, wherein a non-negligible fraction
of packets get lost and require re-transmissions, we observe
an opposite trend:the end-to-end average delay of delivered
packets is high at low traffic load and decreases with the load,
at least initially. Thus, Fig. 1(b) indicates that the average
delay of packets when packets are generated at a rate of one
per second at each node is four times higher than that when
packets are generated at rate of seven per second at each node
(i.e., 1,000 ms in the former case versus 250 ms in the latter
case).

The first goal of this paper is to explain this unexpected
behavior within the context of understanding the impact
of channel and traffic conditions on the delay behavior of

1The delay of a packet is defined as the time elapsing from its generation
at the source node till its delivery at the destination node.The computation
of the average delay applies only to delivered packets, thusexcluding those
packets which have not reached the destination.
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LIFO-backpressure schedulers. We introduce and analyze a
queueing-theoretic model thatqualitatively captures the be-
havior of LIFO-backpressure.

Specifically, we initially focus on a two-node network
consisting of one source node and one destination node.
This simple network turns out to be sufficient to reproduce
the observed effects. The behavior of the LIFO-backpressure
scheduler at the source node is modelled using a single-queue
system with threshold. The threshold is related to the expected
number of transmissions (ETX) needed for a successful packet
reception on a given channel. Thus the threshold may change
over time, depending on channel conditions. The scheduler
can transmit packets only if the queue length (i.e., the number
of packets in the queue) meets or exceeds the threshold.
Under appropriate statistical assumptions on the traffic and
channel dynamics, the evolution of such a system can be
described using a multi-dimensional continuous-time Markov
chain (CTMC). We derive a numerical solution for the general
case using matrix geometric methods [6]. Furthermore, using
z-transform techniques [7], we provide closed-form solutions
for the special case where the threshold oscillates between0
and 1.

Next, we conduct a delay analysis of LIFO-backpressure for
a chain network in a low load regime. Our analysis indicates
that the high delay of LIFO-backpressure at low load occurs
due to slow variations of the threshold. On the other hand,
if the threshold is fixed (e.g., if the channel is lossless), then
the average delay is small at low load and increases with the
traffic load as expected.

The second main contribution of this work is to propose a
novel lightweight mechanism, calledreplication-based LIFO-
backpressure (RBL), to remedy the above problem. Through
the analysis of an approximate CTMC, that is asymptotically
exact at low load, we show that RBL improves delay perfor-
mance over LIFO-backpressure at low load. We implement
the replication mechanism into BCP, and refer to the new
implementation as RBL-BCP. Our simulations of RBL-BCP
demonstrate the delay performance improvement over BCP.
The simulations also show that RBL does not compromise
throughput performance of BCP at high load.

In summary, our contributions are the following:

• We propose and analyze a queueing-theoretic model to
elucidate the high delay problem of LIFO-backpressure
at low load;

• We propose and analyze a replication-based LIFO-
backpressure algorithm that reduces the large delay of
LIFO-backpressure at low load;

• Through extensive simulations, we demonstrate the exis-
tence of the high delay problem of LIFO-backpressure in
large networks and show that RBL significantly mitigates
this issue.

The rest of this paper is organized as follows. In Section II,
we review related work on backpressure routing algorithms
and describe the BCP protocol, upon which our analytical
model is based. In Section III, we formulate our CTMC model
and provide a matrix geometric method for numerically solv-
ing the general model. We also derive closed-form expressions
of the average delay for a special case. In Section IV, we
analyze the delay of LIFO-backpressure in a chain network at

low load. Section V describes our proposed RBL and provides
corresponding analysis results. Section VI presents simulation
results for larger networks to support our analytical findings
and compares performance of RBL-BCP and BCP. Finally,
Section VII concludes the paper.

II. RELATED WORK

A. Backpressure algorithms

The origin of backpressure algorithms lies in the semi-
nal work of Tassiulas and Ephremides [8]. A backpressure
algorithm is mathematically constructed by minimizing the
Lyapunov drift that represents the difference between the
values of the Lyapunov function at the current time slot and
at the next time slot. This leads to a problem, known as
MaxWeight, of maximizing the weighted sum of link rates,
in which the weights are represented by backlog differentials.
Intuitively, data packets are sent over links with high rates and
to neighbors with low backlog, thus achieving a load balancing
effect.

The chief advantages of backpressure algorithms are to
avoid explicit path computations and achieve throughput-
optimal performance. However, backpressure algorithms suffer
from high end-to-end packet delays, due to lack of back-
pressure to push packets toward their destinations, sometimes
leading to packet looping. These problems are more severe at
light load. An extreme case is of a packet entering an empty
network and engaging into some kind of random walk until
reaching its destination [9].

Several approaches have been proposed to solve the delay
problem of backpressure algorithms [10–14]. Instead of using
queue differentials as weights of the MaxWeight problem,
[11] proposes representing weights with delay informationof
packets in the queues. The idea is that packets that have al-
ready experienced high delays are more likely to be scheduled
for transmission in the next time slot, whereas the original
backpressure algorithm would give longer queues higher pri-
ority irrespective of the delay experienced by packets. The
authors in [12] describe a novel backpressure-based per-packet
randomized routing framework. It leverages a shadow queue
structure that lowers complexity of maintaining queues. By
minimizing the number of hops by packets, their routing
algorithms reduce delay drastically. [13] proposes a hybrid
routing algorithm based on a shortest-path algorithm and
the backpressure routing. By forcing a set of constraints on
the number of hops that can be traversed by packets, this
method prevents packets from long paths exploration. Simi-
larly, the authors in [14] propose the use of combination of a
shortest-path algorithm and the backpressure method in order
to improve delay performance. Furthermore, they show that
implementing per-neighbor queues instead of per-flow queues
can further reduce delays, as well as system implementation
complexity.

B. Quadratic Lyapunov function based algorithms

Based on the original backpressure algorithms, Neelyet al.
developed so-called quadratic Lyapunov function based algo-
rithms (QLA) for general stochastic network utility optimiza-
tion problems [2]. Instead of purely minimizing the Lyapunov
drift, QLA is constructed by minimizing the Lyapunov drift
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plus a penalty (or the negative of a utility), in which the
penalty is weighted by a parameterV . As V gets larger, the
algorithm puts more emphasis on the resulting penalty and
less on network stability. The performance results of QLA are
given in the following[O(1/V ), O(V )] utility-delay tradeoff
form: backpressure is able to achieve a utility that is within
O(1/V ) of the optimal utility for any scalarV ≥ 1, while
guaranteeing an average network delay that isO(V ). QLA can
prevent packet looping when the penalty function is relatedto
the number of transmissions since looping adds transmissions.
However, a large delay may still prevail at low load due to the
lack of backpressure to push packets toward their destinations.

