
A Semi Markov-based Analysis of Rate Adaptation
Algorithms in Wireless LANs

Angad Singh∗ David Starobinski∗
∗ Department of Electrical and Computer Engineering

Boston University, Boston, MA 02215
Email:{angad,staro}@bu.edu

Abstract— Rate adaptation plays a key role in deter-
mining the performance of wireless LANs. In this paper,
we introduce a semi-Markovian framework to analyze the
performance of two of the most popular rate adaptation
algorithms used in wireless LANs, namely Automatic Rate
Fallback (ARF) and Adaptive Automatic Rate Fallback
(AARF). Given our modeling assumptions, the analysis
is exact and provides closed form expressions for the
achievable throughput of ARF and AARF. We illustrate
the benefit of our analysis by numerically comparing
the throughput performance of ARF and AARF in two
different channel regimes. The results show that neither
of these algorithms consistently outperforms the other.
We thus propose and analyze a new variant to AARF,
called Persistent AARF (or PAARF), and show that it
achieves a good compromise between the two algorithms,
often performing close to the best algorithm in each of the
studied regimes.

I. I NTRODUCTION

Wireless LANs play a prominent role among wireless
communication systems [1–4]. Most wireless LANs sup-
port data transmission at multiple bit-rates by employing
different modulation and channel encoding schemes. The
IEEE 802.11 WLAN family of standards is amongst
the most popular WLAN systems supporting data trans-
mission at multiple bit-rates [2, 5]. For instance, the
IEEE 802.11b standard allows transmissions at four
different bit rates, i.e., 1, 2, 5.5, and 11 Mbs, while the
newer IEEE 802.11g standard allows transmissions at 12
different bit-rates ranging from 1 Mbs to 54 Mbs.

The volatile nature of the wireless channel resulting
from fading, attenuation, and interference from other
radiation sources, makes the task of rate selection in
multi-rate WLANs system a key feature for through-
put optimization. A well designed algorithm ought to
select a bit-rate for data transmission that maximizes
the instantaneous throughput. A key challenge however
is that channel quality usually fluctuates and, thus, any

rate selection algorithm must adapt to variations in the
channel and network conditions.

For IEEE 802.11 WLAN systems, several rate adap-
tation algorithms have been proposed, see, e.g., [6–
11]. Most of these algorithms are rooted in the same
design philosophy. They employ open-loop rate adap-
tation schemes, run locally on the network nodes, that
dynamically determine the data transmission rate based
on certain statistics collected by the transmitting node.
Two of the most popular rate adaptation algorithms
belonging to this category are the Automatic Rate Fall-
back (ARF) [6] and Adaptive Automatic Rate Fallback
(AARF) [7] algorithms that use consecutive successful
or failed packet transmissions to guide rate adaptation
(cf. Section II).

In this paper, we propose a new analytical framework
to evaluate the performance of the ARF and AARF
algorithms in wireless LANs with random channels.
Our analysis, based on the theory of semi-Markov
processes [12], isexactand providesclosed-formexpres-
sions for the throughput achieved by ARF and AARF.
While our analysis necessarily relies on some simplify-
ing assumptions for the sake of tractability, it has the
clear advantage of providing meaningful insight into the
impact of various algorithm and channel parameters on
the performance of these algorithms.

To illustrate the benefits of our analysis, we present
numerical results comparing the performance ARF and
AARF for different channel regimes. Our numerical
results clearly identify channel regimes where AARF
outperforms ARF, and are in line with simulation and ex-
perimental results reported in [7, 11]. More surprisingly,
they also show that there exist some practical regimes
where ARF significantly outperforms AARF.

Based on the insights gathered from our numerical
analysis, we propose a new variant to AARF, called
Persistent Adaptive Automatic Rate Fallback (PAARF).
We show that the analysis of AARF can easily be



extended to that of PAARF. Numerical results show that
PAARF reaches a good compromise between ARF and
AARF and often gets very close to the best performing
algorithm in each of the studied regimes.

The rest of this paper is organized as follows. We
discuss related work in Section II and introduce our
model and notations in Section III. We conduct the
analysis of ARF and AARF in Section IV. In Section V,
we numerically compare the performance of ARF and
AARF and introduce the new PAARF algorithm. We
provide concluding remarks in Section VI.

