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A Game-Theoretic Analysis of Shared/Buy-in Computing Systems

Zhenpeng Shi, Azer Bestavros, Ariel Orda, and David Starobinski
High performance computing clusters are increasingly operating under a shared/buy-in paradigm. Under this paradigm, users

choose between two tiers of services: shared services and buy-in services. Shared services provide users with access to shared
resources for free, while buy-in services allow users to purchase additional buy-in resources in order to shorten job completion time.
An important feature of shared/buy-in computing systems consists of making unused buy-in resources available to all other users
of the system. Such a feature has been shown to enhance the utilization of resources. Alongside, it creates strategic interactions
among users, hence giving rise to a non-cooperative game at the system level. Specifically, each user is faced with the questions
of whether to purchase buy-in resources, and if so, how much to pay for them. Under quite general conditions, we establish that
a shared/buy-in computing game yields a unique Nash equilibrium, which can be computed in polynomial time. We provide an
algorithm for this purpose, which can be implemented in a distributed manner. Moreover, by establishing a connection to the theory
of aggregative games, we prove that the game converges to the Nash equilibrium through best response dynamics from any initial
state. We justify the underlying game-theoretic assumptions of our model using real data from a computing cluster, and conduct
numerical simulations to further explore convergence properties and the influence of system parameters on the Nash equilibrium.
In particular, we point out potential unfairness and abuse issues and discuss solution venues.

Index Terms—Computing clusters, dynamics, equilibrium analysis, pricing.

I. INTRODUCTION

IN order to achieve economy of scale, major research
institutions are increasingly consolidating their IT services

into High Performance Computing (HPC) clusters. HPC clus-
ters make use of advanced parallel computing tools, such
as Apache Hadoop [1], to join the computational powers of
multiple computing nodes and provide a powerful comput-
ing environment. For example, the Boston University Shared
Computing Cluster (BU SCC) is a heterogeneous HPC cluster
that supports hundreds of research projects [2]. The size of
the BU SCC has grown rapidly, from 189 computing nodes in
2013 to 835 nodes in 2019, to support the high demand for
computing resources.

Many HPC clusters have adopted a shared/buy-in com-
puting paradigm for their services. In particular, universities
commonly provide free (shared) resources to staffs and stu-
dents for research. Yet, in several domains (e.g., biology,
medicine, and physics), researchers have additional compu-
tational needs. As a result, many universities implement a
shared/buy-in paradigm, which allows researchers to buy-in
additional resources. Examples of academic institutions which
have adopted this paradigm include the HPC clusters at Boston
University [2], Northeastern University [3], the University of
Wisconsin-Madison [4], the University of Arizona [5], and the
University of California, Berkeley [6].

A shared/buy-in computing system consists therefore of
shared and buy-in computing resources. All users can make
use of shared resources for free, typically on a fair-share
allocation basis. In addition, users can elect to acquire buy-
in computing nodes for their research projects. Buy-in nodes
are operated under a semi-exclusive policy. Priority access is
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given to owners of those nodes, but excess idle capacity is
made accessible to other users (both buy-in and shared users).
In other words, the buy-in resources of a user are not fully
exclusive to itself; rather, the advantage to the buyer is in terms
of priority access to these resources. This policy has been
shown to enhance the utilization of resources and lower the
total amount of resources needed for operating the system [7].

Due to the semi-exclusive buy-in feature of shared/buy-in
computing systems, users will interact with each other through
their decisions. The strategic interaction exists in the sense
that if a user decides to buy a large amount of resources,
others have less motivation to buy since they can access more
resources thanks to that user. It is reasonable to assume that
users in such systems behave in a rational, selfish manner
to optimize their own objectives, thus giving rise to a non-
cooperative game among users, which is the main focus of
this study. We assume that each user needs to complete a
job using the resources of a shared/buy-in computing system.
A user needs to decide whether to purchase its own buy-in
nodes, and how much it is willing to pay in that case. We
propose a non-cooperative game-theoretic model to analyze
user behavior in such systems.

The first step is to find if such systems admit a Nash
equilibrium. We establish that the game considered in this
study does admit a unique Nash equilibrium, and, furthermore,
we show that it can be computed in polynomial time.

Next, we investigate the dynamics of the game. By estab-
lishing a connection to the theory of aggregative games with
strategic substitutes [8], [9], we manage to prove convergence
of best response dynamics from any initial state in a general
game with N players. We also show that each player can
compute its best response in a distributed manner. This result
implies that the unique Nash equilibrium not only exists, but is
also likely to be reached. Through numerical simulations based
on actual data from the BU SCC, we confirm our theoretical
model and implied results and explore additional properties of
the game. Finally, we discuss how the system parameters influ-
ence the game’s Nash equilibrium, and indicate the existence



2

of opportunities for users to abuse resources in shared/buy-in
computing systems along with guidelines for addressing such
problems.

The main contributions of this paper can be summarized as
follows:
• We formulate a new game-theoretic model to analyze

shared/buy-in computing systems.
• We establish the existence and uniqueness of the game’s

Nash equilibrium.
• We design and validate an efficient, polynomial-time

algorithm for calculating the Nash equilibrium of the
game in the general, N -player case.

• We establish convergence properties of best response
dynamics in the general, N -player case from an arbitrary
initial state.

• We investigate other convergence properties, such as
convergence speed, through numerical simulations.

• We confirm our modeling assumptions regarding the
rational behavior of users, using actual data from the BU
SCC;

• We investigate the influence of various parameters on the
Nash equilibrium and point out potential problems in the
investigated system as well as solution venues;

• Our results provide the following insights: (i) the Nash
equilibrium can be computed faster using best response
dynamics; (ii) increasing the amount of buy-in resources
that a user gets per currency unit may lead some users
to pay less and other users to pay more; (iii) users with
small workloads generally benefit more from the system
than users with larger workloads, which may lead to the
emergence of free-riders.

The rest of this paper is organized as follows. After re-
viewing related work in Section II, we formalize our model
for shared/buy-in computing game in Section III. Next, we
establish the existence and uniqueness of the Nash equilibrium
in Section IV. Convergence of best response dynamics is stud-
ied in Section V. Then, in Section VI, we present numerical
results to illustrate, confirm and expand our theoretical results.
Conclusions are presented in Section VII.

II. RELATED WORK

Much work has been devoted to characterize the workload
of computing clusters, e.g., [10], [11]. While most of the work
does not involve shared/buy-in computing systems, a study
of workload characterization of the BU SCC is particularly
related to our work [7]. In that study, the typical behavior and
performance of a shared/buy-in computing system is charac-
terized using data traces from the BU SCC. It is shown that,
as expected, the semi-exclusive policy increases the utilization
of buy-in resources. Moreover, that study characterizes several
statistical patterns of the SCC. We leverage these statistical
characterizations in our simulations.

Game-theoretic approaches have been adopted widely in
areas that involve users’ strategic interaction, such as inter-
networking [12], wireless networks [13], shared spectrum ac-
cess [14], cybersecurity [15], distributed computing [16], cloud
co-location services [17], and advanced reservations [18].

The main goal in those studies has been to find the Nash
equilibrium of the respective games.

Pricing of cloud services is yet another interesting area
where game theory has proved useful. An overview of pric-
ing models in cloud networking with their applications for
resource management is presented in [19]. Specifically, many
pricing models are based on a game-theoretic perspective in
order to study the strategic interaction between cloud providers
or cloud users. For example, two pricing schemes for cloud
services are discussed in [20], namely fixed and spot-market-
based pricing. It is shown that, when both pricing schemes are
available, users employ a waiting cost threshold to determine
in which scheme to participate. As a result, the provider’s
expected revenue is lower than when adopting only fixed
pricing. In terms of shared/buy-in computing systems, we
investigate prices paid by users, and determine that there exists
a workload threshold that dictates whether a user will elect to
purchase buy-in resources.