Much effort has been spent to reduce the largeO(V )
delay of QLA. The authors in [15] prove that under QLA,
the network backlog stays close to a fixed value (called
attractor), which is the dual optimal solution of a deterministic
optimization problem. While the attractor has order ofO(V ),
the fluctuation of the network backlog around the attractor is
bounded byO(log2(V )) with high probability. The authors,
therefore, propose an algorithm that pre-fills queues with null
packets that play the role of attractor. Hence, the real packets
arrive into a queue whose length is bounded byO(log2(V )),
and the algorithm achieves an optimal[O(1/V ), O(log2(V ))]
utility-delay tradeoff.

Motivated by practical implementations of backpressure
routing algorithms, the authors in [4] prove that LIFO-
backpressure achieves the optimal[O(1/V ), O(log2(V ))]
utility-delay tradeoff. Note that FIFO-backpressure would
achieve a[O(1/V ), O(V )] utility-delay tradeoff since packets
need to traverse a whole queue in order to get transmitted.
The idea behind LIFO-backpressure is straightforward: packets
constituting the attractor are trapped in the queue foreverand
serve the same role as that of null packets in the algorithm
described above. The delay improvement of LIFO over FIFO
is shown both through real experiments [3] and theoretical
studies [4].

Most of the above studies focus on the optimal utility-delay
tradeoff in terms of the scalar parameterV (or when the
parameterV becomes large). Little study has been conducted
on the effects of other network parameters on the delay
performance of backpressure routing algorithms, including
channel dynamics and traffic load in the network. As we have
shown in Section I, even though LIFO-backpressure achieves
an optimal utility-delay tradeoff performance, its delay at
low load may be very high. This work serves the goal of
better understanding the behavior of LIFO-backpressure and
shedding light on the effects of network parameters (channel
conditions and network traffic) on its delay performance.

The authors in [10] propose backpressure with adaptive
redundancy (BWAR) in the context of delay-tolerant networks.
BWAR uses an adaptive redundancy mechanism to improve
the delay performance of backpressure at low load. While RBL
resembles BWAR, it differs in two key aspects: (i) BWAR is
based on the original backpressure algorithm while BRL is
based on QLA, with a penalty function that aims to minimize
the number of transmissions, and (ii) BWAR generates du-
plicates whenever the queue length falls below some preset
threshold, whereas RBL generates replicas only when packets
get stuck in the queue due to channel degradation. We detail

Algorithm 1 BCP
1: while Qi > 0 do
2: Compute the backpressure weightwi,j for each

neighborj
3: Find the neighborj∗ such thatj∗ = argmaxj wi,j

4: if wi,j∗ > 0 then
5: Transmit one packet toj∗

6: UpdateETXi→j∗ andRi→j∗

7: else
8: Wait for a reroute period
9: end if

10: end while

RBL in Section V. Note that the idea of injecting redundant
packets was also proposed in [16, 17] for routing in delay-
tolerant networks.

We distinguish this paper from our previous work [1] by
addition of our proposed replication-based LIFO-backpressure
algorithm. We also provide the analysis and simulation results
to show that RBL improves delay performance over LIFO-
backpressure.

C. BCP explained

BCP [3] is a practical, distributed QLA implementation,
where nodes independently make routing decisions based on
local information. The routing decisions are made per packet
instead of routing all packets through the same computed path.

Since all the packets are routed to the same destination,
each node only needs to maintain one queue. LetQi represent
the backlog at nodei. Then∆Qi,j = Qi − Qj is the queue
differential (backpressure) between nodei and its neighbor
nodej. Let Ri→j denote the estimated link rate (measured in
packets per second) fromi to j andETXi→j be the average
number of transmissions for a packet to be successfully sent
over the link. In the routing policy of BCP, nodei calculates
the following backpressure weight for each neighborj:

wi,j = (∆Qi,j − V · ETXi→j) · Ri→j .

where,V is a trade-off parameter.
The routing decision (next hop of the packet) is determined

by finding the neighborj∗ with the highest weight. Then the
node needs to make the forwarding decision: ifwi,j∗ > 0, the
packet is forwarded to nodej∗, else the packet is held until
the metric is recomputed. In other words, if the weights for all
neighbour nodes are zero or negative, the node will do nothing
but wait till the next recomputation (after areroute period).
A pseudo-code of BCP is given in Algorithm 1. Since routing
decisions are made on a per-packet basis, at most one packet
can be transmitted at each iteration of the “while” loop in the
algorithm.

As a QLA algorithm, BCP aims to minimize the number
of packet transmissions (ETX) while guaranteeing network
stability. The parameterV (V ≥ 1) represents the weight of
the penalty (ETX) in the optimization problem.

QLA assumes that ETX is perfectly observed while BCP
estimatesETX based on an exponential moving weighted
average.ETX is updated as follows whenever a new sample
of ETX is obtained:ETXnew = αETXold+(1−α)ETX ,
in which the default value ofα is 0.9. In TinyOS, a node
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Fig. 2. Illustration of queueing system with dynamic threshold. In this
example, the threshold has the dynamic range [2,6] and the current threshold
is 3. Due to LIFO policy and threshold range, packet 1 and packet 2 will
never have a chance to be served and stay in the queue forever.

makes at most five attempts to transmit a packet to a neighbor.
Therefore,1 ≤ ETX ≤ 5. The link rate is calculated as the
reciprocal of the packet transmission time. The estimated link
rateR is updated based on an exponential moving weighted
average.

III. T WO-NODE ANALYSIS

In this section, we model and analyze LIFO-backpressure
(LIFO-BCP) in the context of a two-node network. Based
on the routing policy of LIFO-backpressure, we construct
a system-level queueing model with dynamic threshold and
represent it with a CTMC. Then, we provide a matrix geo-
metric method to numerically solve the CTMC and obtain the
average delay of packets in the queueing system. Meanwhile,
we usez-transform technique to analyze the average delay for
a special case.

A. BCP in two-node network

In the two-node network, packets are injected into the source
nodes and forwarded to the destination nodet. Under BCP,
the source node simply calculates the weight:

ws,t = (∆Qs,t − V ·ETXs→t) · Rs→t

= (Qs − V ·ETXs→t) · Rs→t.

The second equation comes from the fact thatQt = 0. Since
s only hast as its neighbor node,s does not need to choose
the next hop and only needs to make forwarding decisions.
Furthermore, we can dropRs→t because it does not affect
the sign of the backpressure weight. For ease of discussion,
we discard the subscripts in the formula. Based on BCP and
the form of backpressure weight, the source node forwards
a packet only whenQ > V · ETX. WhenQ ≤ V · ETX,
the source node is waiting either for the queueQ to grow or
ETX to become smaller.Thus, the value ofV ·ETX serves
as a threshold on the queue.