II. RELATED WORK

We first provide detail on the ARF and AARF algo-
rithm and then briefly discuss other relevant work.

ARF [6] is the first documented rate adaptation al-
gorithm developed to optimize throughput performance
in wireless LAN devices. ARF keeps transmitting at
a given bit-rate until a certain number ofconsecutive
packets transmissions have either succeeded or failed.
Specifically, iff consecutive packet transmissions fail to
get acknowledged at the current bit-rate, then the next
lower bit-rate (if there is such one) is selected for data
transmission. Similarly, ifs consecutive packet trans-
missions are acknowledged without any re-transmissions
at the current bit-rate, then the next higher bit-rate (if
there is such one) is selected for data transmission.
The default value of ARF parameters aref = 2 and
s = 10. ARF requires the maintenance of very little state
information. Its simplicity has made it one of the most
widely implemented open-loop rate adaptation schemes
in commercial 802.11 WLAN devices [10].

AARF [7] is derived from ARF. It tries to improve
throughput performance in scenarios where the packet
success probability at a certain bit-rate is much higher
than at the next higher bit-rate. The problem with ARF
in such cases is that afters consecutive successful packet
transmission at the low bit-rate it always attempts trans-
missions at the higher bit-rate. Instead, AARF imple-
ments a binary exponential back-off procedure whereby
after every failed probe packet transmission at the higher
bit-rate, AARF doubles (up to some maximum value)
the threshold number of consecutive packet transmis-
sions required at the current bit-rate before attempting
a packet transmission at the next higher bit-rate. Thus,
AARF initially looks for s consecutive successful packet
transmissions at the current bit-rate after which it sends
a probe packet at the next higher bit-rate. If the probe
packet transmission is successful, then AARF switches to

the higher bit-rate. Otherwise, it stays in the current bit-
rate. In that case, the next probe packet transmission at
the higher bit-rate is attempted only after2s consecutive
successful packet transmissions at the current bit-rate and
so forth. The default value of AARF parameters are the
same as that of ARF. Additionally the default value of
the threshold for the maximum number of consecutive
successful packet transmissions required at the current
bit-rate is set to 50.

Several papers have proposed various modifications
and improvements over the basic ARF and AARF rate
adaptation algorithms, see e.g., [9–11, 13, 14]. Several of
these algorithms, e.g., [10, 13, 14], are based on varia-
tions of ARF, and thus we expect our analytical models
to be useful to evaluate their performance as well.

So far, most of the evaluation of rate adaptation
algorithms has been carried out through simulations [7, 8,
10, 14–17] or experiments on actual testbed networks [9,
11]. Although there exists analytical work for multi-rate
wireless networks, see e.g., [18, 19], that work assumes
that each node always transmits at a fixed rate. An
exception is the recent work of [20], where, among other
contributions, the authors present a Markov chain model
of ARF. The present work differs from [20] in several
aspects. First, we use the more general theory of semi-
Markov processes to analyze rate adaptation algorithms.
Thus, the analysis is applicable to arbitrary packet length
distributions. Second, we also provide an analysis of
the AARF algorithm and numerical comparisons be-
tween the performance of ARF and AARF. Finally, we
introduce the new PAARF algorithm and compare its
performance to the two other algorithms.

III. M ODEL AND NOTATIONS

Our goal in this paper is to conduct an exact analysis
of the performance of the ARF and AARF algorithms in
wireless LANs, such as IEEE 802.11 networks. As such,
a certain number of assumptions are necessary in order
to keep the analysis tractable.

In order to decouple the behavior of the above algo-
rithms from other MAC and higher-layer mechanisms,
we focus our attention on the behavior of ARF and
AARF for a single source-destination pair (e.g., a mobile
node and a base station). We note that most wireless
LANs operate at low load and, thus, it is typical that,
at any given point of time, only one pair of nodes
communicates [21]. We assume that the source is greedy,
i.e., it has always packets to transmit.

The source can transmit packets atN different bit-
rates, denoted byR1, R2, . . . , RN in units of bit/s.



Without any limitations of generality, we assume that
these rates are sorted from the lowest to the highest, i.e.,
R1 represents the lowest available bit-rate andRN the
highest. At each bit-rateRi, we denote the probability
of a successful packet transmission byαi, where0 <
αi < 1. This probability is assumed to be independent
of any other events.

