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Abstract—We analyze the dynamics of advance reservation (AR)
games: games in which customers compete for limited resources
and can reserve resources for a fee. We introduce and analyze
two different learning models. In the first model, called strategy-
learning, customers are informed of the strategy adopted in
the previous iteration, while in the second model, called action-
learning, customers estimate the strategy by observing previous
actions. We prove that in the strategy-learning model, conver-
gence to equilibrium is guaranteed. In contrast, in the action-
learning model, the system converges only if an equilibrium in
which none of the customers makes AR exists. Based on those
results, we show that if the provider is risk-averse and sets the AR
fee low enough, action-learning yields on average greater profit
than strategy-learning. However, if the provider is risk-taking and
sets a high AR fee, action-learning provably yields zero profit in
the long term in contrast to strategy-learning.

I. INTRODUCTION

Modern resource management software, such as Haizea1

and IBM Platform Computing Solutions2 include mechanisms
that allow customers to reserve resources in advance. In these
packages, an administrator can define an AR pricing scheme
and may charge a reservation fee. Charging an AR fee is
common in different venues and can be also found in cloud
computing. For example, Amazon EC2 cloud offers reserved
instance services, in which customers pay a fee that allow
them to use resources later on for a lower cost.3

The strategic behavior of customers in such systems is
studied in [1], which introduces the concept of Advance
Reservation (AR) games. In AR games, customers know that
they will need service at a future time slot. In order to increase
the probability to get service when needed (referred to as
the service probability), customers can make a reservation in
advance for a fee, which is set by the provider.

Upon deciding whether to reserve a resource in advance or
not, estimating the decision of other customers plays a key
role. In this paper, we assume that such estimation can be
made by observing historical data. Our goal is to understand
how revealing different types of data impacts the profit of a
service provider. Toward this end, we study the dynamics of
AR games by analyzing several learning models. We assume
that the game repeats many times and customers modify their
strategy following the observation of the behavior of customers
at the previous iteration.

The number and types of equilibria in AR games depend
on the AR fee [1]. Low fees lead to a unique equilibrium and

1See http://haizea.cs.uchicago.edu/.
2See http://www.redbooks.ibm.com/redbooks/pdfs/sg248073.pdf.
3See http://aws.amazon.com/ec2/purchasing-options/reserved-instances/.

guaranteed AR fee profit. However, in many cases, the profit-
maximizing fee is higher and may result in other equilibria,
including one that yields zero profit. Thus, we distinguish
between a risk-averse provider, who opts for a guaranteed
profit albeit typically a non-optimal one, and a risk-taking
provider, who wishes to maximize its profit and is willing
to take the risk of ending up with zero profit.4

We define two types of learning: strategy-learning and
action-learning. In strategy-learning, customers obtain infor-
mation about the strategy adopted in the previous iteration,
while in action-learning, customers estimate the strategy by
obtaining information about the actions taken by customers in
the previous iteration.

We separately analyze the dynamics of systems formed by
a risk-averse provider (a system with a unique equilibrium)
and by a risk-taking provider (a system with multiple equi-
libria). For each system, we analyze the outcomes of both
strategy-learning and action-learning. The main results regard-
ing convergence to equilibrium are: 1) When implementing
strategy-learning, the customers’ strategy always converges to
an equilibrium. If multiple equilibria exist, the initial belief
of customers determines to which equilibrium the strategy
will converge. 2) When implementing action-learning, if there
exists an equilibrium in which none of the customers makes
AR (none-make-AR equilibrium), then the strategy converges
to this equilibrium. Otherwise, the strategy cycles. Hence, a
system formed by a risk-averse provider always cycles, while
a system formed by a risk-taking provider always converges
to a none-make-AR equilibrium. Furthermore, we show that in
order to maximize profits, a risk-averse provider should reveal
previous actions rather than strategies.

The rest of the paper is structured as follows: In Section
II, we review related work. In Section III, we describe the
AR game and provide necessary background. In section IV,
we define and analyze the learning process. In Sections V and
VI, we study the dynamics of systems with risk-averse pricing
and risk-taking pricing, respectively. Section VII concludes the
paper and suggests directions for future research.