First, let’s take a look at the scenario of a lossless channel
with fixedETX. In this case, the threshold is static with value
V · ETX. Due to the forwarding policy of BCP,Q will be
lower bounded byV · ETX. Under FIFO, the average delay
is D = Q/λ ≥ V ·ETX/λ by Little’s Law, whereλ denotes
the packet arrival rate. This lower bound is consistent withthe
O(V ) delay result in theoretical analysis, and reaches a high
value when the loadλ is low. Asλ increases, the lower bound
decreases. Under LIFO, a fraction of packets, the number of
which is equal to the thresholdV · ETX, is trapped in the
head of the queue. These trapped packets will stay in the queue
forever and cannot be transmitted while all the other packets

3945 3950 3955 3960 3965 3970
Time (seconds)
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Queue length
V ·ETX

Fig. 3. Evolution of queue length and ETX of BCP over time withV = 2

from simulation. This illustrates the role ofV ·ETX as the threshold on the
queue.

transiting in the queue will be transmitted. Ignoring the trapped
packets and assuming exponentially distributed service time,
the Markov chain describing the evolution of the number of
packets in the queue will be the same as that of an M/M/1
queue in the lossless case.

Next, suppose the channel has a dynamicETX in the range
of [ETXmin, ETXmax]. Correspondingly, the threshold is
dynamic within range[V · ETXmin, V · ETXmax]. ThenQ
will be lower bounded byV · ETXmin due to the threshold
range. Under FIFO, the average delay isD = Q/λ ≥
V · ETXmin/λ. However, under LIFO, theV · ETXmin

packets in the head of queue are trapped forever and the
rest of the queue will be equivalent of a queue with dynamic
threshold in the range of[0, V ·ETXmax−V ·ETXmin]. For
example, in Fig. 2, the threshold range is[2, 6]. Under FIFO,
the packet needs to go through all the queue to get served and
the queue length is at least 2 due to the range of threshold.
However, under LIFO, packet 1 and packet 2 are in the queue
forever. Thus the rest of the queue is equivalent to a queue
with threshold range[0, 4]. A snapshot of simulation (Fig. 3)
illustrates the threshold effect of ETX on the queue length.

We note that the number of the ignored packets is a constant
V ·ETXmin. Therefore, the impact of the ignored packets on
the packet delivery rate is negligible when the system is run
for a long time, as also shown by our numerical results in
Section VI-C.

B. Queueing model

Now we construct a queueing model with dynamic threshold
based on the routing policy of LIFO-backpressure. Assume
that the arrival process of packets is Poisson with rateλ. The
channel is represented by the Gilbert model [18], a Markov
chain that transits between two states, namely, good state and
bad state. The transition rate from good state to bad state
is σ1 and the transition rate from bad state to good state is
σ2. Under the good channel, the threshold is 0 and service
time is exponentially distributed with rateµ1 while under the
bad channel, the threshold is a positive integerK and the
service time is exponentially distributed with rateµ2 (usually,
µ1 ≥ µ2). Thus in association with the channel model, the
threshold dynamic can also be represented by a two-state
Markov chain. Let(n, c) (n ∈ N, c ∈ {0, 1}) denote the system
states:n is the number of packets in the queue;c = 0 and
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Fig. 4. Markov chain of the single-queue system.

c = 1 represent good channel and bad channel, respectively.
Then Fig. 4 depicts the whole Markov chain for the queueing
system.

Although the simplistic Gilbert channel model assumes
that the channel can only be in two different states, it is
sufficient for qualitatively capturing the temporal dynamics
and correlation of more complex channel models. This chan-
nel model alsoimplicitly captures the effect of interferences
between nodes, whereas good and bad channels respectively
imply low and high levels of interferences. We also note
that under a lossless channel with fixed threshold, the system
state has transitions restricted to the half of the Markov chain
corresponding to good channel, which is the same asM/M/1.

C. Probability generating function

The steady-state distribution of the CTMC is denoted by
Pn,c. DefinePn , [Pn,0, Pn,1]

T . Then the steady-state distri-
bution of the queue length is

πn = Pn,0 + Pn,1 = e
TPn. (1)

We define the following probability generating functions
using z-transform: G0(z) =

∑∞
n=0 z

nPn,0, G1(z) =
∑∞

n=0 z
nPn,1, and

G(z) =

[

G0(z)
G1(z)

]

=

∞
∑

n=0

zn
[

Pn,0

Pn,1

]

=

∞
∑

n=0

znPn. (2)

The probability generating function of the steady-state dis-
tribution of queue lengthN is

FN (z) =
∞
∑

n=0

znπn =
∞
∑

n=0

zneTPn = e
TG(z). (3)

Then the average number of packets in the queue can be
obtained fromFN (z) and the average delay can be calculated
by Little’s Law:

E[N ] =
∞
∑

n=0

nπn (4)

=
d

dz
FN (z)

∣

∣

∣

∣

z=1

, (5)

E[T ] = E[N ]/λ. (6)

Next we develop a matrix geometric method [6] for solving
the steady-state distribution of the CTMC and calculating the
average delay by (4) and (6). In Section III-E, we will derive
closed-form solutions for the probability generating functions,
(2) and (3), and compute the average delay based on (5) and
(6) for the special caseK = 1.

D. Matrix geometric method

Based on the balance equations and the normalization
condition, we aim to obtain the steady-state distribution,Pn.

We first derive the balance equations at each state of the
CTMC. The balance equations at states(0, 0) and (0, 1) are:

(σ1 + λ)P0,0 = σ2P0,1 + µ1P1,0,

(σ2 + λ)P0,1 = σ1P0,0.

DefineQ ,

[

σ1 −σ2

−σ1 σ2

]

, Λ ,

[

λ 0
0 λ

]

, M1 ,

[

µ1 0
0 0

]

,

then the above balance equations can be simplified as:

(Q+ Λ)P0 = M1P1.

The balance equations at states(n, 0) and (n, 1) (1 ≤ n <
K) are:

(λ+ µ1 + σ1)Pn,0 = λPn−1,0 + µ1Pn+1,0 + σ2Pn,1,

(λ+ σ2)Pn,1 = λPn−1,1 + σ1Pn,0,

⇒ (Λ +M1 +Q)Pn = ΛPn−1 +M1Pn+1.

The balance equations at states(K, 0) and (K, 1) are:

(λ+ µ1 + σ1)PK,0 = λPK−1,0 + µ1PK+1,0 + σ2PK,1,

(λ+ σ2)PK,1 = λPK−1,1 + µ2PK+1,1 + σ1PK,0.