We use the random variablèto represent the length
(in bits) of a packet. This variable follows an arbitrary
i.i.d. distribution (i.e., not necessarily exponential). The
mean packet length is denoted by`.

Next, definefi to be the long run proportion of time
during which packet transmission is carried out at the bit-
rateRi. We can then express the steady-state throughput
τ as follows:

τ =
N∑

i=1

fiαiRi. (1)

The key for characterizing the throughput performance
of ARF and AARF resides in deriving an expression for
fi for each of the algorithms.

To keep the presentation of the paper simple, we
will avoid entering into protocol-specific details, such
as transmissions of control packets (RTS, CTS, ACK,
etc.), inter-frame spacings, and back-off retransmissions.
All those can be included in the semi-Markov models
presented in the next section, albeit at the expense of
greater state complexity. For instance, it is possible
to integrate back-off retransmission mechanisms in the
model much the same way as the rate adaptation back-off
procedure of AARF is modeled in Section IV-B.

IV. A NALYSIS

A. ARF

Based on our statistical assumptions, we next show
that the behavior of ARF can be analyzed using the
theory of semi-Markov processes [12]. Similar to a
Markov process, a semi-Markov process transitions be-
tween different states. Uponenteringa certain state, the
time spent in that state and the transition probabilities
to the various possible next states depend only on the
present state and are independent of the history. How-
ever, contrary to a standard Markov process, the time
spent in each state follows a general distribution, which
is not necessarily memoryless. Thus, a semi-Markov
process is not Markovian at an arbitrary point of time.
However, one can create an embedded Markov chain by
sampling the original process at moments of transition
to a new state.
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Fig. 1. Embedded Markov chain modeling ARF behavior at the
moments of transitions to a new state. Statei represents packet
transmissions at rateRi.

Now, define statei to be the state in which packets
are transmitted at the bit-rateRi. Clearly, upon entering
state2 ≤ i ≤ N − 1, the time spent in that state and the
transition probabilities to statei − 1 and i + 1 depend
only on the parametersαi, Ri, `, s, and f and, thus,
are independent of the past. Similar arguments apply for
the time spent in states 1 andN . Thus, the behavior
of ARF can be modeled using a semi-Markov process.
The embedded Markov chain for the problem at hand
is depicted in Fig. 1. The quantitiespi,j shown in the
figure represent the transition probabilities from statei
to statej.

As per Eq. (1), in order to find an expression for the
throughput of ARF we need to calculatefi, i.e., the
long run proportion of time data transmission is carried
out at the bit-rateRi. Let pi represent the steady-state
probability of finding the semi-Markov process in state
i. From the definition of statei, we immediately see that
fi = pi.

In order to computepi, we will exploit the mathemat-
ical properties of semi-Markov processes [12]. Specif-
ically, define µi to be the mean time spent in each
state i of the semi-Markov process andπi to be the
steady-state proportion of transitions into statei. The
latter also corresponds to the steady-state fraction of time
the embedded Markov chain associated with the process
finds itself in statei. Then, it can be shown [12]:

pi =
πiµi∑N
i=1 πiµi

. (2)

The embedded Markov chain shown in Fig. 1 is a
simple birth-death process [12]. Thus, the steady-state
probabilitiesπi, for each statei ≥ 2, can readily be
expressed as follows:

πi = π1

i−1∏

k=1

pk,k+1

pk+1,k
. (3)

In order to calculateπ1, we apply the normalization
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Fig. 2. ARF operation at an intermediate bit-rateRi. StatesSi
j and

Si
−j represent respectivelyj consecutive successful and failed packet

transmissions.

condition and get

π1 =
1

1 +
∑N

i=2

∏i−1
k=1

pk,k+1

pk+1,k

. (4)

In order to complete the analysis, it just remains to
derive expression for the average time spent in each
stateµi and the transition probabilitiespi,j . Toward this
end, we need to model the operations of ARF within
each statei, corresponding to transmissions at bit-rate
Ri. Specifically, we need to keep track of the number
of consecutive successful or failed packet transmissions.
The state diagram shown in Fig. 2 models the behavior
of ARF at a given bit-rateRi, where 1 < i < N .
The initial state is stateSi

0. Each subsequent success-
ful packet transmission leads to a transition into some
stateSi

j , wherej represents the number of consecutive
successful packet transmissions. Similarly each failed
packet transmission leads to a transition into some state
Si
−j wherej represents the number of consecutive failed

packet transmissions. StatesSi
s andSi

−f are termination
states after which packet transmissions will occur at bit-
ratesRi+1 andRi−1, respectively. The state diagrams for
bit-ratesR1 andRN are similar, except that there is no
need to account for consecutive failed packet transmis-
sions and consecutive successful packet transmissions,
respectively.

