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Abstract—Rate adaptation plays a key role in deter- rate selection algorithm must adapt to variations in the
mining the performance of wireless LANSs. In this paper, channel and network conditions.
we introduce a semi-Markovian framework to analyze the For IEEE 802.11 WLAN systems, several rate adap-
plerfo_”r?ance Og two of Ithe TX;" pOPU'aIr rzte adaptagon tation algorithms have been proposed, see, e.g., [6—
algorithms used in wireless s, namely Automatic Rate : ;
Fallback (ARF) and Adaptive Automatic Rate Fallback 11]'. MOSt.Of these algorithms are rooted in the same
(AARF). Given our modeling assumptions, the analysis deslgn philosophy. They employ open-loop rate adap-
is exact and provides closed form expressions for the tation §chemes, run locally on the netv.vor.k nodes, that
achievable throughput of ARF and AARF. We illustrate dynamically determine the data transmission rate based
the benefit of our analysis by numerically comparing On certain statistics collected by the transmitting node.
the throughput performance of ARF and AARF in two Two of the most popular rate adaptation algorithms
different channel regimes. The results show that neither belonging to this category are the Automatic Rate Fall-
of these algorithms consistently outperforms the other. pack (ARF) [6] and Adaptive Automatic Rate Fallback
We thus propose and analyze a new variant to AARF, (A aARF) 7] algorithms that use consecutive successful

called Persistent AARF (or PAARF), and show that it "oy it transmissions to guide rate adaptation
achieves a good compromise between the two algorlthms,(cf Section 1)

often performing close to the best algorithm in each of the ) .
studied regimes. In this paper, we propose a new analytical framework

to evaluate the performance of the ARF and AARF
I INTRODUCTION algorithms @n wireless LANs with random channels.
Our analysis, based on the theory of semi-Markov
Wireless LANs play a prominent role among wirelesgrocesses [12], isxactand provideslosed-formexpres-
communication systems [1-4]. Most wireless LANs sugions for the throughput achieved by ARF and AARF.
port data transmission at multiple bit-rates by employing/hile our analysis necessarily relies on some simplify-
different modulation and channel encoding schemes. Tihg assumptions for the sake of tractability, it has the
IEEE 802.11 WLAN family of standards is amongstlear advantage of providing meaningful insight into the
the most popular WLAN systems supporting data trangapact of various algorithm and channel parameters on
mission at multiple bit-rates [2,5]. For instance, ththe performance of these algorithms.
IEEE 802.11b standard allows transmissions at fourTo illustrate the benefits of our analysis, we present
different bit rates, i.e., 1, 2, 5.5, and 11 Mbs, while theumerical results comparing the performance ARF and
newer |IEEE 802.11g standard allows transmissions at AARF for different channel regimes. Our numerical
different bit-rates ranging from 1 Mbs to 54 Mbs. results clearly identify channel regimes where AARF
The volatile nature of the wireless channel resultingutperforms ARF, and are in line with simulation and ex-
from fading, attenuation, and interference from othgrerimental results reported in [7,11]. More surprisingly,
radiation sources, makes the task of rate selectiontirey also show that there exist some practical regimes
multi-rate WLANs system a key feature for throughwhere ARF significantly outperforms AARF.
put optimization. A well designed algorithm ought to Based on the insights gathered from our numerical
select a bit-rate for data transmission that maximizesalysis, we propose a new variant to AARF, called
the instantaneous throughput. A key challenge howe\Rersistent Adaptive Automatic Rate Fallback (PAARF).
is that channel quality usually fluctuates and, thus, aklyfe show that the analysis of AARF can easily be