DefineM2 ,

[

µ1 0
0 µ2

]

, then

(Λ +M1 +Q)PK = ΛPK−1 +M2PK+1.

The balance equations at states(n, 0) and (n, 1) (n > K)
are:

(λ+ µ1 + σ1)Pn,0 = λPn−1,0 + µ1Pn+1,0 + σ2Pn,1,

(λ+ µ2 + σ2)Pn,1 = λPn−1,1 + µ2Pn+1,1 + σ1Pn,0,

⇒ (Λ +M2 +Q)Pn = ΛPn−1 +M2Pn+1.

In summary, the balance equations are the following:


















(Λ +Q)P0 = M1P1,

(Λ +M1 +Q)Pn = ΛPn−1 +M1Pn+1,1 ≤ n < K,

(Λ +M1 +Q)PK = ΛPK−1 +M2PK+1,

(Λ +M2 +Q)Pn = ΛPn−1 +M2Pn+1, n > K.

(7)

(8)

(9)

(10)

Now we chooseP1 as an unknown vector and expressPn

as a linear transform ofP1. By (7), we have

P0 = (Q+ Λ)−1M1P1 , T1P1.
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We expressPn in the matrix geometric form:

Pn =

{

Rn−1
1 P1, if 1 ≤ n < K,

Rn−K
2 PK , if n ≥ K.

Then by takingPK+1 = R2PK into (9), we have:

PK = (Λ +M1 +Q−M2R2)
−1ΛPK−1

= (Λ +M1 +Q−M2R2)
−1ΛRK−2

1 P1

, T2P1.

The steady-state distribution can now be expressed as fol-
lows:

Pn =







T1P1, if n = 0,
Rn−1

1 P1, if 1 ≤ n < K,

Rn−K
2 T2P1, if n ≥ K.

(11)

The sum ofPn from 0 to ∞ is
[
∑∞

n=0 Pn,0
∑∞

n=0 Pn,1

]

= (T1 +

K−1
∑

n=1

Rn−1
1 +

∞
∑

n=K

Rn−K
2 T2)P1.

Based on the normalization condition and the two-state
channel model, we have the following equation, from which
P1 can be solved:

[

1 1
σ1 −σ2

] [
∑∞

n=0 Pn,0
∑∞

n=0 Pn,1

]

=

[

1
0

]

. (12)

Before solving (12), we need to determineR1 andR2. They
can be numerically solved as follows. By (8), we have

(Λ +M1 +Q)R1P1 = ΛP1 +M1R
2
1P1. (13)

A sufficient condition to satisfy (13) is

(Λ +M1 +Q)R1 = Λ+M1R
2
1. (14)

To find R1, we can iteratively calculate the following until
convergence:

R1(j) = (Λ +M1 +Q)−1(Λ +M1R
2
1(j−1)),

whereR1(j) is the approximation toR1 at thej-th step.
[6] has shown that by starting withR1(0) = 0, the se-

quence{R1(0),R1(1),R1(2), ...} is a monotonically increasing
sequence that converges to the minimal nonnegative solution
to (14).

Similarly, R2 can also be found through iteratively calcu-
lating

R2(j) = (Λ +M2 +Q)−1(Λ +M2R
2
2(j−1)).

With R1, R2 andP1 known and by (1), (4), (6), and (11),
the average delay of packets in the queueing system is

E(T ) = e
T (

K−1
∑

n=1

nRn−1
1 +

∞
∑

n=K

nRn−K
2 T2)P1/λ. (15)

The computation of the geometric sum in (15) can be
conveniently carried out through diagonalization and eigen-
decomposition ofR1 andR2. The method we describe here
applies directly for the case ofK ≥ 2. The average packet
delay whenK = 1 can also be numerically computed using
the matrix geometric method with minor change. Numerical
results obtained by the matrix geometric method will be
presented in Section VI.

E. z-transform method for special case

Since BCP updates ETX by the exponential moving
weighted average and the defaultα in BCP implementation
is 0.9, the change in the thresholdV · ETX every time is
relatively small (e.g., +1/-1), which can also be seen from
Fig. 3. Thus we analyze the special case where the threshold
varies between 0 and 1 (K = 1).

WhenK = 1, the balance equations are:










(Λ +Q)P0 = M1P1,

(Λ +M1 +Q)P1 = ΛP0 +M2P2,

(Λ +M2 +Q)Pn = ΛPn−1 +M2Pn+1, for n ≥ 2.

(16)

(17)

(18)

Multiplying both sides of (17) and (18) withzn and
summing fromn = 1 to ∞, we can get

(Λ+M2+Q)
∞
∑

n=1

znPn = z(M2−M1)P1+Λz
∞
∑

n=1

zn−1Pn−1

+M2
1

z

∞
∑

n=1

zn+1Pn+1,

According to definition ofG(z) in (2),

(Λ +M2 +Q)[G(z)− P0] = z(M2 −M1)P1 + ΛzG(z)

+M2
1

z
[G(z)− P0 − zP1].

We then replaceP0 by (Q+ Λ)−1M1P1 from (16):

[z2Λ− z(Λ +M2 +Q) +M2]G(z) =

(1− z)[M2(Q + Λ)−1M1 + z(M2 −M1)]P1. (19)

To simplify, we rewrite (19) as:

A(z)G(z) = (1− z)B(z)P1,

where

A(z) = z2Λ− z(Λ +M2 +Q) +M2,

B(z) = M2(Q + Λ)−1M1 + z(M2 −M1).

Then

G(z) =
adjA(z)

detA(z)/(1− z)
B(z)P1. (20)

In order to obtainG(z), we need to solveP1. Since it is a
two-dimension vector, we need to find two equations. The first
equation is the normalization condition, i.e.,FN(z)|z=1 = 1,
and by (3), we have

e
T adjA(z)|z=1

[detA(z)/(1− z)]z=1
B(z)|z=1P1 = 1. (21)

The second equation is obtained by finding a root of
detA(z) = 0 such that the rootz0 satisfies0 < z0 < 1.
Then the second equation is

e
T adjA(z0)B(z0)P1 = 0. (22)

Assumingσ1 = σ2 = σ, µ1 = µ2 = µ, we have

adjA(z) =
[

µ− (λ+ µ+ σ)z + λz2 −σz
−σz µ− (λ+ µ+ σ)z + λz2

]

,

detA(z) = (1− z)(µ− λz)[µ− (λ+ µ+ 2σ)z + λz2],
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and

z0 = (2σ + λ+ µ−
√

(2σ + λ+ µ)2 − 4µλ)/2λ.