Now, let the random variableXi(j) represent the
number of packet transmissions at bit-rateRi before
reaching stateSi

s or stateSi
−f , starting from stateSi

j .
The quantityXi(0) represents the average number of
packet transmission starting from stateSi

0 until one of
the termination states is reached. One can expressµi as
a function ofXi(0) in the following way:

µi = Xi(0)
`

Ri
. (5)

The special structure of the state diagram shown in
Fig. 2 allows to provide a closed-form expression for
Xi(0), as given by the following proposition.

Proposition 1 Let Xi(0) represents the expected num-
ber of packet transmission in statei of Fig. 1. Then, the
following holds:

Xi(0) =





Ps−1
j=0 (αi)j

(αi)s , for i = 1;

Ps−1
j=0 (αi)j

Pf−1
j=0 (1−αi)j

1−Ps−1
j=1 (αi)j

Pf−1
j=1 (1−αi)j

,

for 1 < i < N with s > 1 and f > 1;

∑s−1
j=0 (αi)j

∑f−1
j=0 (1− αi)j ,

for 1 < i < N with s = 1 or f = 1;

Pf−1
j=0 (1−αi)j

(1−αi)f , for i = N.

(6)

Proof:
We will prove the proposition for the case1 < i < N

with s > 1 andf > 1. The proof for the other cases is
similar.

The proof follows a two step approach. The first step
is to show that the following two equations hold:

Xi(s− u) =
u∑

k=1

(αi)k + (1− αi)(1 + Xi(−1))
u−1∑

k=0

(αi)k,

for 0 < u < s; (7)

Xi(−f + v) =
v∑

k=1

(1− αi)k + αi(1 + Xi(1))
v−1∑

k=0

(1− αi)k,

for 0 < v < f. (8)

We will prove Eq. (7) using mathematical induction.
The proof of Eq. (8) is conducted in a similar manner.

First, we prove the basis of the induction, i.e., we
consider the caseu = 1. Consider the average number of
transmissions starting from stateSi

s−1. With probability
αi, the next packet transmission is successful and ARF
exits the current bit rate to the next higher bit rate.
Otherwise, with probability1−αi, the transmission fails
and the process moves to stateSi

−1. We thus have

Xi(s− 1) = αi · 1 + (1− αi)(1 + Xi(−1)). (9)

This equation is equivalent to Eq. (7) foru = 1 and thus
proves the basis of the induction.



Next, we prove the induction step. Assume Eq. (7)
holds true foru = m, where1 ≤ m < s− 1, that is,

Xi(s−m) =
m∑

k=1

(αi)k+(1−αi)(1+Xi(−1))
m−1∑

k=0

(αi)k.

(10)
Now assume that the process is in stateSi

s−(m+1).
With probability αi, the next transmission is successful
and the process moves to stateSi

s−m. Otherwise, with
probability1−αi, the transmission fails and the process
moves to stateSi

−1. Thus,

Xi(s− (m + 1)) =

αi(1 + Xi(s−m)) + (1− αi)(1 + Xi(−1)).

(11)

Substituting Eq. (10) into Eq. (11), we obtain

Xi(s− (m + 1)) =
m+1∑

k=1

(αi)k + (1− αi)(1 + Xi(−1))
m∑

k=0

(αi)k,

(12)

hence proving the induction step.
Now we proceed with the second step of the proof.

We note that after the process enters stateSi
0, it either

moves to stateSi
1 (with probability αi) or to stateSi

−1

(with probability 1− αi). Therefore,

Xi(0) = αi(Xi(1) + 1) + (1− αi)(Xi(−1) + 1). (13)

Substitutingu = s − 1 in Eq. (7) andv = f − 1 in
Eq. (8), we get

Xi(1) =
s−1∑

k=1

(αi)k + (1− αi)(1 + Xi(−1))
s−2∑

k=0

(αi)k,

(14)

Xi(−1) =
f−1∑

k=1

(1− αi)k + αi(1 + Xi(1))
f−2∑

k=0

(1− αi)k.