extended to that of PAARF. Numerical results show th#te higher bit-rate. Otherwise, it stays in the current bit-
PAARF reaches a good compromise between ARF arate. In that case, the next probe packet transmission at
AARF and often gets very close to the best performirthe higher bit-rate is attempted only aftar consecutive
algorithm in each of the studied regimes. successful packet transmissions at the current bit-rate and
The rest of this paper is organized as follows. Wgo forth. The default value of AARF parameters are the
discuss related work in Section Il and introduce owame as that of ARF. Additionally the default value of
model and notations in Section Ill. We conduct ththe threshold for the maximum number of consecutive
analysis of ARF and AARF in Section IV. In Section Vsuccessful packet transmissions required at the current
we numerically compare the performance of ARF arfet-rate is set to 50.
AARF and introduce the new PAARF algorithm. We Several papers have proposed various modifications

provide concluding remarks in Section VI. and improvements over the basic ARF and AARF rate
adaptation algorithms, see e.g., [9-11, 13, 14]. Several of
Il. RELATED WORK these algorithms, e.g., [10, 13, 14], are based on varia-

tions of ARF, and thus we expect our analytical models

We first provide detail on the ARF and AARF algoto be useful to evaluate their performance as well.
rithm and then briefly discuss other relevant work. So far, most of the evaluation of rate adaptation

ARF [6] is the first documented rate adaptation ahklgorithms has been carried out through simulations [7, 8,
gorithm developed to optimize throughput performanced, 14-17] or experiments on actual testbed networks [9,
in wireless LAN devices. ARF keeps transmitting at1]. Although there exists analytical work for multi-rate
a given bit-rate until a certain number obnsecutive wireless networks, see e.g., [18, 19], that work assumes
packets transmissions have either succeeded or failgtht each node always transmits at a fixed rate. An
Specifically, if f consecutive packet transmissions fail texception is the recent work of [20], where, among other
get acknowledged at the current bit-rate, then the nexintributions, the authors present a Markov chain model
lower bit-rate (if there is such one) is selected for datsf ARF. The present work differs from [20] in several
transmission. Similarly, ifs consecutive packet trans-aspects. First, we use the more general theory of semi-
missions are acknowledged without any re-transmissiomiairkov processes to analyze rate adaptation algorithms.
at the current bit-rate, then the next higher bit-rate (ifhus, the analysis is applicable to arbitrary packet length
there is such one) is selected for data transmissi@fistributions. Second, we also provide an analysis of
The default value of ARF parameters afe= 2 and the AARF algorithm and numerical comparisons be-
s = 10. ARF requires the maintenance of very little stateveen the performance of ARF and AARF. Finally, we
information. Its simplicity has made it one of the moshtroduce the new PAARF algorithm and compare its
widely implemented open-loop rate adaptation schemgsrformance to the two other algorithms.
in commercial 802.11 WLAN devices [10].

AARF [7] is derived from ARF. It tries to improve lll. M ODEL AND NOTATIONS
throughput performance in scenarios where the packe©Our goal in this paper is to conduct an exact analysis
success probability at a certain bit-rate is much highef the performance of the ARF and AARF algorithms in
than at the next higher bit-rate. The problem with ARWireless LANs, such as IEEE 802.11 networks. As such,
in such cases is that aftelconsecutive successful packea certain number of assumptions are necessary in order
transmission at the low bit-rate it always attempts trants keep the analysis tractable.
missions at the higher bit-rate. Instead, AARF imple- In order to decouple the behavior of the above algo-
ments a binary exponential back-off procedure wherebyhms from other MAC and higher-layer mechanisms,
after every failed probe packet transmission at the highe#e focus our attention on the behavior of ARF and
bit-rate, AARF doubles (up to some maximum valué)ARF for a single source-destination pair (e.g., a mobile
the threshold number of consecutive packet transmisade and a base station). We note that most wireless
sions required at the current bit-rate before attemptih@g\Ns operate at low load and, thus, it is typical that,
a packet transmission at the next higher bit-rate. Thud, any given point of time, only one pair of nodes
AARF initially looks for s consecutive successful packetommunicates [21]. We assume that the source is greedy,
transmissions at the current bit-rate after which it sends., it has always packets to transmit.
a probe packet at the next higher bit-rate. If the probeThe source can transmit packets /4t different bit-
packet transmission is successful, then AARF switchesrites, denoted byR;, Rs,..., Ry in units of bit/s.