Another study related to our work is [21], in which a
workload factoring game is investigated. In that model, users
can split their work between shared resources and private
resources. While shared resources cannot provide guaranteed
performance due to other players’ influence, they are more
powerful than private resources. Each user should choose a
strategy on how to split its workload between the private and
shared resources so as to minimize its job’s completion time.
In a shared/buy-in computing system users split their work
between shared resources and buy-in resources, which can also
be seen as an instance of workload factoring; however, in our
framework a price is paid for the buy-in resources, hence the
primary consideration is how to minimize the related cost.
The work of [21] does not incorporate any such economic
considerations. Another difference is that our model is a
continuous one, while the model of [21] bears a discontinuity
property. Hence, different analytical approaches are needed to
investigate the game’s equilibrium.

The dynamic behavior of the game is another important
property. If a game has a Nash equilibrium but cannot converge
to it in reasonable time, or cannot return to its Nash equilib-
rium once deviating from it due to minor disturbance, then
the practical relevance of the Nash equilibrium may be quite
limited. In our study, we consider the dynamic behavior of the
game model both theoretically and numerically, and show that
the game will not only converge to its Nash equilibrium, but
also do so quite fast. It is also worth noting that our theoretical
results are confirmed through data from a real-world system.

In the literature, some classes of non-cooperative games
have attracted particular attention due to their special con-
vergence properties; one such class is that of supermodular
games [22]. These games can be used to characterize strategic
complements, that is, when a player takes a higher action in a
game, other players tend to do the same [23]. Supermodular
games have many interesting properties, such as existence
of a pure strategy Nash equilibrium, and they often arise in
networking contexts, for example, power control schemes for
wireless networks [24].

In contrast to supermodular games, submodular games have
received less attention. In these games, each player maximizes
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a submodular function, and strategic substitutes prevail instead
of strategic complements. In general, much less is known about
this class of games. There have been some attempts to gener-
alize the supermodular model so that it allows supermodular
and submodular games to co-exist, leading to the notion of S-
modularity [25]. Indeed, with S-modularity, several interesting
results have been established in the area of power control
[26]. However, S-modularity still requires supermodularity at
some level. In our context, namely of shared/buy-in computing
systems, supermodularity can only be achieved in the 2-player
case, after some transformation, but not in the general N -
player case.

Aggregative games represent another important class of
games closely related to our framework. In an aggregative
game, a player’s payoff depends on the “aggregate” of all
players’ strategies rather than the opponents’ individual strate-
gies [8]. One example is the Cournot oligopoly model, where
a player’s payoff is a function of the sum of all player’s
supply quantities. In [9], it is shown that, in an aggregative
game with strategic complements or substitutes, a pure strategy
Nash equilibrium must exist (the proof is not constructive,
however, and the equilibrium may not be unique). Under
certain conditions, it is proven that an aggregative game
converges to a Nash equilibrium [9], [27]. Quasi-aggregative
games are proposed in [28], which allows the “aggregate” to
take different forms other than a simple sum. The work in
[28] also extends relevant results about Nash equilibrium and
convergence using the notion of best-response potential games
[29]. In our paper, we prove that our model is in fact an
aggregative game with strategic substitutes, and thus it admits
established properties of such games.

The work in [30] analyzes a voluntary contribution model
of pure public good provision. In this aggregative game, each
player can make use of public good, and needs to decide
how much to contribute to it. This public good model is
quite general and has a wide range of applications, such as
in environmental problems [31]. While computing resources
are a type of public good, our model differs in that it captures
unique features of shared/buy-in computing systems. As a
result, we establish the existence and uniqueness of the Nash
equilibrium in a constructive manner, while the model of [30]
does so in a non-constructive manner. Moreover, the model
of [30] focuses on the comparative static properties of the
equilibrium as players’ incomes and unit cost of contribution
change, while our model focuses on aspects that are more
specific to shared/buy-in computing systems, such as how the
strategy of a user is influenced by its workload, other players’
workloads, and various system parameters (see Table I).

III. SYSTEM MODEL

In this section, we introduce our system model and pa-
rameters. We illustrate practical settings of the parameters in
Section VI. The notations are summarized in Table I.

We consider a strategic game in the form of
〈Φ, {Pi}i∈Φ,, {Ui}i∈Φ〉, where Φ is the finite set of players,
Pi is the non-empty strategy set of player i to which its
strategy pi belongs, and Ui : P → R is the payoff of player

i given a strategy profile of all players from the joint set
P =

∏
i∈Φ Pi.

In our setting of shared/buy-in computing (SBC) games,
there are N players in total, and each player is a user that
has a certain amount of work (workload) to complete (e.g.,
in units of CPU-hours). Note that in real-world shared/buy-
in computing systems, a “user” may not necessarily be a
single individual. For instance, the SCC at Boston University is
managed by “projects”. In that case, each project corresponds
to a player.

Each player i has an average workload ωi and a strategy
pi ≥ 0, which corresponds to the price that it pays for buy-
in resources. The average workload of players is estimated
based on the aggregate workload measured over a long time
period. Thus, when we validate our results using BU SCC
data in Section VI, the average workload is estimated based
on the aggregate workload measured over a period of seven
months. Note that by using pi to denote the price paid by
player i, we capture the player’s decision on two levels: (a) it
will pay pi > 0 if it decides to buy resources or pi = 0 if not,
and (b) how much to buy is reflected by the value of pi. Let
p = [p1, p2, . . . , pN ]

ᵀ denote the strategy profile of all players.
Even though prices are discrete in practice, we make here the
common assumption that they assume continuous values. In
the rest of this paper, we assume without loss of generality
that players are labelled such that

ω1 ≥ ω2 ≥ · · · ≥ ωN .

Note that one can always relabel the players to satisfy this
property.

We assume that the SBC game is “fair” in the sense that
each player gets the same computing rate µ out of the shared
resources. For instance, in the BU SCC, it is the case that each
user gets by default the same allocation of shared resources.

When a player buys in resources at a price pi, it gets
an additional computing rate of kbpi. Alongside, it provides
each of the other players with an additional computing rate
kspi, since idle buy-in resources are available to other players.
In other words, kb and ks are coefficients that convert the
price paid by player i into the corresponding computing rate
provided to player i itself and another player, respectively. We
make the reasonable assumption that kb > (N − 1)ks, that is,
for a price pi, player i gets a computing rate kbpi that is larger
than the aggregate computing rate (N − 1)kspi provided to
all other players. For instance, in the BU SCC, the aggregate
workload of buy-in resources utilized by their owners is about
twice larger than the aggregate workload of buy-in resources
utilized by other users [7].

As a result, the total computing rate of a player i is µ +
kbpi +

∑
j 6=i kspj and its expected job completion time for a

given workload ωi is

Ti(p) =
ωi

µ+ kbpi +
∑
j 6=i kspj

, (1)

where i, j ∈ {1, 2, . . . , N}. Note that different players do not
have to start their jobs at the same time, because we only
consider average behavior (i.e., our model suggests that a
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player always provides an additional computing rate kspi to
each of the other players.)

Each player contemplates two types of costs, namely, the
job completion time and the price it pays for buy-in resources.
Specifically, the total cost of a player i is defined as

Ci(p) =Ti(p) + αpi

=
ωi

µ+ kbpi +
∑
j 6=i kspj

+ αpi. (2)

where i, j ∈ {1, 2, . . . , N}, and α is a coefficient that reflects
the user’s sensitivity to price versus job completion time. Thus,
the objective of each player i is to choose a proper price pi
in order to minimize its cost Ci(p).