(15)

Equations (13), (14) and (15) provide three linear equa-
tions in three unknowns (i.e,Xi(0),Xi(−1) andXi(1))
from which obtain the expression ofXi(0) given by
Proposition 1 for the case1 < i < N with s > 1 and
f > 1.

The next proposition provides expressions for the
transition probabilities of the embedded Markov chain

shown in Fig. 1, for 1 < i < N . To prove this
proposition, we compute the probability of getting from
stateSi

0 to stateSi
s , which corresponds exactly topi,i+1.

Proposition 2 Let pi,i+1 be the transition probability of
switching from statei to statei + 1. Then,

pi,i+1 =





(αi)s
Pf−1

j=0 (1−αi)j

1−[
Ps−1

j=1 (αi)
j Pf−1

j=1 (1−αi)j ]
,

for 1 < i < N with s > 1 and f > 1;

(αi)s
∑f−1

j=0 (1− αi)j ,

for 1 < i < N with s = 1 or f = 1.

(16)

In addition, we havep1,2 = pN,N−1 = 1, and pi,i−1 =
1− pi,i+1 for 1 < i < N .

Proof:
Defineqi(j) to be the probability of reaching stateSi

s

from stateSi
j . Therefore,pi,i+1 = qi(0).

We outline the proof of the proposition for the case
1 < i < N with s > 1 and f > 1. Similar to
Proposition 1, the proof follows a two step approach.
The first step is to prove that the following two equations
hold, which can be done via induction as in the proof of
Proposition 1:

qi(s− u) =

αu
i + qi(−1)(1− αi)

u−1∑

k=0

αi
k, for 0 < u < s;

(17)

qi(−(f − v)) =

qi(1)αi

v−1∑

k=0

(1− αi)k, for 0 < v < f.

(18)

Next, we note that

qi(0) = αiqi(1) + (1− αi)qi(−1), (19)

and substitutingu = s− 1 in Eq. (17) andv = f − 1 in
Eq. (18) we have,

qi(1) = αi
s−1 + qi(−1)(1− αi)

s−2∑

k=0

(αi)k; (20)

qi(−1) = qi(1)αi

f−2∑

k=0

(1− αi)k. (21)



Solving Eqs. (19), (20) and (21) forqi(0), we obtain
the expression ofpi,i+1 given by Proposition 2 for the
case1 < i < N with s > 1 andf > 1.

Using Eqs. (2), (3), (4), (5) and Propositions 1 and 2,
we thus have derived closed-form expressions forpi,
where 1 ≤ i ≤ N , as a function of the parameters
αi, Ri, `, s, f andN . Sincefi = pi, an expression for the
throughput of ARF follows immediately from Eq. (1).

B. AARF

The behavior of AARF is conceptually similar to that
of ARF and its analysis can also be carried out using
a semi-Markov process formulation. The complexity of
the analysis lies in modeling the back-off procedure of
AARF, which requires properly defining the states of the
semi-Markov process.

To model the operation of AARF at each bit-rateRi,
where 1 ≤ i ≤ N , we define the “fall back” states
iβ and the “probe states”i+1

β , as illustrated in Fig. 3.
The variableβ, where 0 ≤ β ≤ βmax, is indicative
of the current back-off stage. Thus, if the process is
in state iβ, there must be2βs consecutive successful
packet transmissions before the process moves to probe
state i+1

β , where a probe packet is transmitted at rate
Ri+1. If the probe packet is successfully transmitted
then the process transitions to state(i + 1)0. Otherwise,
the process moves to the next fall back state, i.e., state
iβ+1. Similar to ARF, if the process is in some state
iβ and experiencesf consecutive packet transmission
failures then it transitions to state(i− 1)0 (except for
the casei = 1, where the process remains in the same
state). The stateiβmax

represents the maximum fall back
state. The process keeps returning to that state until the
transmission of a probe packet at rateRi+1 is successful
or f consequent packet failures occur. Finally, we note
that there are no fall back states at rateRN , and thus
there is only one stateN0 which is defined the same
way as stateN in ARF.