Without any limitations of generality, we assume that

these rates are sorted from the lowest to the highest, i.e.,

R, represents the lowest available bit-rate aRg the

highest. At each bit-raté&?;, we denote the probability

of a successful packet transmission &y where0 <

a; < 1. This probability is assumed to be independemg. 1. Embedded Markov chain modeling ARF behavior at the

of any other events. moments of transitions to a new state. Stateepresents packet
We use the random variableto represent the lengthtransmissions at rat;.

(in bits) of a packet. This variable follows an arbitrary

i.i.d. distribution (i.e., not necessarily exponential). The

mean packet length is denoted hy Now, define state to be the state in which packets
Next, definef; to be the long run proportion of timeare transmitted at the bit-rate;. Clearly, upon entering

during which packet transmission is carried out at the bfitate2 < i < N —1, the time spent in that state and the

rate R;. We can then express the steady-state throughfi@nsition probabilities to state— 1 andi + 1 depend

p2,1 p?:,Z pl, -1 gﬂ ,i p!‘v?!\'-1

T as follows: only on the parameters;, R;, /, s, and f and, thus,
N are independent of the past. Similar arguments apply for
7= fiR;. (1) the time spent in states 1 amd. Thus, the behavior
=1

of ARF can be modeled using a semi-Markov process.

The key for characterizing the throughput performandd'€ €mbedded Markov chain for the problem at hand

of ARF and AARF resides in deriving an expression fdf depicted in Fig. 1. The quantitigs,; shown in the

f; for each of the algorithms. figure represent the transition probabilities from state
To keep the presentation of the paper simple, We Statej.

will avoid entering into protocol-specific details, such As per Eq. (1), in order to find an expression for the

as transmissions of control packets (RTS, CTS, Ackroughput of ARF we need to calculatg, i.e., the

etc.), inter-frame spacings, and back-off retransmissio#1d run proportion of time data transmission is carried

All those can be included in the semi-Markov modefut at the bit-rateR;. Let p; represent the steady-state

presented in the next section, albeit at the expensepgpbability of finding the semi-Markov process in state

greater state complexity. For instance, it is possibleFrom the definition of statg§ we immediately see that

to integrate back-off retransmission mechanisms in thie= pi-

model much the same way as the rate adaptation back-offn order to compute;, we will exploit the mathemat-

procedure of AARF is modeled in Section IV-B. ical properties of semi-Markov processes [12]. Specif-
ically, define u; to be the mean time spent in each

IV. ANALYSIS statei of the semi-Markov process and, to be the

A ARE steady-state proportion of transitions into stateThe

o _ latter also corresponds to the steady-state fraction of time
Based on our statistical assumptions, we next shede embedded Markov chain associated with the process

that the behavior of ARF can be analyzed using thggs tself in statei. Then, it can be shown [12]:

theory of semi-Markov processes [12]. Similar to a

Markov process, a semi-Markov process transitions be- P = Titi )
tween different states. Upanteringa certain state, the ZZ.N: 1 Tilki

time spent in that state and the transition probabilities

to the various possible next states depend only on thelThe embedded Markov chain shown in Fig. 1 is a
present state and are independent of the history. Hosimple birth-death process [12]. Thus, the steady-state
ever, contrary to a standard Markov process, the timeobabilities r;, for each state > 2, can readily be
spent in each state follows a general distribution, whigxpressed as follows:
is not necessarily memoryless. Thus, a semi-Markov

process is not Markovian at an arbitrary point of time. Dk k+1
However, one can create an embedded Markov chain by i =T H Dhtik )
sampling the original process at moments of transition k=1 ’

to a new state.