By solving (21) and (22), we obtain

P1 =
λ(µ− λ)

µ

[

1
µ
− 2λ2

µE1

2λ
E1

]

, (23)

whereE1 = λµ+4λσ+2µσ− (λ+2σ)E2 +3λ2 +4σ2 and
E2 =

√

(λ+ µ+ 2σ)2 − 4µλ.
By substituting (23) into (20) and using (3), (5), and(6), the

average delay of packets in the queueing system whenK = 1
is

E[T ] =
2λ

3λ2 + (µ+ 4σ)λ− E2λ− 2E2σ + (2µσ + 4σ2)

+
1

µ− λ
. (24)

Expanding the Maclaurin series of (24) onλ, we obtain the
following approximation of the average delay at low load:

E[T ] = (
2

µ
+

1

2σ
)−

(µ+ 4σ)(µ+ σ)

2µσ2(µ+ 2σ)
λ+ o(λ). (25)

By (25), the first term in the series (which is independent
of λ) is sensitive to channel dynamics as captured by the
parameterσ. If σ is small (i.e., the channel and threshold
are slowly varying), then the average delay at low load (i.e.,
λ → 0) may get high. For example, suppose that the average
service time1/µ is on the order of dozens of milliseconds
while the average time that the channel stays in the same
state1/σ is on the order of a few seconds. Then, the average
delay will be on the order of seconds. This stands in contrast
to the lossless case where the average delay is on the order
of milliseconds. Furthermore, the first-order derivative with
respect toλ of the average delay is strictly negative. Thus,
the average delay decreases with load under light traffic. This
is consistent with the counter-intuitive behavior of LIFO-
backpressure observed in simulations.

An intuitive explanation of the delay behavior is that the
packet at the head of queue is stuck when the threshold is 1
(bad state) and only gets served when the threshold returns to
0 (good state). Thus, the queueing delay of the stuck packet
is mostly determined by the transition time of the threshold
from 1 to 0, which can be large when the channel is slowly
varying. As the traffic load increases, the proportion of stuck
packets decreases, thus reducing the overall average delay.

As discussed in Section III-A, the number of undelivered
(trapped) packets in the queue is a constant, which is negligible
over the long run. However, the probability that an arriving
packet finds the threshold set to 1 is aboutσ1/(σ1 + σ2) at
low load. Hence, a large number of packets may experience
very high delay.

IV. N ETWORK ANALYSIS

In this section, we analyze the average packet delay of
LIFO-backpressure for a chain network at low load. For the
network analysis, we use similar notations as in Section III.

Consider a chain network consisting ofN+1 nodes, labelled
{0, 1, 2, .., N}. There is a bidirectional wireless channeli
between nodei and nodei − 1. We assume that exogenous

Node 3 Node 2 Node 1 Node 0

Channel 3 Channel 2 Channel 1

Fig. 5. The steady state of a four-node chain network under LIFO-
backpressure withV ·ETXmin = 1.

packets arrive into nodeN and are routed towards node
0 by LIFO-backpressure. The lossy channel has a dynamic
threshold (V · ETX) varying betweenV · ETXmin and
V ·ETXmax as in the Gilbert model while the lossless channel
has a fixed thresholdV · ETXmin. For ease of discussion,
we assume thatV · ETXmin andV · ETXmax are positive
integers. The service time (transmission time) of each channel
is assumed to be exponentially distributed. We are interested
in the average packet delay of LIFO-backpressure at low load,
i.e., whenλ → 0. Before analyzing the delay, we characterize
the steady-state queue occupancy at each node.

Lemma 1. As λ → 0, the steady-state queue occupancy in
the chain network under LIFO-backpressure is almost surely
(a.s.)

Qi = iV ·ETXmin, ∀i = 1, 2, ..., N, (26)

for both lossless and lossy channel models.

Proof: See the Appendix.
Fig. 5 illustrates the steady state of a four-node chain

network under LIFO-backpressure, whereV · ETXmin = 1.
These packets will stay in the network forever while all other
packets will reach node 0 within a finite time a.s. As explained
in the proof of Lemma 1, there can be at most one untrapped
packet in the network at any time whenλ → 0. The packet
will go through N hops to get delivered:N → N − 1 →
N − 2 → ... → 1 → 0. If we ignore the trapped packets
in all the queues, then, under lossless channel, each queue is
equivalent of a queue with threshold 0. Under lossy channel,
each queue is equivalent of a queue with dynamic threshold in
the range of[0,K], whereK = V ·ETXmax−V ·ETXmin.

Next, we detail the models for the lossless and lossy
channels. In the lossless channel model, we assume that the
thresholds of all the channels,1, 2, ..., N , are fixed to0 and
the packet service time is exponentially distributed with rate
µ. In the lossy channel model, the channels of each node
are identically and independently represented by a Gilbert
model, a Markov chain that transits between good state and
bad state. The transition rate from good state to bad state
is σ1 and the transition rate from bad state to good state is
σ2. Under the good channel, the channel threshold is0 and
service time is exponentially distributed with rateµ1 while
under the bad channel, the threshold isK and the service
time is exponentially distributed with rateµ2 (with µ1 ≥ µ2).

As λ → 0, a packet arriving to the network sees each queue
in steady state. Thus, for the lossless channel case, the average
delay per hop is1/µ and the total average packet delay isN/µ.

For the lossy channel case, suppose a new packet arrives to
nodei. Let (n, c) (n, c ∈ {0, 1}) denote the possible system
states for nodei. Here,n corresponds to the number of packets
in the queue of nodei, while c = 0 and c = 1 respectively
represent good and bad states of the channel at nodei. State
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transitions can be described by the first two columns of the
Markov chain in Fig. 4.

Just after the arrival of a new packet, the system can either
be in state(1, 0) (i.e., one packet and good channel) with
probabilityσ2/(σ1+σ2), or in state(1, 1) (one packet and bad
channel) with probabilityσ1/(σ1+σ2). The system transits to
the state of no packets and good channel, i.e., (0,0), when the
packet gets transmitted to nodei− 1. Thus the delay that the
packet experiences in the queue is the time that the system
needs to transit from either(1, 0) or (1, 1) to (0, 0), which
we denote byT1 andT2, respectively. LetT0 denote the time
taken for transition from the current state to the next state.