Although we assume that a player’s objective is to minimize
its cost, we can actually express also the payoff of player i as
the difference between its gross payoff Γ(ωi) by completing
its workload ωi and its cost:

Ui(p) =Γ(ωi)− Ci(p)

=Γ(ωi)−
ωi

µ+ kbpi +
∑
j 6=i kspj

− αpi,

where i, j ∈ {1, 2, . . . , N}. Note that the gross payoff Γ(ωi)
is independent of the prices paid by players, so we get

argmaxpi∈Pi
Ui(p) = argminpi∈Pi

Ci(p),

which implies that maximizing the payoff is equivalent to
minimizing the cost.

Remark 1: For simplicity, in this paper, we assume that the
coefficient α is the same for all users. However, one can easily
relax this assumption. If each player i has a different αi, the
cost becomes

C∗i (p) =
ωi

µ+ kbpi +
∑
j 6=i kspj

+ αipi

=
αi
α

(
ωiα/αi

µ+ kbpi +
∑
j 6=i kspj

+ αpi

)

=
αi
α

(
ω∗i

µ+ kbpi +
∑
j 6=i kspj

+ αpi

)
.

Thus, we can get a new cost function for player i by replacing
ωi with ω∗i and multiplying the entire expression by αi/α.
We note that this multiplicative constant has no bearing on
the optimal strategy that minimizes the cost function. Hence,
we can still get most of the results derived in Sections IV
and V with small modifications, including the existence and
uniqueness of the Nash equilibrium, an algorithm to compute
the Nash equilibrium, and convergence properties.

Remark 2: Note each player i gets priority access to its
own buy-in resources; hence, kbpi is close to the maximum
computing rate provided by its buy-in resources. Since a user
does not use its own buy-in resources all the time, it will
provide each of the other users with an average computing
rate kspi.

We can assume here a constant ks for all players for two
reasons: (a) the payoff of a user depends only on its own
strategy and the sum of the other players’ strategies, and (b)
the number of users N in a shared/buy-in computing system is
typically large, namely in the order of hundreds or thousands.

Notation Description
Φ Set of players (users).
N Number of players.

i, j, `,m Index of players.
pi Strategy (price paid for buy-in resources) of player i.
Pi Strategy set of player i.
p Strategy profile of all players.

Ui(p) Payoff of player i given p.
Ci(p) Cost of player i given p.
Ti(p) Job completion time of player i given p.
ωi Average workload of player i.
µ Computing rate provided to each player with shared

resources.
kb Coefficient of proportionality between the price paid

by player i and the corresponding computing rate it
gets.

ks Coefficient of proportionality between the price paid
by player i and the corresponding computing rate it
provides to another player.

α Coefficient that reflects the player’s sensitivity to
price versus job completion time.

TABLE I: Notation summary.

In the following, we shall detail why a constant ks is enough
for calculating the players’ approximate costs. For this, let
assume that when each player i pays pi, it provides each of the
other players with an additional computing rate ksipi instead
of kspi and kb > (N − 1)ksi. Hence the actual cost of player
i is

C∗∗i (p) =
ωi

µ+ kbpi +
∑
j 6=i ksjpj

+ αpi

=
ωi

µ+ (kb − ksi)pi +
∑
j∈Φ ksjpj

+ αpi.

Next, let ks be defined such that

ks
∑
j∈Φ

pj =
∑
j∈Φ

ksjpj . (3)

Since the number of players N is typically large, from the
assumption that kb > (N −1)ks and kb > (N −1)ksi, we get
kb � ks and kb � ksi, respectively. As a result, we have

(kb − ks)pi ≈ (kb − ksi)pi. (4)

Combining (3) and (4), we get

Ci(p) =
ωi

µ+ kbpi +
∑
j 6=i kspj

+ αpi

=
ωi

µ+ (kb − ks)pi + ks
∑
j∈Φ pj

+ αpi

≈ ωi
µ+ (kb − ksi)pi +

∑
j∈Φ ksjpj

+ αpi

=C∗∗i (p),

which implies that, by assuming a constant ks, the cost of
each player is approximately the same as the actual cost.

IV. NASH EQUILIBRIUM ANALYSIS

In this section, we prove that an SBC game yields a
unique (pure) Nash equilibrium. We also provide an efficient
algorithm to compute the equilibrium. In the following, all the
indices i, j, `, m belong to the set {1, 2, . . . , N}, where N is
the number of players in the game.
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First, we consider the player’s best response, which is
defined as the player’s optimal strategy given all other players’
strategies. The best response strategy pi of player i is to
minimize its cost (2) given {pj | j 6= i}, namely:

pi = max

0,

√
ωi
αkb
− ks
kb

∑
j 6=i

pj −
µ

kb

 . (5)

Note that the strategy of player i is continuous by assumption,
and its best response is upper-bounded by

√
ωi

αkb
> 0 and

lower-bounded by 0, which implies that Pi is non-empty and
compact.

Here, we implicitly assume that each player i knows the sum
of prices paid by other players

∑
j 6=i pj in order to calculate its

best response. This can be achieved in a centralized way, for
example, if the service provider directly provides information
of prices paid by all users. Yet it is also possible for players to
find best responses in a distributed manner: the players have
information of system parameters µ, kb, ks and have control
over their own workloads ωi, so each player can infer the
sum of prices paid by other players by observing its own delay
(1) (completion time of a new job). Besides, side-information
that is accessible to users could also be employed to estimate
the sum of prices paid by other players. For example, basic
information about buy-in computing nodes in the BU SCC is
publicly known, from which users can estimate the sum by
themselves.

A Nash equilibrium is a point at which each player in
the game is playing its best response to the other players’
strategies, which implies that a player cannot lower its cost
by unilaterally changing its strategy.

We proceed to establish the existence of the Nash equilib-
rium of the SBC game.

Lemma 1: An SBC game admits a Nash equilibrium.
Proof: First, for each player i, its best response (5) is

upper-bounded by
√

ωi

αkb
> 0 and lower-bounded by 0, so pi

can take any value from [0,
√

ωi

αkb
], which implies that Pi is

compact and convex.
Next, observe that µ > 0, kb > 0, ks > 0, and pi ≥ 0 for all

i, so the payoff Ui(p) of player i is continuous in p. Moreover,
taking the second derivative of payoff function Ui(p) in terms
of pi, we obtain

∂2Ui(p)

∂p2
i

= − k2
bωi

(µ+ kbpi +
∑
j 6=i kspj)

3
< 0,

which implies that Ui(p) is strictly concave in pi for fixed
{pj | j 6= i}. The lemma then follows from Theorem 1 in
[32].

Remark 3: In principle, it is possible to prove the uniqueness
of the Nash Equilibrium by showing that the game satisfies
the so-called “diagonally strictly concave property” [32]. Yet,
given the generality of our model, we find it difficult to prove
this property, even in the 2-player case. Besides, in our analysis
of the Nash equilibrium, we not only prove uniqueness, but
also characterize properties of SBC games, which leads to an
algorithm for computing the Nash equilibrium.

The next lemma shows that, at a Nash equilibrium, a player
with a larger workload will pay no less than a player with a
smaller workload.

Lemma 2: At a Nash equilibrium of an SBC game,

p1 ≥ p2 ≥ · · · ≥ pN ≥ 0.

Proof: Assume that Lemma 2 does not hold, that is, there
exist i, j, such that, at a Nash equilibrium, ωi ≥ ωj and pi <
pj . We distinguish between two cases: (A) pi = 0, (B) pi > 0,
and analyze the best response strategies of players i and j in
each of the two cases:

(A) pj > pi = 0. At a Nash equilibrium, the best response
strategies of player i and player j must be according to (5)

ks
kb
pj +

ks
kb

∑
m6=i,j

pm +
µ

kb
≥
√

ωi
αkb

,

pj +
ks
kb

∑
m6=i,j

pm +
µ

kb
=

√
ωj
αkb

.