i—1

In order to calculater;, we apply the normalization



, Proposition 1 Let X;(0) represents the expected num-
o, 1 /1 A . a o ber of packet transmission in statef Fig. 1. Then, the

L) /@ following holds:

P571 Y
e el fori =1
Fig. 2. ARF operation at an intermediate bit-rdte StatesS} and P, P, )
S.; represent respectivelyconsecutive successful and failed packet p=0 l(o‘i)J g0 (11_0“)’ :
transmissions. 1— i (i) I (1—ai)s”
foril<i< Nwiths>1andf>1;
Xi(0) = (6)
condition and get
Yoo (V120 (1= aq),
_ 1 ) fOI’1<Z<NWIth8—1OI’f:1;
7T1 - 1 N i—1 Pk, k41 .
+ > s [y Porak
. . . . f—1 j
In order to complete the analysis, it just remains to j=o (1—0x) for i = N.

. . . . \ (1—ay)f ’
derive expression for the average time spent in each

state; and the transition probabilitigs; ;. Toward this Proof:

end, we need to model the operations of ARF within We will prove the proposition for the cade< i < N
each state, corresponding to transmissions at bit-rateith s > 1 and f > 1. The proof for the other cases is
R;. Specifically, we need to keep track of the numbeimilar.

of consecutive successful or failed packet transmissionsThe proof follows a two step approach. The first step
The state diagram shown in Fig. 2 models the behavigrto show that the following two equations hold:

of ARF at a given bit-rateR;, wherel < i < N.

The initial state is stateS). Each subsequent success- X;(s —u) =

ful packet transmission leads to a transition into some u u—1

stateSjZﬁ, wherej represents the number of consecutive Z (a)® + (1 — o) (1 + Xy ( Z ,
successful packet transmissions. Similarly each failed k=1 k=0

packet transmission leads to a transition into some state for 0 <w <s; (7)

Sij wherej represents the number of consecutive failed
packet transmissions. Statss andSif are termination

. - : L Xi(— =

states after which packet transmissions will occur at bit- il ‘er v) o1
ratesR; 1 andR;_1, respectively. The state diagrams for 1

! § . ) — ;)" 4 a; (1 + X4 ( (1 —ay)",
bit-ratesR; and Ry are similar, except that there is no ;( i)+ kzo i)
need to account for consecutive failed packet transmis- for 0 < v < f. 8)
sions and consecutive successful packet transmissions,
respectively. We will prove Eq. (7) using mathematical induction.

Now, let the random variableX;(j) represent the The proof of Eq. (8) is conducted in a similar manner.
number of packet transmissions at bit-rafie before st we prove the basis of the induction, i.e., we
reaching stateS; or stateS! ;, starting from stateS;.  consider the case = 1. Consider the average number of
The quantity X;(0) represents the average number Qfansmissions starting from stafé_,. With probability
packet transmission starting from stafg until one of , the next packet transmission is successful and ARF
the termination states is reached. One can exgIess exits the current bit rate to the next higher bit rate.

a function of X;(0) in the following way: Otherwise, with probabilityl — ;, the transmission fails
7 and the process moves to stdte;. We thus have
pi = Xi(0) - (®)

Xi(s =) =a; 1+ (1 —a)(1+ Xi(=1)). (9)
The special structure of the state diagram shown in
Fig. 2 allows to provide a closed-form expression fdFhis equation is equivalent to Eq. (7) far= 1 and thus

X;(0), as given by the following proposition. proves the basis of the induction.



Next, we prove the induction step. Assume Eq. (8hown in Fig. 1, forl < ¢ < N. To prove this

holds true foru = m, wherel < m < s — 1, that is,

m m—1

Xi(s—m) = (a)"+(1-a) (14 Xi(-1)) D (ai)",
k=1 k=0

(10)

Now assume that the process is in state , .