If the system is at state(1, 0) after the packet arrival, the
average delay of the packet is

E[T1] = E[T0] + Pr{next state= (1, 1)}E[T2]

+ Pr{next state= (0, 0)} · 0

=
1

µ1 + σ1
+

σ1

µ1 + σ1
E[T2]. (27)

On the other hand, if the system is at state(1, 1) after the
packet arrival, the average delay of the packet is

E[T2] = E[T0] + Pr{next state= (1, 0)}E[T1]

=
1

σ2
+ E[T1]. (28)

Solving (27) and (28), we have

E[T1] =
σ1 + σ2

σ2µ1
, E[T2] =

σ1 + σ2 + µ1

σ2µ1
.

Therefore, the expected packet delay for one hop at low
load is

E[T ] =
σ2

σ1 + σ2
E[T1] +

σ1

σ1 + σ2
E[T2]

= (1 +
σ1

σ2
)
1

µ1
+

σ1

σ2(σ1 + σ2)
. (29)

Assumingσ1 = σ2 = σ andµ1 = µ, the average packet
delay per hop is2/µ + 1/2σ. Thus, by the linearity of
expectation, the total average packet delay under lossy channel
is N(2/µ + 1/2σ). As in the two-node network case, we
observe that the delay gets high ifσ is small, i.e., the channel
dynamics are slow. Note that channel contention between
different neighbors does not occur because the analysis is for
low load. However, our simulations in Section VI do capture
wireless interference effects.

V. REPLICATION-BASED LIFO-BACKPRESSURE

A. Algorithm description

Our previous analysis indicates that the high delay of
LIFO-backpressure at low load is due to threshold dynamics.
Consider again a scenario where the threshold varies between 0
and 1. The idea underlying RBL is as follows: when a packet
at the tail gets stuck due to threshold increasing from 0 to
1, we do not wait indefinitely till the threshold returns to 0.
Rather, after a certain period of time, we generate a replicaof
the stuck packet and place it at the head of the queue. Note
that due to the LIFO scheduling policy, replicas have lower
priority than the original packets for transmission. Basedon
the routing policy of LIFO-backpressure, the original packet

Algorithm 2 RBL-BCP
1: REP FLAG = false // This flag indicates whether a

replica has been generated or not
2: while Qi > 0 do
3: Compute the backpressure weightwi,j for each

neighborj
4: Find the neighborj∗ such thatj∗ = argmaxj wi,j

5: if wi,j∗ > 0 then
6: Transmit one packet toj∗

7: UpdateETXi→j∗ andRi→j∗

8: REP FLAG = false
9: else

10: if ⌊ETXi→j∗⌋ has increasedand Qj∗ has not
increasedand REP FLAG is falsethen

11: call Replicate
12: end if
13: Wait for a reroute period
14: end if
15: end while
16:

17: function REPLICATE

18: Wait for a replication period; exit upon packet arrival
19: Copy the packet at the tail of queue
20: Place the replica at the head of queue
21: REP FLAG = true
22: end function

can be served immediately since the queue length is larger than
1 after adding the replica. Algorithm 2 gives the pseudo-code
of RBL-BCP, an implementation of RBL.

In general, the threshold at a node depends both on the
queue length of its neighbors and on the link quality to its
neighbors. Therefore, the threshold may increase under two
scenarios: (1) the queue length of the selected neighbor has
increased; (2) the ETX to the selected neighbor has increased.
In the former case, adding packets to the network would only
exacerbate congestion. In the latter case, however, replication
may help. As a result, RBL works as follows: if packets gets
stuck in the queue solely due to increasing ETX (see line 10),
then a packet at the tail of the queue is replicated onto the
head.

The replication is delayed by a certain amount of time,
the replication period, to avoid congesting the network (see
line 18). More precisely, if new packets arrive to the queue
during the replication period, then the replica generationis
cancelled. In Section VI, we will show how the length of the
replication period affects the number of generated replicas and
delay performance. In the case that the threshold increasesby
more than one, RBL-BCP generates only one replica to avoid
causing congestion. A binary variable REPFLAG is used for
this purpose. As explained in Section III-E, fluctuations inthe
thresholdV · ETX are generally small and this situation is
uncommon.

Under static channel conditions, where the ETX remains
constant, the replication condition will never be satisfiedand
there will be no replicas generated. In these cases, the RBL-
BCP reverts to the original BCP, meaning that the replication
mechanism does not affect the delay performance of BCP for
lossless channels.
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Fig. 6. Truncated Markov chain of RBL for low load analysis

B. Analysis of RBL

We analyze the average delay of RBL on the two-node
network when the threshold varies between 0 and 1, i.e.,
K = 1. Note that there could be at most one replica in the
queue whenK = 1. Let the tuple(n, c, r) (n ∈ N, c ∈
{0, 1}, r ∈ {NR,R}) denote the system states:n is the
number oforiginal packetsin the queue (excluding replicas);
c = 0 and c = 1 represents good channel and bad channel,
respectively;r = NR means that there is no replica in
the queue andr = R means that there is one replica in
the queue. Note that the queue length (i.e., the number of
packets including replicas) isn + I{r=R}, whereI{•} is the
indicator function. Fig. 6 depicts a truncated Markov chainof
the queueing system under RBL.

In RBL, a replica is generated whenever packets get stuck
in the queue due to threshold increasing. Since the threshold
varies between 0 and 1, the only possible stuck packet is
the packet at the head. When the packet gets stuck, i.e., at
state(1, 1, NR), RBL waits for a replication period, which is
assumed to be an exponential random variable with rateγ. If
there is no packet arrival during the replication period, RBL
generates a replica and the system transits to state(1, 1, R).
Since the replica is put in the queue head, the LIFO scheduler
will serve the original packets first. The system transits from
the states with one replica to the states with no replica onlyat
(0, 0, R), where the threshold is 0 and the replica is the only
packet in the queue.

Next, we calculate the average delay based on the average
number of original packets in the queue. We do not use
average queue length because the delay of the replica does
not contribute to the average delay and is thus ignored. Let
the steady-state distribution of the CTMC be denoted by
Pn,c,r. Then the steady-state distribution of number of original
packets isπn = Pn,0,NR + Pn,1,NR + Pn,1,R + Pn,0,R.

The same as LIFO-backpressure, the CTMC of RBL has
infinite number of states. However, we can still use the
truncated CTMC of 12 states in Fig. 6 and obtain correct
first-order Maclaurin series. To see this, note that we have the
following balance equation by considering states(0, 0, NR)

and (0, 1, NR) together,

λ(P0,0,NR+P0,1,NR) = µ1P1,0,NR+µ1P0,0,R ≥ µ1P1,0,NR,

sinceP0,0,NR + P0,1,NR ≤ 1, we haveP1,0,NR = O(λ).
Another balance equation is

λP0,1,NR + (σ1 + λ)P1,0,NR = µ1P2,0,NR + σ2P1,1,NR

+ µ1P0,0,R ≥ σ2P1,1,NR.