II. RELATED WORK

The concept of learning an equilibrium is rooted in
Cournot’s duopoly model [2] and has been extensively re-
searched. Most works analyze fixed-player games (i.e., the
same players participate at each iteration), see, [3], [4] and [5].
However, in practice the number of players may vary over

4Note that, given a demand, the number of customers getting service is
independent of the number of customers making AR. Hence, profits from
service fees are ignored in this paper.



time. In our work, we assume that the number of customers
at each iteration is a random variable.

Learning under stochastic settings was researched in [6]. In
that paper, customers choose between buying a product at full
price or waiting for a discount period. Decisions are made
based on observing past capacities. In [7], the authors analyze
a processor sharing model. In this model, customers choose
between joining or balking by observing the performance
history. In [8], the authors present a model of abandonment
from unobservable queues. The decision is based on the
expected waiting time which is formed through accumulated
experience. To our knowledge, a learning model of a queueing
system that supports advance reservation has not been studied
yet.

Different learning models are distinguished by their learning
type. While Cournot [6] assumes that decisions are made by
observing the opponent’s most recent action, the author of [9]
assume that at each iteration, players know the actions made in
all previous steps. This approach is known as fictitious play.
In [10], the authors assume that players only observe their
own payoffs and from those they deduce the actions of other
players. In our work, we adopt Cournot learning model in the
sense that customers only observe the behavior of the previous
iteration.

III. ADVANCE RESERVATION MODEL

In this section we describe the AR game and summarize the
main results presented in [1] that are relevant to this paper. We
begin by describing the model assumptions.5

The system consists of N servers. The service time axis
is slotted. The demand, which represents the number of
customers that request service in a specific slot (each customer
requests one server), is an independent random variable D
with general distribution (supported in N).6 The lead time of a
customer is the time between arrival and the slot starting time.
All lead times are i.i.d continuous random variables with the
same general distribution (supported in R+). Each customer
chooses an action: make AR or not make AR, denoted AR
and AR′ respectively. If the demand is larger than N but not
all servers are reserved, the unreserved servers are arbitrarily
allocated to customers that did not make AR. The customers
know the number of servers N and statistical information on
the system (i.e., the distribution of the demand and the lead
time). The provider charges customers that make AR and get
service a fixed reservation fee C. All the customers have the
same utility U from the service. Without loss of generality,
we set U = 1.

We denote the value of the cumulative distribution of a
customer’s lead time as her normalized lead time (which is
also the expected fraction of customers arriving after her). A
strategy function σ : τ → [0, 1] is defined as the probability
that a customer with normalized lead time τ ∈ [0, 1] makes

5In [1] three different models of AR games are presented. In this paper we
develop learning models of the first AR game.

6This is a generalization of [1], which assumes that the demand follows a
Poisson distribution.

AR. Given that all customers follow strategy σ, the expected
payoff of making AR for a tagged customer with normalized
lead time τ is

Uσ(τ,AR) = (1− C)P (S|σ, τ, AR) , (1)

where P(S) is the service probability. The expected payoff of
not making AR is

Uσ(τ,AR
′) = P (S|σ,AR′) . (2)

The service probability in both cases is calculated by condi-
tioning on the number of customers and the lead times. A
formula is given in [1].

Given a strategy σ and a normalized lead time τ , one can
find the best response of a tagged customer (i.e, the decision
that maximizes her expected payoff) by comparing the two
possible expected payoffs:

BR(σ, τ) = argmax
α∈{AR,AR′}

(Uσ(τ, α)). (3)

Next, we define a threshold strategy pe ∈ [0, 1] as a strategy
in which only customers with normalized lead times greater
than pe make AR. Under the assumption that all customers
follow the threshold strategy pe, the service probabilities of
the threshold customer (i.e., a customer that arrives exactly at
the threshold) when making and not making AR are defined
by πAR (pe) and πAR′ (pe), respectively. Both probabilities
are non-decreasing function of pe.

AR games have two types of equilibria. The first type is
some-make-AR equilibrium. A threshold strategy pe leads to a
some-make-AR equilibrium if and only if pe ∈ (0, 1) and the
threshold customer is indifferent between the two strategies:

(1− C)πAR′ (pe) = πAR (pe) . (4)

The second type of equilibrium is a none-make-AR equi-
librium.7 A threshold strategy pe leads to a none-make-AR
equilibrium if and only if pe = 1 and

(1− C)πAR′ (1) ≥ πAR (1) . (5)

We define the ordered set of equilibria of a game with n
equilibria by P e = {pe1, ..., pen} where pei+1 > pei . If none-
make-AR is an equilibrium, then pen = 1.