Similar to ARF, whenever the process enters one of
the above defined states, the time spent in each state
and the transition probabilities to the next possible states
are independent of the history. Thus, the behavior of
AARF can be modeled using a semi-Markov process.
The embedded Markov chain for this process is shown
in Fig. 3.

As per Eq. (1), in order to find an expression for the
throughput of AARF, we need to calculatefi, i.e., the
long run proportion of time data transmission is carried
out at the bit-rateRi. The quantitiesfi can be expressed

i i i i
1 max

max

i ,

,i

,i ,i

p +1

i +1p p
i +1

+1

i +1i +1

0

0

p (    )i -1
0

(    )i -1
0

(    )i+1
0

i +1

(    )i+1
0

Fig. 3. Embedded Markov chain modeling AARF behavior at the
moments of transitions to a new state. The variableβ is an indicator
of the back-off stage. Statesiβ correspond to “fall back” states, in
which transmissions take place at rateRi, and statesi+1

β correspond
to “probe states”, in which transmissions take place at rateRi+1.

as a function ofpiβ
and p(i−1)+1

β
which are defined as

the steady-state probabilities of finding the semi-Markov
process in either the fall-back stateiβ or the probe packet
state(i− 1)+1

β respectively. Specifically, we have

fi =
βmax∑

β=0

(piβ
+ p(i−1)+1

β
) for 1 ≤ i ≤ N, (22)

where by definitionp0+1
β

= 0, andpNβ
= 0 for β ≥ 1.

As in the previous section, we can find expressions for
piβ

andpi+1
β

by computing i) the average time spent in
each state of the semi-Markov process; ii) the transition
probabilities of the embedded Markov chain; and iii) the
steady-state probabilities of the embedded Markov chain.

We start with items i) and ii). Consider first the probe
states. The average time spent in statei+1

β is simply

µi+1
β

=
`

Ri+1
. (23)

The transition probabilities out of the probe states are
given by

p(i+1
β ,(i+1)0)

= αi+1; (24)

p(i+1
β ,iβ+1)

= 1− αi+1, (25)

and for the caseβ = βmax,

p(i+1
βmax

,(i+1)0)
= αi+1; (26)

p(i+1
βmax

,iβmax ) = 1− αi+1. (27)



The behavior of AARF in the fall back statesiβ is
very similar to that of ARF in statei, except that the
number of consecutive successful transmissions required
before transmitting at the next higher bit-rate isbβ = 2βs
instead of justs. Thus, we can apply Proposition 1 and
obtain the following expressions for the average time
spent in each stateiβ:

µiβ
=





Pbβ−1
j=0 (αi)

j

(αi)
bβ

· `
Ri

, for i = 1;

Pbβ−1
j=0 (αi)

jPf−1
j=0 (1−αi)j

1−[
Pbβ−1

j=1 (αi)
j Pf−1

j=1 (1−αi)j ]
· `

Ri
,

for 1 < i < N ; f > 1 andb0 > 1;

∑bβ−1
j=0 (αi)

j∑f−1
j=0 (1− αi)j · `

Ri
,

for 1 < i < N ; f = 1 or b0 = 1;

Pf−1
j=0 (1−αN )j

(αN )f · `
RN

,

for i = N andβ = 0.

(28)

Similarly, applying Proposition 2, we have the follow-
ing expressions for the transition probability from state
iβ to statei+1

β :

p(iβ ,i+1
β ) =





1, for i = 1;

(αi)
bβ
Pf−1

j=0 (1−αi)j

1−[
Pbβ−1

j=1 (αi)
j Pf−1

j=1 (1−αi)j ]
,

for 1 < i < N ; b0 > 1 andf > 1;

(αi)bβ
∑f−1

j=0 (1− αi)j ,

for 1 < i < N ; b0 = 1 or f = 1;

0, for i = N.

(29)

In addition, we havep(iβ ,(i−1)0)
= 1 − p(iβ ,i+1

β ) for
1 < i < N , andp(N0,(N−1)0)

= 1.
The last item to complete the analysis is to compute

the steady-state probabilities of the embedded Markov
chain πiβ

and πi+1
β

. Once this is done, the proportion
of time spent by AARF in each state is given by the
following expressions that are analogous to Eq. (2):

piβ
=

πiβ
µiβ∑N

i=1

∑βmax

β=1 (πiβ
+ π(i−1)+1

β
)
; (30)

pi+1
β

=
πi+1

β
µi+1

β∑N
i=1

∑βmax

β=1 (πiβ
+ π(i−1)+1

β
)
, (31)

where by definitionπ0+1
β

= 0, andπNβ
= 0 for β ≥ 1.