(6)

(B) pj > pi > 0. At a Nash equilibrium, the best response
strategies of player i and player j must be according to (5)

pi +
ks
kb
pj +

ks
kb

∑
m6=i,j

pm +
µ

kb
=

√
ωi
αkb

,

pj +
ks
kb
pi +

ks
kb

∑
m6=i,j

pm +
µ

kb
=

√
ωj
αkb

.

(7)

However, in either case, (6) or (7) cannot hold if ωi ≥ ωj
and ks/kb < 1. Hence, Lemma 2 always holds.

From Lemma 2, we obtain the following corollary.
Corollary 1: If ωi > ωj and pj > 0, then pi > pj .

Proof: If ωi > ωj and pj > 0, then (7) must hold for
player i and player j, from which we conclude that pi >
pj > 0.

In the following, we assume that the strategy profile of
all players p = [p1, p2, . . . , pN ]

ᵀ is from a possible Nash
equilibrium of the game. From Lemma 2, we know that
p1 ≥ · · · ≥ pN ≥ 0 at any Nash equilibrium. We further
assume that if pN = 0, then m is the minimum index such
that pm = 0; otherwise, m = N + 1.

Consider the best response strategy profile of players that
pay positive prices at a Nash equilibrium, denote it by {pi |
i < m}. According to (5), the strategy profile {pi | i < m}
must satisfy

pi +
ks
kb

∑
j 6=i

pj +
µ

kb
=

√
ωi
αkb

, ∀ i < m. (8)

Since pj = 0 for j ≥ m, from (8) we get

pi +
ks
kb

∑
j<m,j 6=i

pj +
µ

kb
=

√
ωi
αkb

, ∀ i < m. (9)

The next lemma establishes a property of the solution of
(9). With this property, we will be able to show that, given m,
the strategy profile {pi | i < m} is unique.

Lemma 3: Equations (9) have a unique solution.
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Proof: Equations (9) can be re-written as follows:
1 ks

kb
. . . ks

kb
ks
kb

1 . . . ks
kb

...
. . .

...
ks
kb

ks
kb

. . . 1




p1

p2

...
pm−1

 =



√
ω1

αkb
− µ

kb√
ω2

αkb
− µ

kb

...√
ωm−1

αkb
− µ

kb

 . (10)

We claim that (10) has a unique solution q =
[p1, p2, . . . , pm−1]

ᵀ. Denote (10) by Aq = b. To prove our
claim, we will show that the columns of A are linearly
independent.

Denoting A = [a1,a2, . . . ,am−1], where a1,a2, . . . ,am−1

are columns vectors of A, and denoting the `-th item of vector
ai by ai(`), we have

ai(`) = 1, ` = i,

ai(`) =
ks
kb
, ` 6= i.

(11)

Assume by contradiction that the columns of A are linearly
dependent. Then, there exists an i-th column that can be
expressed as a linear combination of other columns:

ai =
∑
j 6=i

λjaj , 1 ≤ i, j ≤ m− 1

which yields ∑
j 6=i

λjaj(i) = ai(i),∑
j 6=i

λjaj(`) = ai(`), ∀ ` 6= i.
(12)

Combining (11) with (12), we get∑
j 6=i

λj
ks
kb

= 1, (13)

λ` +
∑

j 6=i,j 6=`

λj
ks
kb

= λ`(1−
ks
kb

) +
∑
j 6=i

λj
ks
kb

=
ks
kb
, ∀ ` 6= i.

(14)

By (13), and substituting the term
∑
j 6=i λiks/kb in (14)

with 1, we get

(1 + λ`)(1−
ks
kb

) = 0, ∀ ` 6= i.

We already know that 0 < ks/kb < 1, so it must be that

λ` = −1, ∀ ` 6= i.

However, this contradicts (13), hence the assumption cannot
hold. We thus conclude that the columns of A are linearly
independent, which implies that A is invertible. Consequently,
the solution q = A−1b to (10) is unique, that is, equations
(9) have a unique solution.

The next lemma helps to find the value m such that pi = 0
for all i ≥ m. Intuitively, a player is not willing to pay if there
are enough free resources, which include shared resources and
idle buy-in resources from players with larger workloads.

Lemma 4: At any Nash equilibrium of the SBC game, the
best response strategy of player m is pm = 0 if and only if

ks
kb

∑
i<m

p∗i +
µ

kb
≥
√
ωm
αkb

, (15)

where {p∗i | i < m} is the unique solution to (9).
Proof: We will prove that (15) is a necessary and suffi-

cient condition for pm = 0 at a Nash equilibrium.
(A) (Necessity) pm = 0⇒ ks

kb

∑
i<m p

∗
i + µ

kb
≥
√

ωm

αkb
.

From Lemma 2, at a Nash equilibrium, pm = 0 implies
pi = 0 for i ≥ m. Solving (9) yields {p∗i | i < m}, which
is the best response strategy profile for players i < m in the
case that pi = 0 for i ≥ m. Therefore, combining {p∗i | i <
m} with {pi = 0 | i ≥ m}, we get a strategy profile for
all players that is a Nash equilibrium. As a result, the best
response strategy of player m is according to (5)

pm = max

0,

√
ωm
αkb
− ks
kb

∑
i6=m

pi −
µ

kb


= max

(
0,

√
ωm
αkb
− ks
kb

∑
i<m

p∗i −
µ

kb

)
= 0,

which implies

ks
kb

∑
i<m

p∗i +
µ

kb
≥
√
ωm
αkb

.

(B) (Sufficiency) ks
kb

∑
i<m p

∗
i + µ

kb
≥
√

ωm

αkb
⇒ pm = 0.

We will prove this by establishing its contraposition,
namely:

pm > 0⇒ ks
kb

∑
i<m

p∗i +
µ

kb
<

√
ωm
αkb

.

Note that pm is non-negative, hence the case pm < 0 is not
possible.

If pm > 0, then the best response strategy of player m is
according to (5)

pm =

√
ωm
αkb
− ks
kb

∑
i 6=m

pi −
µ

kb
. (16)

Since {p∗i | i < m} is the solution to (9), we have

p∗i +
ks
kb

∑
j<m,j 6=i

p∗j =

√
ωi
αkb
− µ

kb
, ∀i < m. (17)

According to the best response (5), the strategy profile
{pi | i < m} at a Nash equilibrium must satisfy (8), which is
equivalent to

pi +
ks
kb

∑
j<m,j 6=i

pj +
ks
kb

∑
j≥m

pj =

√
ωi
αkb
− µ

kb
, ∀i < m.

(18)
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Summing (17) and (18) in terms of index i from 1 to m−1,
respectively,

(1 +
ks
kb

(m− 2))
∑
i<m

p∗i

=
∑
i<m

√
ωi
αkb
− (m− 1)

µ

kb
, (19)

(1 +
ks
kb

(m− 2))
∑
i<m

pi + (m− 1)
ks
kb

∑
j≥m

pj

=
∑
i<m

√
ωi
αkb
− (m− 1)

µ

kb
. (20)

We observe that the RHS of (19) is equal to the RHS of
(20). Substituting the RHS of (19) with the LHS of (20) and
re-arranging terms, we get∑

i<m

p∗i =
∑
i<m

pi +
(m− 1)ks/kb

(1 + (m− 2)ks/kb)

∑
j≥m

pj

=
∑
i<m

pi +
(m− 1)ks/kb

(1− ks/kb + (m− 1)ks/kb)

∑
j≥m

pj

≤
∑
i<m

pi +
∑
j≥m

pj .