With probability «;, the next transmission is successful

and the process moves to staig ,,. Otherwise, with

probability 1 — «;, the transmission fails and the process

moves to states’ ;. Thus,

Xi(s—(m+1)) =

ai(14 Xi(s —m)) + (1 — a;)(1 + Xi(~1).
(11)
Substituting Eg. (10) into Eq. (11), we obtain

Xi(s—(m+1)) =

m—+1 m
Do (@) + (1= )1+ X(=1)) Y (),
k=1 k=0

(12)

hence proving the induction step.

proposition, we compute the probability of getting from
stateS; to stateS; , which corresponds exactly 16 ;1.

Proposition 2 Letp; ;11 be the transition probability of
switching from staté to state: + 1. Then,

Diji+1 = (16)

ai)jv
forl<i< Nwiths=1or f=1.

—o (1—

In addition, we havep; 2 = pyv—1 =1, andp; ;1 =
1 —piis1 forl <i < N.

Proof:
Defineg;(j) to be the probability of reaching staé
from stateS}. Thereforep; ;11 = ¢i(0).
We outline the proof of the proposition for the case
1 <i < Nwiths > 1andf > 1. Similar to
Proposition 1, the proof follows a two step approach.

Now we proceed with the second step of the proo-F.he first step is to prove that the following two equations

We note that after the process enters stieit either
moves to stateS! (with probability «;) or to stateS?
(with probability 1 — «;). Therefore,

Xi(0) = i(Xi(1) +1) + (1 — ) (Xi(=1) + 1). (13)

Substitutingu = s — 1 in Eq. (7) andv = f — 1 in
Eq. (8), we get

X;(1) =
S— s—2
(@) 4+ (1= )1+ X(-1)) ) (),
k=1 k=0
(14)
Xi(—-1) =
f—1 f—2
(1—a) +a;(14+ X)) (1 —ay).
k=1 k=0
(15)

Equations (13), (14) and (15) provide three linear equa-

tions in three unknowns (i.eX;(0), X;(—1) and X;(1))
from which obtain the expression of;(0) given by
Proposition 1 for the casé < i < N with s > 1 and
f>1 [ ]

The next proposition provides expressions for the
transition probabilities of the embedded Markov chain

hold, which can be done via induction as in the proof of
Proposition 1.:

gi(s —u) =
o+ qi(—1)(1 - ai)uilaik, for 0 < u < s;
= a7)
6(—(f —v)) =
¢i(1)oy 5 (1—a)k, foro<w<f.
o (18)
Next, we note that
4i(0) = igi(1) + (1 — e)qi(—1), (19)

and substituting: = s — 1 in Eq. (17) andv = f — 1 in
Eqg. (18) we have,

)

v

(1) = "+ (=11 - i) Y (a)";  (20)
k=0
f—2
gi(—1) = (Vi > (1 — )" (21)

k=0



Solving Egs. (19), (20) and (21) fex(0), we obtain
the expression op; ;11 given by Proposition 2 for the
casel <i< Nwiths>1landf > 1.

[ |

Using Egs. (2), (3), (4), (5) and Propositions 1 and 2,
we thus have derived closed-form expressions gr
wherel < ¢ < N, as a function of the parameters
a;, R;, 0, s, f andN. Sincef; = p;, an expression for the
throughput of ARF follows immediately from Eq. (1).

B. AARF

The behavior of AARF is conceptually similar to that
of ARF and its analysis can also be carried out using
a semi-Markov process formulation. The complexity of
the analysis lies in modeling the back-off procedure of
AARF, which requires properly defining the states of the
semi-Markov process. Fig. 3. Embedded Markov chain modeling AARF behavior at the

To model the operation of AARF at each bit-rag, moments of transitions to a new state. The varigbie an indicator
wherel < i < N. we define the “fall back” statesOf the back-off stage. Stateég correspond to “fall back” states, in
. d h_ “ _b ’ wrl il di . which transmissions take place at rdte and statesfg1 correspond
tg an t_ € "probe StateSzB » as | UStrat_e _m 'Flg'. 3. to “probe states”, in which transmissions take place at Rte;.