Throughout the paper we make the following assumption:

Assumption 1. Customers that are indifferent between making
and not making AR opt not to make AR.

IV. LEARNING MODEL

In this section we define the learning model and analyze
the behavior of customers at a specific iteration. We assume
that at the first iteration, customers base their decisions on
certain information they share regarding the strategy of other
customers. We refer to that information as the initial belief.

Lemma 1. Given any common initial belief, the set of best
responses of all customers to that belief is a threshold strategy.

7It is shown in [1] that an equilibrium in which all customers make AR
does not exist.



Proof: Since the servers are allocated in a first-reserve-
first-allocated fashion, the expected payoff of making AR is a
non-decreasing function of the lead time. On the other hand,
when not making AR, the expected payoff as a function of the
lead time is a constant. In case that the two expected payoff
functions do not intersect, then all customers will either make
AR or not make AR (depending on which function is greater).
In the case that they do intersect, they can intersect on a single
point γ or along an interval [γ1, γ2]. In the first case, the best
response of a customer with lead time smaller than γ is not to
make AR, while the best response of a customer with greater
lead time is to make AR. Hence, all customers will follow the
threshold strategy γ. In the second case, the best response of
a customer with lead time smaller than γ1 is not to make AR.
Based on Assumption 1, we deduce that a customer with lead
time within the interval [γ1, γ2] also does not make AR. The
best response of a customer with lead time greater than γ2
is to make AR. Thus, all customers will follow the threshold
strategy γ2.

Next we make the following assumption:
Assumption 2. The initial belief β1 is that all customers
follow the same threshold strategy.

The assumption is crucial for analyzing the strategy-learning
model when the provider is risk-taking. In this case, the initial
belief determines to which equilibrium the strategy converges.
Without this assumption, any arbitrary initial belief will require
a separate analysis.

We denote the threshold strategy followed at iteration i by
pi ∈ [0, 1]. An estimator for strategy pi is denoted p̂i. Our
learning rule is based on a Cournot model. In this model,
the players believe that the strategy followed at the last
iteration will also be followed in the current iteration. Hence,
at iteration i > 1, the belief βi is equal to p̂i−1. In the strategy-
learning model, customers observe the previous strategy, i.e.,
at iteration i, p̂i = pi. In the action-learning model, customers
observe the fraction of customers that did not make AR
and use that fraction as an estimator for the strategy. More
formally, given Di and DAR′

i , which are respectively the
demand and the number of customers that did not make AR
at iteration i, then the estimator of pi is p̂i = DAR′

i /Di. If
at some iteration the demand is zero, no learning is being
done and we assume that the belief remains the same as in
the previous iteration, i.e., if at iteration i the demand Di = 0,
then βi+1 = βi.

Since all customers follow a threshold strategy in each
iteration, we redefine the best response function BR : [0, 1]→
[0, 1]. The input of the new best response function is a
belief regarding the threshold strategy that is followed by all
customers. The output is the best response threshold strategy
to that belief. Given β, the output p is the single value that
satisfies the following:
• For any normalized lead time τ ≥ p

Uβ(τ,AR) ≥ Uβ(AR′). (6)

• For any normalized lead time τ < p

Uβ(τ,AR) ≤ Uβ(AR′). (7)

In the next subsection, we analyze the response of customers
to any given belief, regardless of how this belief has been
established.
A. Learning Analysis

We begin the analysis with the following key observations:
1) Given a belief β, the service probability of a customer

with normalized lead time τ > β that makes AR is
only affected by the decisions of customers that arrived
earlier than her. Therefore, her service probability is the
same as a threshold customer in a system with threshold
strategy τ . Hence,

P (S|β, τ, AR) = πAR(τ) if τ ≥ β. (8)

2) Given a belief β, a customer with normalized lead time
τ < β that makes AR believes that she is the only
one deviating, and therefore, she has the same service
probability as the threshold customer. Hence,

P (S|β, τ, AR) = πAR(β) if τ < β. (9)

Based on these observations, we conclude that under the belief
β, the expected payoff of making AR for a customer with
normalized lead time τ is:

Uβ(τ,AR) =

{
(1− C)πAR(β) if τ ≤ β
(1− C)πAR(τ) if τ > β.