Finally, from the above inequality and (16) we get

ks
kb

∑
i<m

p∗i +
µ

kb
≤ ks
kb

(
∑
i<m

pi +
∑
j≥m

pj) +
µ

kb

=
ks
kb

(pm +
∑
i<m

pi +
∑
j>m

pj) +
µ

kb

< pm +
ks
kb

∑
i 6=m

pi +
µ

kb

=

√
ωm
αkb

,

which completes the proof.
From Lemmas 3 and 4, we deduce that, once we find the

minimum m such that pm = 0, the solution set {p∗i | i < m}
to (9) together with {pi = 0 | i ≥ m} is the unique Nash
equilibrium. This leads to Algorithm 1 for computing the Nash
equilibrium of an N -player SBC game.

The following theorem formalizes this result.
Theorem 1: For an N -player SBC game, there exists a

unique Nash equilibrium, which can be obtained by Algo-
rithm 1.

Proof: If
√

ω1

αkb
≤ µ

kb
, then from Lemma 4, we know that

p1 = 0 is the best response strategy of player 1. Moreover,
from Lemma 2, we know that pi ≤ p1 = 0 for all i > 1, that
is, for players 2, 3, ..., N , the best response strategies are also
0. Thus, {0, 0, . . . , 0} is the unique Nash equilibrium of the
N -player SBC game.

If
√

ω1

αkb
> µ

kb
, then we proceed to Steps 4 − 11 of Algo-

rithm 1 in order to find the Nash equilibrium. The equations
we need to solve in Step 5 at each iteration correspond to (9)
in Lemma 3. As shown there, the solution to (9) is unique at
each iteration.

Algorithm 1: Computation of the Nash equilibrium for an
N -player SBC game
Output: {p1, p2, . . . , pN}

1 i← 1;
2 {p1, p2, . . . , pN} ← {0, 0, . . . , 0};
3 if

√
ω1

αkb
> µ

kb
then

4 while i ≤ N do
5 compute {p∗1, p∗2, . . . , p∗i } by solving:

1 ks
kb

. . . ks
kb

ks
kb

1 . . . ks
kb

...
. . .

...
ks
kb

ks
kb

. . . 1



p∗1
p∗2
...
p∗i

 =



√
ω1

αkb
− µ

kb√
ω2

αkb
− µ

kb

...√
ωi

αkb
− µ

kb

;

6 {p1, p2, . . . , pi} ← {p∗1, p∗2, . . . , p∗i };
7 if i < N and ks

kb

∑
j≤i p

∗
i + µ

kb
≥
√

ωi+1

αkb
then

8 break;
9 end

10 i← i+ 1;
11 end
12 end

Lemma 4 establishes that the best response strategy of
player m is pm = 0 if and only if (15) is satisfied. Thus,
by going from i = 1 to i = N and solving (9) iteratively until
(15) is satisfied, we find all the pi > 0, from which we get the
index m such that pi > 0 for i < m and pi = 0, i ≥ m. In the
end, we get a strategy profile from Algorithm 1, such that, for
player m,m+1, . . . , N , their best response strategies are 0; for
player 1, 2, . . . ,m−1, their best response strategies are per (9),
hence the unique solution set {p∗i | i < m} to (9) constitutes
the best response strategies for players 1, 2, . . . ,m− 1.

In conclusion, the output {p1, p2, . . . , pN} of Algorithm 1,
which is in the form of {p∗1, p∗2, . . . , p∗m−1, 0, . . . , 0}, is a
Nash equilibrium of the N -player SBC game. Moreover, since
m is unique following Algorithm 1 and {p∗1, p∗2, . . . , p∗m−1}
is the unique solution set to (9), the Nash equilibrium
{p1, p2, . . . , pN} is unique.

In general, it is considered difficult (PPAD-complete) to find
the Nash equilibrium for an N -player game [33]. However, for
an SBC game, Theorem 1 shows that the Nash equilibrium is
not only unique but also can be solved by Algorithm 1 in
polynomial time, as established in the following.

Lemma 5: The Nash equilibrium of an N -player SBC
game can be computed by Algorithm 1 in polynomial time,
specifically in O(N4).

Proof: It takes O(N) to initialize i and {p1, p2, . . . , pN}
(Steps 1−2). Then, the algorithm first decides whether it needs
to execute the while loop (Steps 4−11). If it is executed, then,
at each iteration, it takes O(N3) time to compute the best
response equation (Step 5), O(N) to update {p1, p2, . . . , pN}
(Step 6) as well as to check whether to break the loop (Steps
7− 9), and O(1) to update i (Step 10). The “while” loop will
be executed at most N times. In conclusion, the total running
time of Algorithm 1 is upper-bounded by O(N4).
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Next, we briefly analyze the efficiency of the unique Nash
equilibrium of an SBC game. Define the social welfare as the
sum of all players’ payoffs

U(p) =
∑
i∈Φ

Ui(p)

=
∑
i∈Φ

(
Γ(ωi)−

ωi
µ+ kbpi +

∑
j 6=i kspj

− αpi

)
.

Consider each player i that pays a positive price pi > 0 at
the equilibrium. To maximize the player’s own payoff Ui(p),
pi has to satisfy

∂Ui(p)

∂pi
=

kbωi
(µ+ kbpi +

∑
` 6=i ksp`)

2
− α = 0. (21)

However, to maximize the social welfare, pi has to satisfy

∂U(p)

∂pi
=

kbωi
(µ+ kbpi +

∑
` 6=i ksp`)

2
− α

+
∑
j 6=i

(
ksωj

(µ+ kspi + kbpj +
∑
` 6=i,` 6=j ksp`)

2

)
=0,

(22)

if the solution p?i to (22) is positive. Note that ∂Ui(p)/∂pi <
∂U(p)/∂pi, so if we substitute pi in (21) with the solution
p?i to (22), we get ∂Ui(p)/∂p?i < 0. Moreover, ∂Ui(p)/∂pi
is a strictly decreasing function of pi, hence we get that the
solution pi to (21) is strictly smaller than the social optimal
solution p?i , and this holds for all players that pay positive
prices at the Nash equilibrium. In other words, to maximize
social welfare, each of these players should pay more. As
a result, the Nash equilibrium of a shared/buy-in computing
game is strictly sub-optimal, i.e. inefficient, in terms of the
social welfare.

V. SBC GAMES AS AGGREGATIVE GAMES AND
BEST-RESPONSE DYNAMICS

In this section, we establish a connection between SBC
games and aggregative games. With that at hand, we are able
to prove that an SBC game can always converge to its Nash
equilibrium.

Consider a game 〈Φ, {Pi}i∈Φ,, {Ui}i∈Φ〉 as defined in Sec-
tion III, where Φ is the finite set of players, Pi is the non-
empty strategy set of player i, and Ui is the payoff of player i.
We say that a game 〈Φ, {Pi}i∈Φ,, {Ui}i∈Φ〉 is an aggregative
game, if for each player i, its payoff Ui is a function of pi and∑
j∈Φ pj , i.e., Ui(p) = Ũi(pi,

∑
j∈Φ pj). In an aggregative

game, the payoff of player i depends only on its own strategy
pi and the aggregate of all players’ strategies

∑
j∈Φ pj . As a

result, it is enough for the player to know the aggregate in
order to calculate its payoff, instead of the strategy of each
specific player j.

Lemma 6: An SBC game is an aggregative game.

Proof: Note that in an SBC game, the payoff function Ui
of player i can be written as

Ui(p) =Γ(ωi)−
ωi

µ+ kbpi +
∑
j 6=i kspj

− αpi

=Γ(ωi)−
ωi

µ+ (kb − ks)pi + ks
∑
j∈Φ pj

− αpi

=Ũi(pi,
∑
j∈Φ

pj).