HenceP1,1,NR = O(λ).
We also have

λπ0 = µ1P1,0,NR + µ2P1,1,R + µ1P1,0,R

≥ µ2(P1,0,NR + P1,1,R + P1,0,R).

Thus P1,0,NR + P1,1,R + P1,0,R = O(λ) and furtherπ1 =
O(λ).

Similarly, from the balance equations we can obtainπ2 =
O(λ2) andπn = O(λn) for n ≥ 3.

The average delay is thus

E(T ) =
E(N)

λ
=

1

λ

∞
∑

n=0

nπn

=
1

λ
(π1 + 2π2 +

∞
∑

n=3

nπn),

in which
∞
∑

n=3

nπn ≤
∞
∑

n=3

nλn =
3λ3 − 2λ4

(1− λ)2
= O(λ3).

Then the average delay can be calculated by

E(T ) =
1

λ
(π1 + 2π2) +O(λ2).

This indicates that we can assign zero probability to system
states with queue length over 2 and obtain the same first-order
Maclaurin series, justifying the truncation method.

After obtaining the steady-state distribution of the truncated
CTMC, we can calculate the average delay by

E(T ) =
1

λ
(π1 + 2π2)

=
1

λ
[P1,0,NR + P1,1,NR + P1,1,R + P1,0,R

+ 2(P2,0,NR + P2,1,NR + P2,1,R + P2,0,R)]. (30)

Assuming thatσ1 = σ2 = σ, µ1 = µ2 = µ, the average
delay of RBL at low load is approximated by

E(T ) =

[ µ

2 + σ

γ(µ+ σ) + µσ
+
1

µ

]

+

[

1

µ2
−

σ(µ− 2σ)

2(γ(µ+ σ) + µσ)2

−
µ3 + 4µ2σ + 6µσ2 + 8σ3

2µσ(µ+ 2σ)(γ(µ+ σ) + µσ)

]

λ+ o(λ). (31)

Whenγ → 0,

lim
γ→0

E(T ) = (
2

µ
+

1

2σ
)−

(µ+ 4σ)(µ+ σ)

2µσ2(µ+ 2σ)
λ+ o(λ),

which is the same as the original LIFO-backpressure.
From (31), E(T )|λ=0 is monotonically decreasing with

increasingγ. Thus with γ > 0 and λ being small enough,
the average delay of RBL is smaller than that of the original
LIFO-backpressure.
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Fig. 7. Average packet delay versus packet arrival rate (traffic load) λ for
different threshold transition ratesσ and fixed service rateµ = 1.

VI. N UMERICAL AND SIMULATION RESULTS

In this section, we provide numerical results obtained by
the matrix geometric method described in Section III. We
also provide simulation results of (LIFO-)BCP to verify the
existence of the high delay of LIFO-backpressure at low load
in large networks. Simulation results comparing BCP and
RBL-BCP are also provided.

A. Numerical results

Numerical results for the average packet delay in the two-
node queueing model are depicted in Fig. 7 (a) and (b), for
the casesK = 1 andK = 10 respectively. ForK = 1, the
delay atλ → 0 increases asσ gets smaller, which is consistent
with the first term of the analytical result derived using thez-
transform method in Eq. (25). In addition, the average delay
decreases withλ at low load, as predicted by the negative
first-order derivative of (25).

ForK = 10, the results are qualitatively similar to the case
K = 1 whenσ is small (e.g.,σ = 0.01). However, with faster
channel dynamics (e.g.,σ = 1), we observe that the delay
is small at low traffic load and increases withλ. As pointed
out in Section III-E, fluctuations in the threshold are generally
small (e.g., +1/-1) and, therefore, the caseK = 1 appears
more realistic.

Finally, we note that for both the casesK = 1 andK = 10,
all the curves merge asλ → 1. This means that temporal
channel dynamics do not have as much effect at high load.

B. Simulation results of BCP

We next describe simulations of the BCP protocol (with
V = 2). Our goal is to verify that our analysis qualitatively
captures the behavior of this protocol under different chan-
nel conditions. Our simulation is run on TOSSIM [19], the
standard TinyOS simulator for wireless sensor networks. The
simulated network consists of a root node and some sensor
nodes, both of which use the sensor model MICAz. In a
simulation, the sensor nodes are first initialized uniformly
randomly within one second. After initialization, all the sensor
nodes periodically generate packets and inject them into the
network layer, where BCP routes the packets toward the root
node. The goal of the random initialization is to reduce the
amount of MAC contention and MAC delays that would occur
if all the nodes generated packets at the same time.

Our first set of simulations are performed on a five-node
network. The results are depicted in Fig. 1, shown in the
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(a) Lossy channel (Received power
= -80 dBm)
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Fig. 8. Average delay versus load with fixed noise power -85 dBm in a
25-node grid network.

introduction of the paper. The simulations use real RSSI
(received signal strength) traces collected from a vehicular
environment, where each sensor node is attached to a different
wheel of a car and the root node is placed on the driver
seat [20]. For the lossless channel, we configure the noise
power to be -95 dBm, while for the lossy channel, we use real
noise traces collected from the Meyer Library of Stanford [21].
These traces exhibit complex temporal dynamics, wherein the
noise floor is at about -98 dBm and spikes are at about -86
dBm. The results are consistent with our analytical findings,
that is, the high delay at low traffic load and initial decrease
of the delay with load occurs under bursty channel conditions,
but not under perfect channel conditions.

Our second set of simulations are conducted for a network
consisting of 24 sensor nodes and one root node. The topology
is a 5 × 5 grid where the root node is located at the center.
In this topology, a link only exists between direct neighbors.
In other words, nodes that are two hops away cannot hear
each other. We fix the noise power to be -85 dBm while we
test different received signal powers, namely -80 dBm and
-75 dBm. The packet error probability at signal-to-noise-ratio
(SNR) of 10 dB is close to zero while that at SNR of 5 dB
is varying in the range between 0 and 1/2 in the simulator.
Therefore, the two different received powers represent lossless
and lossy channels.

Fig. 8 shows results for the two different received powers
under differentα values. Recall that BCP updates ETX by
ETXnew = αETXold+(1−α)ETX . Each point represents
an average taken over 10 simulations, and 95% confidence
intervals are also depicted. In Fig. 8(a), when the channel is
lossy and the threshold is dynamic, the average delay is as
high as 3710.92 ms at 0.5 pkts/sec/node and decreases with
the load. In Fig. 8(b), on the other hand, when the channel
is lossless and the threshold is static, the average delay is
only 31.46 ms at 0.5 pkts/sec/node and is non-decreasing
with the load. The average delay at low load in the dynamic
case is at least two orders of magnitude larger than in the
static case. This phenomenon occurs even though the average
number of transmissions in the dynamic case is only at most
twice larger than that in the static case. These results showcase
the manifestation and significance of channel-sensitive delay
behavior of LIFO-backpressure in large networks. We note
that increasing the value ofα somewhat helps to alleviate this
problem, but does not eliminate it.
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Fig. 9. Performance of BCP and RBL-BCP on a simulated 15-nodeintra-car wireless sensor network.
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Fig. 10. Performance of BCP and RBL-BCP in the 25-node grid network.

