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I. INTRODUCTION AND MOTIVATION

The next generation of grid applications demand fast and
reliable transfers of extremely large volumes of data between
distributed sites around the world. For example, the U.S.
Department of Energy’s Genomes to Life project relies on ultra
high throughput connections between research laboratories and
supercomputers for processing and analyzing massive amounts
of data.

Despite the seemingly excessive capacity of network back-
bones, experiments have shown that current TCP/IP architec-
tures do not match the needs of high throughput applications.
TCP congestion control policies and the packet switching
nature of IP are among of the major causes of this discrepancy.
Thus, significant efforts have recently been devoted to develop
complementary architectures that supportadvanced channel
reservation. Such architectures are specifically tailored for
large transfers. Their most important property is to offer hosts
the ability to reserve in advancededicatedchannels (paths) to
connect their resources.

Providing efficient algorithms for advanced channel reser-
vation is highly challenging. Variants of this problem have
proved to be NP-complete [1]. Thus, most of the work
conducted in this area consists of heuristics. What is missing,
however, is an absolute benchmark against which the perfor-
mance of these heuristics can be compared.

Our first contribution in this work is to derive an upper
bound on the capacity (throughput) limits of advanced reser-
vation architectures. This bound is based on a maximum
concurrent flow optimization [2]. The time complexity to
compute this bound is polynomial in the network parameters.
No algorithm can exceed this bound and, thus, any heuristic
approaching it must necessarily be near-optimal.

Our second contribution is a new competitive algorithm,
called RateComp. We prove that, forany set of connection
requests, the maximum delay experienced by each request is
within a finite multiplicative factor of the value achieved with
an optimal off-line algorithm. Furthermore,RateComp reaches
the maximum rate (throughput) achievable by any algorithm.

We present simulations results showing that the saturation
throughput ofRateComp is close to the capacity bounds and
far higher than that of a simple greedy algorithm.
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II. DERIVATION OF CAPACITY LIMITS

Our model consists of an arbitrary directed network topol-
ogy, denoted byG(V, E), whereV is the set of nodes andE
is the set of links connecting the nodes. The capacity of each
link e ∈ E is C(e). A connection request contains the tuple
(i, j, s), wherei ∈ V is the source node,j ∈ V − {i} is the
destination node, ands is the file size with mean̄s. Requests
arrive according to an arbitrary, but ergodic, stochastic process.

We assume that requests generate an average demand of
λij = αijλ bits/second from each nodei to nodej, where
αij is a fixed parameter. We define thesaturation throughput
λ∗ as the maximum value ofλ such that the average delay
experienced by requests is finite (delay is defined as the time
elapsing between the arrival of a connection request until the
completion of the corresponding connection).

Determining analytically the value ofλ∗ is a difficult task
as the answer generally depends on the statistics of the arrival
process. Instead, we derive a boundf∗ on λ∗ that holds for
any arrival process. The derivation of the bound rests on the
following argument:

Lemma 2.1:If during any time intervalT , each nodei ∈
V sends on averageγij bits of information per unit time to
nodej ∈ V − {i}, then there exists a multi-commodity flow
allocation with flow valuesfij = γij .

We note that the above lemma holds for arbitrary values
of T . TakingT →∞, we thus identifyγij with λij .

One can express the multi-commodity flow with a single
parameterf by settingfij = αijf . The maximization off is
a linear planning problem known as theMaximum Concurrent
Flow Problem (MCFP)[2]. Using Lemma 2.1 we have:

Theorem 2.2:The maximum value off in MCFP, denoted
by f∗, provides an upper bound on the capacity limit of
networkG, i.e., λ∗ ≤ f∗.

Example:Consider the topologies illustrated in Fig. 1, with
20 Gb/s full-duplex links. Topology 1(a) represents an 8-
node complete graph while topology 1(b) models the National
LambdaRail, a network testbed governed by the U.S. research
community. Assuming a uniform traffic distribution (αij = 1),
we obtain a capacity bound off∗ = 20 Gb/s for each flow in
topology 1(a) andf∗ = 1.33 Gb/s for each flow in topology
1(b). The result for topology 1(a) is expected since the flow
between every pair of nodes can be routed through the direct
link connecting them.
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(b) 11-node National LambdaRail

Fig. 1. Simulations topologies.