We next show that the seemingly complex structure
of the embedded Markov chain shown in Fig. 3 has the
remarkable property of collapsing into a simple birth-
death process.

First, we observe that the steady probabilities of
the states at leveli, namely πiβ

and πi+1
β

, can all be
expressed as a function ofπi0 . This is done by taking
contours around each state of leveli in order, that is,
i+1
0 , i1, i

+1
1 , . . ., and writing the balance equations for

each. The expressions are as follows:

πi+1
β

=





πi0p(iβ ,i+1
β )

∏β−1
k=0 [p(ik,i+1

k )p(i+1
k ,ik+1)

],
for 0 ≤ β < βmax and1 ≤ i < N ;

πi0p
(iβ,i

+1
β

)

Qβ−1
k=0 [p

(ik,i
+1
k

)
p
(i

+1
k

,ik+1)
]

1−p
(i

+1
β

,iβ)
p
(iβ,i

+1
β

)
,

for β = βmax and1 ≤ i < N ;

(32)

πiβ
=





πi0

∏β−1
k=0 [p(ik,i+1

k )p(i+1
k ,ik+1)

],
for 0 < β < βmax and1 ≤ i < N ;

πi0

Qβ−1
k=0 [p

(ik,i
+1
k

)
p
(i

+1
k

,ik+1)
]

1−p
(i

+1
β

,iβ)
p
(iβ,i

+1
β

)
,

for β = βmax and1 ≤ i < N.

(33)

Now, at equilibrium, the rate of transitions from leveli
to level i + 1 must be the same as that from leveli + 1
to level i. Thus,

βmax∑

β=0

(pi+1
β ,(i+1)0

)πi+1
β

=
βmax∑

β=0

(p(i+1)β ,i0)π(i+1)β
,

for 1 ≤ i < N. (34)

Using Eq. (32), all the individual terms in the lhs of
Eq. (34) can be expressed as a function ofπi0 , while,
using Eq. (33), all the individual terms in the rhs of
Eq. (34) can be expressed as a function ofπ(i+1)0 ,
leading to balance equations similar to a birth-death
process. Using Eq. (34), we can then express all the
steady-state probabilities as a function ofπ10 . Finally,
we can resort to the normalization condition to evaluate
π10 , i.e.,

N∑

i=1

βmax∑

β=0

(πiβ
+ π(i−1)+1

β
) = 1, (35)

and our analysis is complete.
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Fig. 4. R1 = 1 Mbps, R2 = 2 Mbps, α2 = 0.2

V. NUMERICAL RESULTS

In this section, we illustrate the utility of our analysis
by numerically comparing the throughput performance
of ARF and AARF in two different channel regimes.
These results show that neither of these algorithms
consistently outperforms the other. We then propose a
new variant, called Persistent AARF (PARFF), that is
shown to achieve a good compromise between the two
algorithms.

A. Performance Comparison of ARF and AARF

We consider a wireless LAN supportingN = 2 bit-
rates, with R1 = 1 Mbps andR2 = 2 Mbps. The
parameters of the algorithms are set as follows:s = 10,
f = 2, and, for AARF, βmax = 3. We compare the
throughput performance of ARF and AARF under two
channel regimes of practical interest. In the first regime,
the probability of a successful packet transmission at
bit-rate R1 is much higher than at bit rateR2, i.e., we
fix α2 = 0.2 and evaluate the throughput of ARF and
AARF for values ofα1 ranging from 0.7 to 1. In the
second regime, the probability of a successful packet
transmission at bit-rateR1 is only slightly higher than
at bit rateR2, that is, we fixα2 = 0.7 and varyα1 from
0.7 to 1 (note thatα1 should always exceedα2).

Figure 4 depicts results for the first regime. We
observe that AARF outperforms ARF and that the dif-
ference between the performance increases withα1. The
cause of the discrepancy is that ARF attempts too often
to switch to the failure proneR2 bit-rate, which results
in throughput degradation. On the other hand, AARF
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Fig. 5. R1 = 1 Mbps, R2 = 2 Mbps, α2 = 0.7

spends a lot more time in the optimalR1 bit-rate. This
result is consistent with experimental and simulation
results reported in [7, 11].