The lemma then follows.
Next, we show that SBC games have the property of

strategic substitutes, or in other words, submodularity. That
is, each player in the game will opt to pay a higher price if
other players are paying lower prices, and vice versa.

Let p−i denote the strategy of a player j other than i, we
say that a payoff function Ui(p) has decreasing difference in
(pi, p−i) if for all p̃i ≥ pi and p̃−i ≥ p−i,

Ui(p̃i, p̃−i)− Ui(pi, p̃−i) ≤ Ui(p̃i, p−i)− Ui(pi, p−i).

Moreover, we say that the game 〈N, {Pi}i∈Φ,, {Ui}i∈Φ〉 is
submodular if (a) Pi is a compact subset of R; (b) the
payoff function Ui(p) is upper semi-continuous in (pi, p−i);
(c) and the payoff function Ui(p) has decreasing difference in
(pi, p−i).

Lemma 7: An SBC game is submodular.
Proof: Pi is a compact subset of R since it is continuous

by assumption, upper-bounded by
√

ωi

αkb
> 0, and lower-

bounded by 0, as shown in Section IV.
Given a twice continuously differentiable function f : X→

R, f has decreasing difference in if and only if

∂2f(x)

∂xi∂xj
≤ 0, ∀ i 6= j.

Consider the payoff function Ui(p) of player i. We have

∂2Ui(p)

∂pi∂pj
= − kbksωi

(µ+ kbpi +
∑
` 6=i ksp`)

3
< 0, ∀ j 6= i.

Therefore, the payoff function Ui(p) has decreasing difference
in (pi, p−i). Furthermore, note that µ > 0, kb > 0, ks > 0,
pi ≥ 0 and p−i ≥ 0 for all i, from which we can get that Ui(p)
is continuous in (pi, p−i). Thus, we deduce that an SBC game
is submodular.

Next, we will apply the results from [28] to our model,
and show that an SBC game always converges to its Nash
equilibrium through best response dynamics from all possible
initial states.

Best response dynamics correspond to a procedure whereby,
starting from an initial state, every player iteratively updates
its strategy according to its best response (5). If an SBC game
converges to a specific state through best response dynamics,
then we know that every player must be playing its best
response strategy, i.e., the Nash equilibrium is reached.

More specifically, we assume that best response dynamics
acts in the following way: in each round, players update
their strategies once one after another according to their best
responses (5) given other players’ strategies, and the process
continues as long as an equilibrium is not reached.
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Theorem 2: Through best response dynamics, an SBC game
will converge to its unique Nash equilibrium from all possible
initial states.

Proof: Firstly, we have proven that an SBC game is an
aggregative game (Lemma 6). For each player i, its strategy
set Pi is compact, and the payoff function Ui(p) is continuous
(as shown at the beginning of Section IV).

Secondly, the assumptions 1’ and 2 of [28] are satisfied.
Indeed, as explained in Remark 2 of [28], since the strategy
sets Pi in our model are one-dimensional, Assumption 1’
is essentially equivalent to submodularity which has already
been proven (Lemma 7). Assumption 2 implies that the shift
function for aggregating, which is a linear sum

∑
j∈Φ pj in

our model, exhibits strictly increasing differences in pi and∑
j∈Φ,j 6=i pj , possibly after a strict monotone transformation.

As explained in Example 3 of [28], it can be shown that with a
monotone transformation h(z) = exp (z), the linear sum will
exhibit strictly increasing differences.

Thirdly, best response dynamics will yield an admissible
sequential improvement path defined in [28]. In each round,
each player updates its strategy according to its best response,
which implies that each player moves to a strictly preferred
strategy if it exists, or stay with the previous strategy other-
wise. Note that there is no indifference path in our model, since
the best response (5) is single-valued. The path is admissible
in the sense that each player gets the chance to move in each
round, so that following the path everyone can keep updating
until the Nash equilibrium is reached.

In conclusion, an SBC game satisfies all requirements of
Theorem 2 in [28], thus will always converge to its unique
pure Nash equilibrium through best response dynamics. Note
that we have already proved the uniqueness of the pure
Nash equilibrium. Moreover, the convergence was proven by
considering limit conditions of best response dynamics, which
implies the initial states have no influence to the convergence
property. Hence, an SBC game always converges from all
possible initial states.

Remark 4: In our model, we assume the aggregate to be
a linear sum of all players’ strategies, which simplifies the
analysis and helps us establish the existence and uniqueness
of the game’s Nash equilibrium in a constructive manner. The
results we get with the linear sum aggregate assumption have
been validated using BU SCC data in Section VI. However,
it might be worth allowing the aggregate to take a more
general and complex form, so that it can apply to more
scenarios. Note that, even if we relax the assumption about the
aggregate, the convergence properties of the game still hold as
long as the game is submodular and the aggregate exhibits a
strictly increasing difference, possibly after a strict monotone
transformation.

VI. NUMERICAL RESULTS

In this section, we provide numerical results to illustrate,
confirm and expand on our theoretical results. We first describe
and justify the setting of simulation parameters. Next, we
thoroughly evaluate the dynamic behavior of the SBC game.

We show that the game always converges, when players update
their prices either sequentially (i.e., one by one) or in parallel.
Next, we empirically evaluate the computational complexity of
Algorithm 1 and indicate that it is indeed polynomial, and the
order of growth is upper-bounded by 4, as stated by Lemma 5.
Next, we verify Lemma 2, namely that prices paid by players
are non-decreasing with their workloads, using actual data
from the BU SCC. Last, we provide insight on the impact
of model parameters on the resulting Nash equilibrium, and
discuss design guidelines based on our analysis.

A. Simulation

In this subsection, we evaluate the results of Section III
and IV through simulation of best-response dynamics. We first
discuss the simulation set-up.

1) Set-up
We choose the BU SCC as a case study. The SCC has

about 500 active projects running, so we simulate the best
response dynamics of an SBC game with N = 500 players
to investigate its behavior. In each round, each player updates
its strategy once by playing its best response given the other
players’ strategies. We consider both the cases of sequential
updates (i.e., players updates their strategies one after the other
as in our definition of best response dynamics) and that of
parallel updates, whereby all players update their strategies in
parallel.

We classify users’ jobs into three categories [7]: shared
jobs are those running on shared nodes, buy-in jobs are those
running on a user’s own buy-in nodes, and public jobs are
those running on other users’ idle buy-in nodes. As of 2015-
2016 [7], the shared workload on the BU SCC was 2.43×107

CPU-hours, the buy-in workload was 1.42× 107 CPU-hours,
and the public workload was 7.51× 106 CPU-hours. We note
that the aggregate shared, buy-in and public computing rates
correspond respectively to Nµ, kb

∑
pi, and (N − 1)ks

∑
pi,

in our model.
Based on the workload characterization of [7], we assume

that the project’s workload (i.e., each players’ job size in
the game) is a random variable that follows a log-normal
distribution. Specifically, let Ω denote the workload random
variable, then

P (Ω ≤ ω) =
1

2
+

1

2
erf

[
lnω − ν

σ

]
, (23)

where erf stands for the error function. In our simulation, we
set ν = 7.37 and σ = 5.69. In practice, any shared/buy-
in computing systems has a maximum workload that it can
sustain. In our simulation, we set that value to 5× 106 CPU-
hours. If a random sample exceeds that value, that sample
is discarded. As a result, the median and mean of sample
workloads are 906.87 and 1.77×105 CPU-hours, respectively.