(10)

The expected payoffs of all customers that do not make AR
are equal. Hence,

Uβ(τ,AR
′) = πAR′(β). (11)

Next, we show that under the belief β, if the threshold
customer is better off not making AR, then the best response
strategy to β is in between β and the smallest equilibrium that
is greater than β.

Lemma 2. Given a belief β, if

(1− C)πAR(β) < πAR′(β), (12)

then the best response strategy is in the interval (β, pem], where
m = min{j : pej ≥ β}.

Proof: First, we show that the best response strategy is
greater than β. Given Eq. (12) and based on Eqs. (10) and
(11), we deduce that all customers with normalized lead times
smaller than β have greater expected payoffs when not making
AR. A customer with normalized lead time τ greater than β
has an expected payoff of πAR′(β) if not making AR and
(1− C)πAR(τ) if making AR. If

(1− C)πAR(τ) < πAR′(β), ∀τ, (13)

then all the customers are better off not making AR. Other-
wise, since πAR(·) is a continuous increasing function, there
exists a single value p ∈ (β, 1) such that

(1− C)πAR(p) = πAR′(β). (14)



If making AR, the expected payoffs of customers with nor-
malized lead times smaller than p is at most (1−C)πAR(p).
Hence, they will not make AR. The payoff of customers with
normalized lead time greater than p, if making AR, is at least
(1−C)πAR(p), and hence they will make AR. Thus, the best
response of all customers is the threshold strategy p.

Next we show that the best response strategy p is bounded
by pem. Assume by contradiction that p > pem. In this case,
there exists ε > 0 such that a customer with normalized lead
time τ ∈ (pem, p

e
m + ε) is better off not making AR, namely:

(1− C)πAR(τ) < πAR′(p). (15)

Based on Eq. (12) and since

(1− C)πAR(pem) = πAR′(pem), (16)

we deduce that

(1− C)πAR(τ) ≥ πAR′(τ). (17)

Since πAR′(·) is a monotonic increasing function and since
τ > p, we deduce that

πAR′(τ) ≥ πAR′(p). (18)

By combining Eqs. (17) and (18), we get that

(1− C)πAR(τ) ≥ πAR′(p), (19)

which contradicts the assumption stated in Eq. (15). Thus, we
have shown that p ≤ pem.

Next, we show that under the belief β, if the threshold
customer is better off making AR, then the best response
strategy to β is to make AR.

Lemma 3. Given a belief β, if

(1− C)πAR(β) > πAR′(β), (20)

then its best response is p = 0.

Proof: Given that Eq. (20) holds and based on Eqs. (10)
and (11), we deduce that customers with normalized lead times
greater than β that make AR have at least the same payoff
as the threshold customer. Thus, they are better off making
AR. The expected payoffs of customers with normalized
lead times smaller than β are πAR′(β) if not making AR.
However, if making AR (each customer naively assumes that
she is the only one deviating), the expected payoff is equal
to the expected payoff of the threshold customer, namely to
(1−C)πAR(β). Hence, the best response of all customers is
to make AR.

In the next two sections, we use Lemmas 1-3 to separately
analyze the dynamics of a system that is formed by a risk-
averse provider and those of a system that is formed by a
risk-taking provider.

V. RISK-AVERSE PRICING

We define a risk-averse provider as one that advertises a fee
which is not necessarily optimal, but has a unique some-make-
AR equilibrium, and hence a guaranteed expected profit. Next,

Fig. 1: The expected payoff functions of the threshold
customer when the provider is risk-averse. The intersection
point is the equilibrium strategy pe1. When using strategy-
learning, after each iteration, the strategy followed by all
customers is getting closer to pe1.

we show that for any system there is a low enough fee such
that the game has a unique some-make-AR equilibrium.

The uniqueness of the equilibrium (given that an appropriate
fee C has been chosen) is an outcome of the following
observations. 1) For any threshold p > 0, πAR(p) > πAR′(p);
2) πAR(0) = πAR′(0); 3) both πAR(·) and πAR′(·) are mono-
tonic increasing functions. From those three observations, we
deduce that there is a range of fees (0, C∗], such that if C is in
that range, the functions (1−C)πAR(·) and πAR′(·) intersect
at a single point and therefore, the equilibrium is unique.