Figure 5 shows results for the second regime and illus-
trates conditions under which ARF outperforms AARF.
The throughput performance of AARF suffers in this
region as it tends to spend too much time in the under
performing R1 bit-rate, whereas ARF tries to switch
to the optimalR2 much more frequently. This is an
insightful result as it indicates the need to optimize
AARF under channel regimes where the probability of
successful packet transmission is high at both the lower
and higher bit-rates.

B. Persistent AARF

The main cause of the relatively poor performance of
AARF in the second regime is that it is not persistent
enough in probing the higher-bit rates. Thus, we propose
a simple variation of AARF, called Persistent AARF.
PAARF is identical to AARF, except that, when entering
a probe statei+1

β , it transmits two probe packets at the
next higher bit-rate instead of just one. If anyone of
these two probe packets is successfully transmitted, then
PAARF switches to the next higher bit rate, i.e., to state
(i + 1)0.

One of the main benefits of our analysis is that it
allows evaluating the performance of such new variants
without having to run lengthy simulations. In particular,
the analysis of PAARF is almost the same as that of
AARF. The only difference is the mean time spent in



probe states which is now

µi+1
β

=
(2− αi+1)`

Ri+1
, (36)

and the transition probabilities out of the probe states
which become

p(i+1
β ,(i+1)0)

= 2αi+1 − (αi+1)2; (37)

p(i+1
β ,iβ+1)

= 1− 2αi+1 + (αi+1)2, (38)

and for the caseβ = βmax,

p(i+1
βmax

,(i+1)0)
= 2αi+1 − (αi+1)2; (39)

p(i+1
βmax

,iβmax ) = 1− 2αi+1 + (αi+1)2. (40)

Fig. 4 and Fig. 5 show the performance of PAARF
for the two channel regimes in consideration. As one
can see, PAARF generally performs close to the best
algorithm in each case. One exception is whenα1 is very
close toα2, in the second regime. In that case, PAARF
performs only marginally better than AARF. However,
we conjecture that the likelihood of this scenario is
relatively low because if the packet success probability at
rateR2 is quite high (e.g., 0.7), then the packet success
probability at rateR1 is likely to be close to 1.

VI. CONCLUSIONS

In this paper, we have proposed a novel semi-
Markovian framework to analyze the performance of
two of the most widely implemented rate adaptation
algorithms in wireless LANs, namely ARF and AARF.
Given our modeling assumptions, the analysis is exact
and provides closed form expressions for the achievable
throughput of ARF and AARF. Through our analysis,
we were able to derive the average fraction of time
spent by the algorithms at each of the transmission rates.
A particularly interesting finding was that the multi-
dimensional embedded Markov chain associated with the
semi-Markov process of AARF collapses into a simple
one dimensional birth-death process.

We used the analytical expressions to numerically
compare the throughput performance of ARF and AARF
in two channel regimes for a wireless LAN operating at
two different bit-rates. In the regime where the packet
success probability at the low bit rate is much higher than
at the high bit rate, we found that AARF outperforms
ARF, consistent with earlier results reported in the liter-
ature. However, in the regime where the packet success
probability at the low bit rate is only slightly higher than
at the high bit rate, ARF can be substantially superior to
AARF.

Based on this insight, we devised a new variant to
AARF, called Persistent AARF (PAARF), whereby two
probe packets (instead of just one) are transmitted each
time the algorithm enters one of the probe states. We
were able to analyze PAARF much the same way as
AARF and our numerical results showed that this simple
modification can significantly improve the performance
of AARF in the regime where it does not perform well,
while maintaining almost the same performance in the
regime where it does perform well.

The analytical framework developed in this paper
provides the basis for many other interesting types of
optimizations. For instance, an important issue is how
to optimally set the operational parameters of ARF and
AARF. Another important area for future work is to
numerically evaluate the performance of ARF, AARF,
and PAARF for more than two bit rates. It would be
desirable to refine our analysis so as to capture the
effects of MAC overhead, which could be significant
at high bit rates. Overall, this work marks an initial
step for modeling rate adaptation in wireless LANs and
shows promise for analytically evaluating various open-
loop rate adaptation algorithms, especially those based
on ARF.
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