The variable3, where0 < 8 < [, IS indicative

of the current back-off stage. Thus, if the process is

in stateig, there must be2®s consecutive successfulas a function ofp;,, andp(i_l)ﬂ which are defined as
packet transmissions before the process moves to profe steady-state probabilities of finding the semi-Markov
statez'gl, where a probe packet is transmitted at rafgrocess in either the fall-back statgor the probe packet
R;1. If the probe packet is successfully transmittestate (i — 1);1 respectively. Specifically, we have

then the process transitions to stéie- 1),,. Otherwise,

- Bma'b
the process moves to the next fall back state, i.e., state .
g . . $o ; = ; 41 <i<
ig4+1. Similar to ARF, if the process is in some state Ji ;)(p’@ +Pa-;) forl<isN, (22)

ig and experienceg consecutive packet transmission o
failures then it transitions to statg — 1), (except for Where by definitionp,.. =0, andpy, =0 for § > 1.

the casei = 1, where the process remains in the sameAS In the previous septlor_w, we can find expressions _for
state). The staté;  represents the maximum fall back?is andp;+: by computing i) the average time spent in
state. The process keeps returning to that state until 8&ch state of the semi-Markov process; ii) the transition
transmission of a probe packet at rdtg ; is successful probabilities of the embedded Markov chain; and iii) the
or f consequent packet failures occur. Finally, we nofdeady-state probabilities of the embedded Markov chain.
that there are no fall back states at rd&te, and thus We start with items i) and ii). Consider first the probe
there is only one statéV, which is defined the sameStates. The average time spent in stgteis simply

way as stateV in ARF. 7
Similar to ARF, whenever the process enters one of it = (23)
. . . 8 Ri+1
the above defined states, the time spent in each state

and the transition probabilities to the next possible statt§€ transition probabilities out of the probe states are
are independent of the history. Thus, the behavior 8ven by

AARF can be modeled using a semi-Markov process. o e 24

: : . Pt (i+1)o) Qit1; (24)
The embedded Markov chain for this process is shown ? _ 1 o5
in Fig. 3. Pt gy = 17 @it (25)

As per Eq. (1), in order to find an expression for thand for the cas® = B4z,
throughput of AARF, we need to calculafg, i.e., the
long run proportion of time data transmission is carried Pas) it)o) T it (26)
out at the bit-rateR;. The quantitiesf; can be expressed P+ = 1—-a;1. (27)

YBmaz WBmaz )



The behavior of AARF in the fall back statég is
very similar to that of ARF in staté, except that the
number of consecutive successful transmissions requi
before transmitting at the next higher bit-ratéjs= 2°s

We next show that the seemingly complex structure
of the embedded Markov chain shown in Fig. 3 has the
recharkable property of collapsing into a simple birth-
death process.

instead of justs. Thus, we can apply Proposition 1 and First, we observe that the steady probabilities of
obtain the following expressions for the average tintee states at level, namely r;, and i, can all be

spent in each statg;:

F’bi 1 _
()’ . )
— % fori=1;
Pug—1 P ) _
l_:7f=0 al) éol(l a)’ A
bg—1 .
-0 2 (e) 1) (—an)i] B

for1<z<N f>1andbpy > 1;

iy = (28)

S () Ty (1= )

L
R
for1<z<N f=1lorby=

fori =N andg = 0.

Similarly, applying Proposition 2, we have the follow-
ing expressions for the transition probability from state

ig to statei}':

L,

for 1 <(za< N, b0(1>a11)a}1ndf > 1;
p(iﬁ7igl) = (29)
()P 32025 (1= i),

forl<i< N;bg=1or f=1;

0, fori=N.