Next, we analyze the strategy-learning model and the action-
learning model. We then compare between the provider’s
profits in the two models.

A. Strategy-learning

We begin with presenting our main result regarding con-
verges to equilibrium.

Theorem 1. Under strategy-learning, convergence to equilib-
rium is guaranteed.

Proof: We split the proof into two cases. In the first case
we assume that

(1− C)πAR(β1) < πAR′(β1). (21)

From Lemma 2 we deduce that p1 ∈ (β1, p
e
1]. Since, β2 =

p1, we deduce that if β2 6= pe1, then Eq. (21) will hold true, if
β1 is replaced by β2. By induction, we deduce that, for any
j > 0,

pj ≥ βj ≥ βj−1, (22)
pj ≤ pe1. (23)

The set {pi, i = 1, 2...} is a monotonic increasing sequence
bounded by pe1. Thus, it has a limit and limi→∞BR(pi) =
pi. Since, the limit is a fixed point of BR we conclude that
the limit is the equilibrium strategy pe1. Fig. 1 illustrates the
convergence process.



In the second case, we assume that Eq. (21) does not hold.
Therefore, based on Lemma 3, p1 = 0 and β2 = 0. Under the
assumption that all customers make AR, making AR at time
zero has no impact on the service probability. Hence,

(1− C)πAR(0) < πAR′(0). (24)

We conclude that (1−C)πAR(β2) < πAR′(β2). Therefore,
from the second iteration, the system behaves as in the first
case and converges to the unique equilibrium.

B. Action-learning

When action-learning is used, the strategy at each iteration
is a random variable. Even if at some iteration the belief is
equal to the equilibrium strategy pe1, it is not guaranteed that
the fraction of customers not making AR at that iteration will
be equal to pe1. Hence, with probability one, at some future
iteration customers will not follow the equilibrium strategy.
Once the belief is that the fraction of customers not making
AR is greater than pe1, at the next iteration, all customer will
make AR. Therefore, the strategy fluctuates between zero and
pe1. We deduce that the expected number of customers making
AR at each iteration is greater with action-learning that with
strategy-learning. Thus, the provider is better off if customers
use action-learning. Due to space limitation, the formal proof
of this claim is omitted.

Theorem 2. The expected profit of a risk-averse provider is
greater in a dynamic system with action-learning than in a
dynamic system with strategy-learning.

Next, we present a simulated example that compares be-
tween the profit in the action-learning model and the strategy-
learning model.

Example 1. We consider a system with N = 10 servers and
Poisson distributed demand with parameter λ = 10. We set the
fee to C = 0.125. The unique equilibrium is pe1 = 0.116, which
yields the maximum profit that can be achieved when using
risk-averse pricing. We perform 10 runs of the simulation.
Each run consists of 10, 000 iterations. At each run, the initial
belief is β1 = pe1. Using action-learning, the average profit per
iteration is 1.067 and about 95% of the customers make AR.
When using strategy-learning, the profit of the same realization
is 1.013. Thus, the profit using action learning is about 5%
greater than when using strategy-learning.

VI. RISK-TAKING PRICING

It was shown in [1] that when advertising a high enough
fee, the system has at least two some-make-AR equilibria and
a none-make-AR equilibrium. In this section, we focus on
systems with such fees. As in the previous section, we first
analyze the strategy-learning model, followed by an analysis
of the action-learning model.
A. Strategy-learning

Lemmas 1− 3 and the arguments used within the proof of
Theorem 1 are sufficient for obtaining the following corollary.

Fig. 2: The fee that leads to the equilibrium with the
maximum possible profit, also leads to another some-make-
AR equilibrium and to a none-make-AR equilibrium.

Fig. 3: Risk-taking pricing with strategy-learning. The
initial belief determines to which equilibrium the strategy
will converge.

Corollary 1. In strategy-learning, given an initial strategy β1,
if (1−C)πAR(β1) < πAR′(β1), then the system will converge
to a some-make-AR equilibrium pem where m = min{j : pej >
β1}. Otherwise, it converges to pe1.