III. A COMPETITIVE ON-LINE ALGORITHM

A seemingly natural way to implement advanced channel
reservation is to follow a greedy procedure, where, at the
time a request is placed, the request is allocated a route
guaranteeing the earliest possible completion time. We refer to
this approach asGreedy. The problem with it is that requests
may be allocated very long paths that consume sizable network
resources. In fact, it is possible to show that for certain arrival
patterns, the saturation throughput ofGreedy is Ω(|V |) times
smaller than the optimal throughput.

We propose an alternative approach. Instead of immediately
reserving a path for each incoming request as inGreedy, we
accumulate several arrivals in a “batch” and assign a more
efficient set of flow paths to the whole batch.

We now present an algorithm, calledRateComp, that imple-
ments this approach. The algorithm is based on the following
assumptions:

• Path splitting (i.e., transmitting a flow over multiple paths
in parallel) is allowed.

• At the time a request is placed, the algorithm returns only
the starting time of the connection. The allocated paths
and completion time are returned when the connection
starts.

We define the functionmaxflow(i, j) as the value of the
maximum flow in bits per unit time from nodei to nodej
satisfying the link capacity constraints. The algorithm can be
described as follows:

1) For the first request (between nodesi and j) arriving
at time t = 0, give an immediate starting time and an
ending time oftc = 1/maxflow(i, j).

2) When another request arrives at timet:

• If t < tc, mark tc as its starting time and add it to
the waiting batch.

• Else, start connection immediately, and updatetc
with tc = t + 1/maxflow(i, j). Go back to step 2.

3) When t = tc, calculate the maximum multi-commodity
flow for the waiting batch (if any). Allocate to each
job in the waiting batch a set of paths with bandwidths
proportional to the multi-commodity flow, and settc ←
tc + t′, wheret′ is the minimum time to end the batch
according to the multi-commodity flow. Go back to
step 2.

The RateComp algorithm satisfies the following theoretical
property on the maximum delay:
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Fig. 2. Average delay ofRateComp andGreedy as a function of the offered
load. RateComp performs better thanGreedy at high load and approaches
the capacity limits shown by the bound.

Theorem 3.1:The maximum delay from the arrival of any
request to the completion of the connection usingRateComp
is no more than2/ε times the maximum delay for an optimal
off-line algorithm applied to the same set of requests in a
network with link capacitiesC(e)/(1 + ε), for all e ∈ E and
ε > 0.

As a corollary of Theorem 3.1, the saturation throughput of
RateComp is optimal because for any arbitrarily smallε > 0,
the delay of a request is guaranteed to be at most a finite
multiplicative factor larger than the maximum delay of the
optimal algorithm in the reduced resources network.

IV. SIMULATION RESULTS

We have developed a simulation tool in C++ to evaluate
the performance ofRateComp. The performance measures of
interest are the average delay of requests and the saturation
throughput. Clearly, the saturation throughput cannot exceed
the capacity limits established in Theorem 2.2.

Figure 2 shows the average delay ofRateComp andGreedy
as function of the aggregated offered load for topology 1(a).
The offered load is defined as the average number of con-
nection requests per hour aggregated over the entire network.
Source and destination of transmissions are selected uniformly
at random, and the requested file size follows an exponential
distribution with mean̄s = 2.475 terabytes. Requests arrive to
the system according to a Poisson process. For the purpose of
simulation, we define the saturation throughput as the offered
load at which the average delay exceeds85 hours. The value
achieved byRateComp is above190 requests/hour which is far
higher than the roughly160 requests/hour obtained byGreedy.
Furthermore, the saturation throughput ofRateComp is close
to the capacity limits. This result validates the near optimality
of RateComp for the configuration under consideration.

REFERENCES

[1] A. Banerjee et. al. A Time-Path Scheduling Problem (TPSP) for Ag-
gregating Large Data Files from Distributed Databases using an Optical
Burst-Switched Network. InProc. ICC, 2004. Paris, France.

[2] F. Shahrokhi and D. W. Matula. The Maximum Concurrent Flow Problem.
Journal of the ACM (JACM), 37(2), April 1990.