We assume that the shared, buy-in and public nodes are
used for approximately the same time in total, so that the
ratio among workloads is approximately the same as the ratio
among the computing rates reported above, i.e. Nµ : kb

∑
pi :

(N − 1)ks
∑
pi ≈ 24.3 : 14.2 : 7.5. Therefore, we firstly

set α = 1 and kb = 30, then µ = 775 and ks = 0.0030
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Updating rule Sequential Parallel
Rounds 5 (11%) 6 (89%) 10 (4%) 11 (91%) 12 (5%)
Average 5.89 11.01

TABLE II: Number of rounds needed for convergence from
an empty initial state. The numbers in parenthesis correspond
to the percentage of cases, based on 100 runs.

accordingly to satisfy the ratio above. Note that the prices
pi that we obtain from simulation do not correspond exactly
to how much players actually pay, but rather reflect their
qualitative behavior (a different value of α would lead to
different prices.)

2) Nash equilibrium and convergence speed
Recall that best response dynamics is a procedure through

which every player updates its strategy iteratively according
to its best response (5). We investigate the best response
dynamics of the SBC game following two updating rules:
sequential updating and parallel updating. In the sequential
updating case, players update their strategies one by one during
each round. In the parallel updating case, players update their
strategies at the same time during each round, which implies
that each player makes its decision according to the strategy
profile of all the other players in the previous round. Note that
the sequential updating is exactly the same as the best response
dynamics defined in Section V. The parallel updating case
could represent the case where players update their strategies
in a distributed manner. Since there may be some delay
when inferring the latest strategies of other players, players
simultaneously update their strategies in one round based on
past information. In the following, each simulation is run 100
times, where each run uses a different random seed.

We first consider the case of an an SBC game with 500
players and an “empty” initial state, i.e., the prices of all
the players are initially set to 0. We assume that the game
converges when the L2-norm of the players’ strategy profile
p = [p1, p2, . . . , pN ]

ᵀ changes by less than 10−6 in two
consecutive rounds.

The simulations show that, in all the runs, the game con-
verges to the Nash equilibrium predicted by Theorem 1. In
the sequential updating case, the game converges to the Nash
equilibrium within 6± 1 rounds (specifically within 6 rounds
in 89% of the cases and 5 rounds in the remaining 11%); in
the parallel updating case, the game converges within 11± 1
rounds (specifically within 10 rounds in 4% of the cases, 11
rounds in 91% of the cases, and 12 rounds in the remaining
5%), as also shown in TABLE II. One of the simulation runs
for the sequential updating case is illustrated in Fig. 1(a).

Next, we examine the convergence of the game’s best
response dynamics from an arbitrary initial state. We initialize
the prices with random values that are uniformly distributed
between 0 and 300. After 100 runs for both sequential and
parallel updating, we find that the game always converges
to the Nash equilibrium, although it generally takes slightly
more rounds than from an empty initial state. In the sequential
updating case, the game converges to the Nash equilibrium
within 7 ± 1 rounds, while in the parallel updating case,
the game converges with in 12 ± 1 rounds, as detailed in

Updating rule Sequential Parallel
Rounds 6 (10%) 7 (90%) 11 (26%) 12 (74%)
Average 6.90 11.74

TABLE III: Number of rounds needed for convergence from an
arbitrary initial state. The numbers in parenthesis correspond
to the percentage of cases, based on 100 runs.

(a) NE from empty initial state in sequential case.

(b) NE from arbitrary initial state in sequential case.

(c) NE from arbitrary initial state in parallel case.

Fig. 1: Convergence of best response dynamics.

TABLE III. One of the simulation runs for the sequential
updating case is shown in Fig. 1(b), and one of the simulation
runs for the parallel updating case is shown in Fig. 1(c).
As expected, in all the cases above, the Nash equilibrium
coincides with the output of Algorithm 1.

The fast convergence of the game may be explained as
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Number of players 200 300 400 500 600 700
Rounds (sequential) 6.53 6.67 6.80 6.90 6.93 6.99

Rounds (parallel) 11.33 11.55 11.62 11.74 11.78 11.81

TABLE IV: Average number of rounds needed for convergence
vs. number of players.

follows. The only term in the best response (5) of player i that
changes between two consecutive rounds is ks

kb

∑
j 6=i pj . If all

players are not too far from the equilibrium, the difference
∆ks
kb

∑
j 6=i pj will be relatively small compared with the best

response pi in the previous round. Moreover, since the best
response of player i has two other unchanged terms

√
ωi

αkb

and µ
kb

, one round of best response dynamics will bring every
player not too far from the equilibrium (note that, in parallel
updating case, players do not have the latest information so it
takes two rounds). As a result, one can expect that after the
second round, the players’ strategies should not change much.

Next, we investigate the relationship between the conver-
gence speeds (in terms of number of rounds till convergence)
and the number of players. Again, we simulate the best
response dynamics of the game from arbitrary initial states
for 100 times. Detailed results for the both sequential and
parallel updating cases are shown in TABLE IV. We find that
the game converges fast, and the number of rounds required
increases slowly with the number of players in the game.

3) Time complexity
In this subsection, we investigate the time complexity for

computing the Nash equilibrium. We compute the Nash equi-
librium of the game with number of players ranging from
N = 400 to N = 6000 in two ways: using best response
dynamics from an empty initial state and with sequential
updates, as done in the previous subsection, and computing the
equilibrium using Algorithm 1. The details on the hardware
and software used for this simulation are as follows: OS: Win-
dows 10 Pro, CPU: AMD Ryzen 5 2600x 6-Core Processor,
RAM: 16 GB, Software: MATLAB R2018b.

The corresponding results are shown in Fig. 2 on a loga-
rithmic scale. We perform linear regression to the logarithms
of the data, through which we empirically find that the time
complexity of best response dynamics scales as (N2.05), while
the time complexity of Algorithm 1 scales as (N3.14).

The time complexity of best response dynamics is as
expected, namely: our simulations showed that the game
converges in a nearly constant number of rounds. Considering
that there are N players and it takes O(N) to calculate one
player’s strategy according to best response (5) during each
round, the overall time complexity should roughly be O(N2).
However, it is hard to provide an exact result since we do not
precisely know how many rounds are needed for convergence.
We also note that the actual complexity of Algorithm 1 is
below the upper bound of O(N4) provided by Lemma 5,
hence the upper bound is slightly pessimistic. Regardless,
using best response dynamics is a faster way to compute the
Nash equilibrium.

4) Influence of parameters
In this subsection, we choose three players out of the 500

players in the game as representatives, and change the values

Fig. 2: Time complexity of computing the Nash equilibrium
using (1) best response dynamics and (2) Algorithm 1.

of the parameters µ, kb, ks, {ωi} in order to investigate the
influence of these parameters on the game’s Nash equilib-
rium. We set the job sizes of the chosen three players as
{ω1, ω2, ω3} = {2× 105, 1× 105, 5× 104}. We scale each of
the four parameters by a multiplicative factor β to evaluate the
impact of the three players’ strategies at the Nash equilibrium.
Fig. 3 presents the results. We shall discuss these findings in
the model analysis subsection.

B. Validation of Rational Behavior using BU SCC Data

Similar to many prior works on game theory, our paper as-
sumes that users are fully rational. Thus, the selected strategy
of each user is based on the action that maximizes its payoffs,
as provided by Eq. (5) in our case. This equation forms the
basis of Lemma 2 and the rest of this paper, whereby the price
paid by a user is non-decreasing with its workload.