In addition, we haVQO(i[,,(ifl)U) =1-p
1 <i<N,andp, n-1),) = L.

for

(7:;9 »i:?l)

expressed as a function af,. This is done by taking
contours around each state of levein order, that is,
igt, i1,i7", ..., and writing the balance equations for
each. The expressions are as follows:

;

Triop (ig, zﬁ sz 0 [p(zk,z zk ,zkﬂ)]
for 0 < 6 < Bmaz and1§z<N;

41 = (32)
v i o lp ]
0Pegikty k=0 Py HPatt )
1*17(1.;1@@)17(%_’1.;1) ’
L for 8 = B and1 <i < N;
T Hk 0 { (inyiy )p(izl,ik+1)}7
for 0 < 8 < Bmaz and1 < i < N;
’65 - Q[ﬁ 1 (33)
iy olp, 1Pt 'k+1>]
1— p( 2511.’ )p(ﬂw;d) ’
L for 6 = Bar and1 < i < N.

Now, at equilibrium, the rate of transitions from level
to leveli + 1 must be the same as that from leve} 1
to leveli. Thus,

/BTYLO/(E ﬁnzam
Z (pz';l,(iﬂ)o)”i;l - Z (p(i+1)ﬁ,io)7f(i+1)ﬁ=
=0 B8=0

for1 <i< N. (34)

Using Eq. (32), all the individual terms in the |hs of
Eqg. (34) can be expressed as a functionrgf while,

The last item to complete the analysis is to compuf$nd EA. (33)1’) all the indiéidual tefrms in thi rhs of
the steady-state probabilities of the embedded Markpd- (34) can be expressed as a functionmfy ),
chain 7 andw+1 Once this is done, the proportlorJead'ng to balance equations similar to a birth-death

ig

of time spent by AARF in each state is given by thBtrocgsstl:[Jsmg Eqb'l('f'ﬂr) we c?n tthen exere_ss”aII the
following expressions that are analogous to Eq. (2): steady-state probabilities as_, a_ unction TQf“ inafly,
_— we can resort to the normalization condition to evaluate
13

Di ; (30) Ty i.e.,
’ Zz 1 Zﬁmw (miy + 7(i1y51)
N ﬁ"’iﬂz(ﬂ
7T»+1,u,i+1
Pitr = SN 8 ; (31) Z Z (i + Tinyr) = 1, (35)
O im0 (i +mgyn) i=1 =0

where by definitionr,,: = 0, andry, =0 for 5> 1. and our analysis is complete.
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V. NUMERICAL RESULTS

In this section, we illustrate the utility of our analysi$Pends a lot more time in the optim&), bit-rate. This
by numerically comparing the throughput performancf@sun is conS|st§nt with experimental and simulation
of ARF and AARF in two different channel regimesesults reported in [7,11].

These results show that neither of these a|gorithmsFigure53hows results for the second regime and illus-
consistently outperforms the other. We then proposel’@tes conditions under which ARF outperforms AARF.
new variant, called Persistent AARF (PARFF), that i§h€ throughput performance of AARF suffers in this

shown to achieve a good compromise between the tfggiON as it tends to spend too much time in the under
algorithms. performing R; bit-rate, whereas ARF tries to switch

to the optimal R, much more frequently. This is an
insightful result as it indicates the need to optimize
AARF under channel regimes where the probability of
successful packet transmission is high at both the lower
and higher bit-rates.

A. Performance Comparison of ARF and AARF

We consider a wireless LAN supportiny = 2 bit-
rates, with Ry = 1 Mbps and Ry, = 2 Mbps. The
parameters of the algorithms are set as follows: 10,
f = 2, and, for AARF, B,,.. = 3. We compare the .
throughput performance of ARF and AARF under twg' Persistent AARF
channel regimes of practical interest. In the first regime, The main cause of the relatively poor performance of
the probability of a successful packet transmission AARF in the second regime is that it is not persistent
bit-rate R, is much higher than at bit rat&,, i.e., we €nough in probing the higher-bit rates. Thus, we propose
fix ap = 0.2 and evaluate the throughput of ARF an@ simple variation of AARF, called Persistent AARF.
AARF for values ofa; ranging from 0.7 to 1. In the PAARF is identical to AARF, except that, when entering
second regime, the probability of a successful pack@tprobe staté’, it transmits two probe packets at the
transmission at bit-raté?; is only slightly higher than next higher bit-rate instead of just one. If anyone of
at bit rate R, that is, we fixap, = 0.7 and varyo, from these two probe packets is successfully transmitted, then
0.7 to 1 (note thaty; should always exceed). PAARF switches to the next higher bit rate, i.e., to state