From Theorem 1 and Corollary 1, we deduce that the initial
belief has no effect on the expected profit at steady state (after
convergence to equilibrium) of a risk-averse provider while it
determines the expected profit of a risk-taking provider.

Example 2. We consider the same system as described in the
previous example. But this time, we set the AR fee to C =
0.215. This fee has three equilibria P e = {0.291, 0.535, 1}.
The first equilibrium yields the maximum possible profit. From
Fig. 2, we observe that if the initial belief is smaller than pe2,
then the strategy will converge to pe1. Otherwise, it will con-
verge to pe3. We set three different initial thresholds and apply
strategy-learning. As Fig. 3 shows, within a few iterations, the
strategy converges to the appropriate equilibrium.

If the risk-taking provider has no control over the initial
belief but the initial belief is a random variable with known
distribution, then the provider can calculate the probability of
convergence to each equilibrium. In this way, it can compute
the overall expected profit.

Example 3. We consider the same system as in Example 2
and assume that the distribution of the initial belief is uniform
in [0,1]. In this case, with probability 0.535, the strategy



will converge to pe1. The expected profit per iteration at that
equilibrium is 1.478.8 With probability 0.465, the strategy
will converge to none-make-AR equilibrium, which yields zero
profit. Thus, the expected profit at steady state with regards to
the initial belief is 0.790, which is smaller than the maximum
expected profit of a risk-averse pricing 1.016. In this example,
being risk-averse is optimal, however, different distributions
on the initial belief can lead to different conclusions.

B. Action-learning

We showed in the previous section that when using action-
learning, the strategy cannot converge to a some-make-AR
equilibrium. If a none-make-AR equilibrium exists, we show
next that the strategy eventually converges to that equilibrium.

Theorem 3. Under action-learning and risk-taking pricing,
the strategy converges to a none-make-AR equilibrium, with
probability one.

Proof: When using Cournot learning rule, the belief is the
previous estimator. Hence, it is sufficient that in one iteration
the estimator will be equal to one in order to converge to a
none-make-AR equilibrium (this will occur if the threshold is
smaller than one and no one arrived before the threshold).

For any given pi > 0 the probability that p̂i will be equal
to one is given by

P (p̂i = 1|pi)) =
∞∑
n=1

P(D = n)pni . (25)

This probability is positive for any value of 0 < pi ≤ 1.
At the boundary case of pi = 0, the probability that none
of the customers will make AR at the next iteration is zero.
However, pi = 0 is not an equilibrium point, and hence in
the next iteration pi+1 will be greater than zero. Since a none-
make-AR equilibrium is the only steady state and since for any
given pi > 0 there is a positive probability that p̂i will be equal
to one, we deduce that, with probability one, the strategy will
converge to a none-make-AR equilibrium.

In the next example, we show that while the strategy can
cycle many times, it eventually converges to a none-make-AR
equilibrium.

Example 4. We consider the same system as in Example 2,
but this time with action-learning. The initial belief is that
all customers make AR. We perform a simulation with 10
runs consisting each of 1000 iterations. In all 10 runs, the
strategy converges to a none-make-AR equilibrium. The fastest
convergence is within 8 iterations while the longest is within
242. On average, it takes 110 iterations to converge. Fig. 4
shows the convergence to a none-make-AR equilibrium in a
typical run of the system.

VII. CONCLUSION AND FUTURE WORK

In this paper we studied the dynamics of a reusable resource
system that supports advance reservations. We used a game-

8A formula to calculate the expected profit of some-make-AR equilibria is
given in [1].

Fig. 4: Risk-taking pricing with action-learning. If a none-
make-AR equilibrium exists, then at some point the strategy
converges to it.

theoretic framework to analyze the behavior of customers
in the system, while assuming that customers observe the
behavior of the previous iteration and respond accordingly.

An interesting question that the paper addresses is whether
the provider should reveal historical strategies or actions. We
showed that if the provider is risk-averse and chooses a low
fee that leads to a unique equilibrium, revealing the actions
yields on average greater profit than revealing the strategies.
On the other hand, if the provider is risk-taking and charges
a fee that leads to multiple equilibria, then revealing previous
actions will eventually cause all customers not to make AR.
The concept of steering the system to a more desirable output,
by controlling the information provided to customers, should
be of interest to many other problems.
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