We next validate this assumption using BU SCC data
collected from January 2019 to July 2019. As mentioned
before, projects in BU SCC correspond to players in our
model. We investigate the relationship between the number of
buy-in nodes owned by a project (which is commensurate with
the price paid) and the project’s total workload. A box plot
is presented in Fig. 4, where the lowerbound and upperbound
of a box represents the first and third quartile of the data,
respectively, and the red line inside a box represents the
median. The ends of the whiskers in the box plot represent
the lowest and highest data still within 1.5 interquartile range
(IQR) of the lower and upper quartile, respectively [34].
TABLE V shows detailed information about the average and
median workloads. We generally observe a positive correlation
between the number of buy-in nodes and the workload, which
coincides with our basic assumption that a player with larger
workload tends to pay more for buy-in resources.

We also note two interesting phenomena: (i) There are many
“outliers” in Fig. 4, which implies that some projects are more
price-sensitive than others (i.e., they have larger α). In other
words, they rather endure longer job completion times than
paying more; (ii) The players that own zero or one buy-in
nodes have roughly the same amount of workload. Specifically,
the average and median workloads of a project that owns zero
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(a) Influence of µ.

(b) Influence of kb.

(c) Influence of ks.

(d) Influence of workloads ωi, i ∈ {1, 2, 3}.

Fig. 3: Influence of parameters. β is a multiplicative scaling
factor of the parameter under study.

Fig. 4: Number of buy-in nodes owned by a project vs. the
workload of the project in the BU SCC [2].

No. of buy-in nodes 0 1 2 3 4
Average workload 42035 76733 169250 383,818 565426
Median workload 3206.5 2638 23594 130556 409408

TABLE V: Number of buy-in nodes owned vs. average and
median workload (in the units of CPU-hours) of projects in
the BU SCC [2].

buy-in node are 42035 CPU-hours and 3206.5 CPU-hours,
respectively, while the average and median workloads of a
project that owns one buy-in node are 76733 CPU-hours and
2638 CPU-hours, respectively. Indeed, it appears that some
projects that own one buy-in node have little demand for it.
However, this situation is rare when projects own at least two
buy-in nodes.

C. Model analysis

1) Influence of parameters
As established by Theorem 2, an N -player SBC game

yields a unique Nash equilibrium, which can be explicitly
calculated given the parameters µ, kb, ks, ω1, ω2, . . . , ωN . We
next proceed to consider how these parameters influence the
Nash equilibrium.

The parameters µ, kb, ks are set by the system provider.
The parameter µ reflects the amount of shared resources. As
expected, the larger µ is, the less players are willing to pay, as
shown in Fig. 3(a). With a too large µ, no player will choose
to buy in since they already have access to enough resources;
with a too small µ, players are forced to buy in, but their costs
may be too high, which may makes a shared/buy-in system
not very attractive.

The parameter kb measures how many resources a player
can get by paying a price. A larger kb implies that players
get more buy-in resources for the same price. The influence
of kb is shown in Fig. 3(b), which is subtle and depends
on the workload of each player. It is hard to tell whether a
player will pay more or less as kb increases, however, we
do observe that players with lower workload will tend to pay
more while players with larger workload will tend to pay less.
We get similar insight by analyzing the players’ best response
strategies (see Eq. (5)): pi is not a monotonic function of kb,
but for a player i with a larger workload ωi, the derivative of
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its best response strategy pi with respect to kb is more likely to
be negative, i.e., pi is more likely to be a decreasing function
of kb, which explains why the price paid by player 1, who has
the largest workload among the three players, starts decreasing
earlier as the scaling factor β increases in Fig. 3(b).

The parameter ks measures how much a player’s buy-in
resources can benefit other players. A larger ks implies that a
player can make more use of other players’ buy-in resources.
The influence of ks is shown in Fig. 3(c). As ks increases,
users can access more “public” resources made available by
idle buy-in nodes, and hence are less likely to purchase their
own buy-in resources. This can also be explained by analyzing
players’ best response strategies (see Eq. (5)): note that pi ≥ 0
for all i, thus pi is always a non-increasing function of ks.
Another interesting result is that, as ks increases, pi decreases
at a slower speed since the absolute value of the derivative of
pi with respect to ks, which is

∑
j 6=i pj/kb, gets smaller.

The set {ω1, ω2, . . . , ωN} corresponds to the workloads
of the players. Given µ, kb, ks, as ωi gets larger, player i
needs more resources and will tend to pay more for buy-in
resources, as indicated by Lemma 2. How a player perceives
the parameters µ, kb, ks is also relevant to its workload. When
µ, kb, ks changes, all player strategies will change accordingly,
however, the strategy of a player with a larger workload will
change relatively less. The influence of ωi is shown in Fig.
3(d).

2) Potential traps and design guidelines
Define players that pay strictly positive prices, i.e. pi > 0,

as “heavy users”, and players that do not pay, i.e. pi = 0, as
“light users”. Heavy users have to buy in resources in order to
minimize their costs. Although heavy users benefit each other
through buy-in resources, users with larger workloads benefit
relatively less than users with smaller workloads. For example,
consider two heavy users with workloads ω1 and ω2, where
ω1 > ω2, then user 1 gets additional computing rate ksp2 from
user 2, while user 2 gets additional computing rate ksp1 from
user 1. From Lemma 2, we know that p1 > p2, as a result,
user 1 gets relatively less additional resources even though it
needs more resources due to its larger workload. On the other
hand, shared resources and buy-in resources from other users
can satisfy the needs of light users. Hence their best response
strategy is to pay nothing, which implies that light users benefit
the most from the shared/buy-in feature.

Thus, light users behave as “free-riders” in the system.
In essence, this game incorporates some inherent unfairness,
since a user with smaller workload relatively experiences a
larger benefit. Moreover, a heavy user may be tempted to
lower its cost by splitting its job into M > 1 shares, and then
join the system as M light users users, each being a free-
rider. A possible solution for preventing users from such an
artificial split of jobs is to charge all users of the system (e.g.,
in the University of Illinois at Urbana-Champaign Campus
Cluster [35], light users still need to pay for shared resources).
Another solution is to check the users’ identity before being
admitted into the system. For example, the SCC at Boston
University can only be accessed by valid faculty and research
staff members, hence a user cannot (easily) split its job in this
system.

VII. CONCLUSION

We proposed a game-theoretic model for shared/buy-in
computing systems, which provides a formal method to ana-
lyze the behavior of such systems. We investigated both static
and dynamic properties of the game. We established that the
game admits a unique Nash equilibrium, and, furthermore,
we provided a polynomial-time algorithm for computing it.
We then established that, regardless of the initial state, the
game converges to the Nash equilibrium through best response
dynamics. This result was obtained by showing that a SBC
game belongs to the class of aggregative games.

Through numerical simulations, we explored additional
convergence properties of the game and the effect of the
system parameters on the structure of the Nash equilibrium.
In particular, we found that the Nash equilibrium can be
computed faster using best response dynamics than through
Algorithm 1. However, only Algorithm 1 provably provides
the exact answer in a deterministic amount of time. Another
interesting insight from the paper is that increasing the amount
of buy-in resources that a user gets per currency unit (i.e.,
increasing the parameter kb) may lead some users to pay less
and other users to pay more. We also investigated potential
traps in the design of SBC systems, including the possible
emergence of free-riders, and suggested corresponding guide-
lines for addressing this issue.

Our work is an initial attempt to formally understand the
behavior of practical shared/buy-in computing systems. As
such, it opens several interesting directions for future research,
in particular: (i) investigating the perspective of social welfare,
most notably the price of anarchy of the game; (ii) adding
the service provider to the game, including its objective and
strategic behavior; (iii) relaxing the assumption of a linear
sum within the cost function into a more general aggregate
form, in order to generalize our results. One of the goals
of shared/buy-in systems from a provider’s perspective is to
consolidate IT services (all the users in an organization use the
same platform). A system where light users would be charged
for resource usage (which may appear fairer/more efficient)
may deter such users from entering the system in the first
place and defeat to some extent the purpose of the system.
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