Figure 4 depicts results for the first regime. W& + 1)o-
observe that AARF outperforms ARF and that the dif- One of the main benefits of our analysis is that it
ference between the performance increases aithrhe allows evaluating the performance of such new variants
cause of the discrepancy is that ARF attempts too oftéfithout having to run lengthy simulations. In particular,
to switch to the failure prond?, bit-rate, which results the analysis of PAARF is almost the same as that of

in throughput degradation. On the other hand, AAREARF. The only difference is the mean time spent in



probe states which is now Based on this insight, we devised a new variant to
(2= agi1)l AAREF, called Persistent AARF (PAARF), whereby two
7”1, (36) probe packets (instead of just one) are transmitted each

Riva time the algorithm enters one of the probe states. We
and the transition probabilities out of the probe statggre able to analyze PAARF much the same way as
which become AARF and our numerical results showed that this simple
modification can significantly improve the performance
of AARF in the regime where it does not perform well,
P ige) = 1 =241 + (ai41)%, (38) while maintaining almost the same performance in the
regime where it does perform well.

The analytical framework developed in this paper

41 =
i

Pt (i+1)0) 20041 = (ai41)*s 37)

and for the cas® = B4z,

Pt (i+1)y) = 2041 — (ovip1)%; (39) pr(:yio]est_the b;’;\sis'fo; many other in'E[ereis_ting ty'pers] of
optimizations. For instance, an important issue is how

T = 1-2 +1)%. (40 : .
P oibmas) i1 ¥ (@it1) (40) to optimally set the operational parameters of ARF and

Fig. 4 and Fig. 5 show the performance of PAARPARF. Another important area for future work is to
for the two channel regimes in consideration. As orieimerically evaluate the performance of ARF, AARF,
can see, PAARF generally performs close to the bewd PAARF for more than two bit rates. It would be
algorithm in each case. One exception is wherns very desirable to refine our analysis so as to capture the
close toas, in the second regime. In that case, PAAREffects of MAC overhead, which could be significant
performs only marginally better than AARF. Howeverat high bit rates. Overall, this work marks an initial
we conjecture that the likelihood of this scenario istep for modeling rate adaptation in wireless LANs and
relatively low because if the packet success probability ghows promise for analytically evaluating various open-
rate R, is quite high (e.g., 0.7), then the packet succekop rate adaptation algorithms, especially those based
probability at rateR; is likely to be close to 1. on ARF.

VI. CONCLUSIONS
_ _ ACKNOWLEDGMENT
In this paper, we have proposed a novel semi-

Markovian framework to analyze the performance of This work was supported in part by the US National
two of the most widely implemented rate adaptatioBcience Foundation under grants ANI-0132802, ANI-
algorithms in wireless LANs, namely ARF and AARF0240333, and CNS-0435312.
Given our modeling assumptions, the analysis is exact
and provides closed form expressions for the achievable
throughput of ARF and AARF. Through our analysis,
we were able to derive the average fraction of timei1] z.J. Haas, J. Deng, B. Liang, P. Papadimitratos, and S. Sajama,
spent by the algorithms at each of the transmission rates. “Wireless ad hoc networks,” iEncyclopedia of Telecommuni-
A particularly interesting finding was that the multi- _ cations J. G. Proakis, Ed. Wiley, 2002. _
di . | bedded Mark hai iated with ﬂ{2] “ANSI/IEEE Std 802.11-1999 Wireless LAN Medium Access
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