C. Simulation results of RBL-BCP

In the implementation of RBL-BCP, we design the replica-
tion period to be an exponential random variable with a certain
average value. In the following, we compare three protocols:
(1) original BCP; (2) RBL-BCP with average replication
period 2 s; (3) RBL-BCP with average replication period
500 ms. In addition to evaluating average delay, we also
consider two other important metrics: the packet delivery rate,
i.e., the ratio of the number of delivered original packets to
the number of generated original packets; and the replica ratio,
i.e., the ratio of the number of generated replicas to the number
of generated original packets.

Our simulation models a 15-node intra-car wireless sensor
network. The network consists of 15 nodes, in which the root
is on the driver seat, three sensors are placed in the engine
compartment, four sensors are respectively attached to thefour
wheels, three sensors are placed on passenger seats and the rest
placed on the chassis. We use the same real noise traces as the
first simulation in VI-B. The simulation results (average delay,
packet delivery rate and replica ratio) are plotted in Fig. 9.

Fig. 9(a) shows that at low load, the average delay of
RBL-BCP is much lower than BCP. For example, at a load
of 0.5 pkts/sec/node, the average delay of BCP is 2,237 ms
while that of RBL-BCP (500 ms) is 1,067 ms, which is
almost a two-fold improvement. From Fig. 9(c), the number of
replicas generated with replication period 2 s is less than with
replication period 500 ms, as expected. With more replicas
generated, the reduction on the delay with replication period

500 ms is larger than with replication period 2 s. Since
transmissions of more replicas consumes more power, this
could be viewed as a tradeoff between power consumption
and delay. From Fig. 9(c), we can also see that the number
of replicas vanishes as load increases, which confirms that the
replication mechanism does not further congest the networkat
high load. This can also be verified by the observation that the
average delays (Fig. 9(a)) and packet delivery rates (Fig. 9(b))
of the three protocols are undistinguishable at high load.

Fig. 9(b) shows that both BCP and RBL-BCP achieve high
packet delivery rates (around 98% or higher), at low load.
This result indicates that the impact of trapped packets is
relatively negligible. In fact, one can observe that RBL-BCP
achieves higher packet delivery rates than BCP. Indeed, RBL-
BCP replicates and delivers packets that would be trapped
under BCP.

Our second comparison is on the same5× 5 grid network
as described in the second simulation of VI-B. We fix the
noise power to be -85 dBm and the received signal power is
configured to be -80 dBm. The simulation results are plotted
in Fig. 10, which are similar with the first simulation on the
15-node intra-car wireless sensor network.

VII. C ONCLUSION

We developed a queueing-theoretic model and solved it
using matrix geometric numerical methods, to elucidate the
channel-sensitive delay behavior of LIFO-backpressure. We
also provided closed-form analytical results on the average
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delay that showcases the high delay problem due to channel
dynamics. The results were extended to a chain network, in
a low load regime. Through simulations, we further verified
the existence and significance of the channel-sensitive delay
behavior of LIFO-backpressure in large networks. Therefore,
an important finding of this paper was to show that, under
lossy channel conditions, LIFO-based backpressure may suffer
from similar high delay issues at low load as FIFO-based
backpressure. An intuitive explanation for the high delay is
that some packets get stuck in the queue due to the threshold
increase (i.e., the channel quality degrades). These packets
have to wait until the threshold decreases (i.e., the channel
quality improves) to get transmitted.

To remedy the high-delay problem, we proposed a
lightweight replication-based LIFO-backpressure (RBL) algo-
rithm, which improves delay performance without compro-
mising high throughput performance. RBL comes, however,
at the expense of additional traffic transmissions at low load.
Hence, achieving an optimalpower/delaytradeoff could be an
interesting direction to explore. Besides generating replicas
like RBL, another possible solution for improving the delay
performance of LIFO-backpressure at low load is to inject
encoded packets. This problem is also left as an interesting
area for future work.

APPENDIX

PROOF OFLEMMA 1

Proof: We first prove that in the described state, none of
the packets in the network can leave it. Consider the packets
at nodei, whose queue length isQi = iV ·ETXmin. Nodei
has two neighbors, nodei+1 and nodei−1. The backpressure
weight of nodei+ 1 is

wi,i+1 = (Qi −Qi+1 − V · ETXi→i+1) · Ri→i+1

≤ (iV ·ETXmin − (i+ 1)V · ETXmin

− V ·ETXmin) · Ri→i+1 < 0,

for both lossless and lossy channels. Thus the transmission
condition of BCP is not satisfied and the packets of nodei
can not be transmitted to nodei+1. The backpressure weight
of nodei− 1 is

wi,i−1 = (Qi −Qi−1 − V · ETXi→i−1) · Ri→i−1

≤ (iV · ETXmin − (i− 1)V · ETXmin

− V ·ETXmin) · Ri→i−1 = 0.

Similarly, the packets can not be transmitted to nodei − 1,
either.

Second, we prove that in the described state, any new packet
arriving into this network will leave the network within a finite
time a.s. Assume that a new packet arrives to nodeN and sees
the network in the steady state. Then,

wN,N−1 = (QN −QN−1 − V · ETXN→N−1) · RN→N−1

= ((NV ·ETXmin + 1)− (N − 1)V ·ETXmin

− V · ETXN→N−1) · RN→N−1

= (V ·ETXmin + 1− V ·ETXN→N−1) · RN→N−1.

For the lossless case, since the channel thresholdV ·
ETXN→N−1 = V · ETXmin, the backpressure weight will
be positive and the transmission condition is satisfied. Then the

packet will be transmitted to nodeN−1, with the service time
being exponentially distributed. For the lossy case, sincethe
channel thresholdV ·ETXN→N−1 will return toV ·ETXmin

within a finite time a.s. and the service time is exponentially
distributed, the packet will move to nodeN−1 within a finite
time a.s. Likewise, the packet will experience finite delay a.s.
at the next hops before leaving the network. Asλ → 0, the
next packet arrival to the network will take place a.s. after
the current packet leaves. Therefore, all the packets arriving
to the network see the system in the steady state and leave the
network within a finite time.
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