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Abstract—Orphan transactions are those whose parental in-
come sources are missing at the time that they are processed.
These transactions typically languish in a local buffer until they
are evicted or all their parents are discovered, at which point
they may be propagated further. To date, there has been little
work in the literature on characterizing the nature and impact
of such orphans, and yet it is intuitive that they should affect
the performance of the Bitcoin network. This work thus seeks
to methodically research such effects through a measurement
campaign on live Bitcoin nodes. Our data show that about 45%
of orphan transactions end up being included in the blockchain.
Surprisingly, orphan transactions tend to have fewer parents
on average than non-orphan transactions, and their missing
parents have a lower fee, larger size, and lower transaction
fee per byte than all other received transactions. Moreover, the
network overhead incurred by these orphan transactions can
be significant, exceeding 17% when using the default orphan
memory pool size (i.e., 100 transactions), although this overhead
can be made negligible, without significant computational or
memory demands, if the pool size is simply increased to 1000
transactions. Finally, we show that when a node with an empty
mempool first joins the network, 25% of the transactions that
it receives become orphan, whereas in steady-state this quantity
drops to about 1%.

Index Terms—Bitcoin, orphan transactions, characterization,
transient behavior.

I. INTRODUCTION

W ITH a market cap of over 135 billion US dollars [2],
the Bitcoin cryptocurrency has come a long way since

its introduction as a peer-to-peer, electronic cash system by
Satoshi Nakamoto in 2008 [3]. Nodes within the Bitcoin
network exchange transactions to record purchases and sales
using Bitcoin currency, one unit of which is further subdivided
into 100 million satoshis. After such a transaction is created,
it is propagated through the Bitcoin network, whose nodes add
it to their local memory buffer called a mempool. Transactions
stay in the mempool until confirmed by a Bitcoin miner [4] and
added to a block in the common ledger known as a blockchain.
Every day, hundreds of thousands of transactions are created
and confirmed in the Bitcoin network [5], resulting in a total
of over 480 million transactions since its inception [6].

Before relaying a transaction to its peers, a node in the
Bitcoin network must confirm that the transaction has verified
currency input from its parent transactions. If a transaction’s
parents are not in the node’s mempool or local blockchain,
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then the transaction is classified an orphan, and it is not
relayed further until the parents arrive. We seek to more
precisely understand the context under which a transaction
becomes an orphan, including the properties of parent trans-
actions that produce this effect.

A. History

Bitcoin transactions have received a fair amount of attention
in the literature. Subset of this work have focused on elements
such as an analysis of the transaction graphs [7]–[13], security
of transactions [14]–[19], studies on transaction confirmation
times [20]–[23], and the like.

Understanding the properties and behavior of orphan trans-
actions, however, is a largely unexplored field. The closest
works have been on utilizing orphan transactions as a side-
channel for topology inference [24], and for denial of service
attacks on the Bitcoin network [25], [26]. However, many
of the performance questions regarding orphan transactions
remain: To what extent orphan transactions are prevalent in the
Bitcoin network? What are the factors that make a transaction
orphan? What is the impact of an orphan transaction on
the performance of the Bitcoin ecosystem? Does an orphan
transaction incur latency or communication overhead? If so,
can one reduce this overhead? There exists no work, to the best
of our knowledge, that reasonably answers these questions.

B. Contributions

Our first contribution in this paper is to characterize orphan
transactions in the Bitcoin network and identify the environ-
ment that produces them, based on a data set of 4.20 × 106

unique transactions (8.71 × 104 of which are orphans) received
over the measurement period. We discover that the intuition
that orphan transactions may have larger numbers of parents
than non-orphans (presumably resulting in a greater probabil-
ity that one of the parents is missing) is misleading. Indeed,
orphan transactions generally have fewer parents than all other
transactions received during our measurements, averaging 1.18
parents (orphans) versus 2.20 (non-orphans). We conclude that
the number of parents does not suitably distinguish between
orphan and non-orphan transactions.

We then consider other metrics (i.e., transaction fee, transac-
tion size, and transaction fee per byte) to discern the distinction
between these two types of transactions. Our analysis shows
that missing parents of orphan transactions have smaller fees
and larger size than all other received transactions. More
precisely, a missing parent of an orphan transaction has an
average transaction fee of 5.56 × 103 satoshis, and an average
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transaction size of 5.29 × 102 bytes. By comparison, all other
transactions have an average transaction fee of 9.91 × 103

satoshis and transaction size of 4.80 × 102 bytes. Next, we
find that, on an individual level, missing parents of orphan
transactions pay a fee of 6.25 satoshis per byte versus 21.73
satoshis per byte for all received transactions. As a result,
transactions with a smaller fee per byte are more likely to go
missing and render their descendent transactions orphans.

Our analysis shows that 45% of transactions that are orphan
at some point end up being included in the blockchain during
the measurement period. Out of them, in 68% of the cases,
at least one missing parent appears in the same block as the
orphan transaction.

Our second contribution is to study the impact of network
and performance overhead caused by orphan transactions. We
thus collect data from live nodes in the Bitcoin network with
various orphan pool sizes (including the default of 100). Our
measurements show that orphan transactions incur a significant
network overhead (i.e., number of bytes received by their node)
when the orphan pool size is smaller. In effect, the pool fills
up and transactions in the orphan pool are rapidly evicted to
make room for new orphan transactions. As such, an orphan
transaction may be added to the orphan pool multiple times as
it is announced by different peers. We show that by slightly
increasing the orphan pool size to 1000 transactions, we can
dramatically reduce this network overhead without a distin-
guishable effect on node performance (in terms of computation
and memory). We also examine the effect of changing the
timeout after which orphan transactions are removed from the
pool. We do not observe marked improvement upon either
increasing or decreasing the default value of 20 minutes.

Our third contribution is to study the behavior of orphan
transactions in nodes that are either new or rejoin the network
after a protracted disconnection. We emulate this property by
periodically clearing the mempools of affected nodes. Our
measurements show that immediately after a node joins the
network with an empty mempool, over 25% of the transactions
that it receives become orphan. However, as the node stays on
the network for longer, the fraction of transactions that become
orphan falls rapidly. Similarly, over measurement periods of
12 hours, we find that roughly 50% of all transactions that
become orphan are received within the first two hours after
the node joins the network.

C. Road map

The rest of this paper is organized as follows: In Section II,
we present preliminary background and related work. In
Section III, we characterize orphan transactions by studying
the properties of their parents and investigate presence of
orphan transactions in blocks. We show the impact of orphan
transactions with varying orphan pool sizes and varying orphan
transaction timeouts in Section IV. In Section V, we study the
behavior of orphan transactions in new nodes and nodes that
have rejoined the network after a considerably long downtime.
We present a discussion of our work, including limitations, in
Section VI. Section VII concludes the paper and discusses
potential areas for future work.

II. BACKGROUND AND RELATED WORK

In this section, we provide relevant background material on
the orphan transactions followed by a discussion of related
work.

A. Orphan transactions

A Bitcoin node may receive a transaction that spends in-
come from one or more yet unseen parent transactions (i.e., the
parents are neither included in any of the previous blocks
of the Bitcoin blockchain nor exist in the node’s mempool).
The node cannot accept the newly received transaction into
its mempool until it can verify that the transaction spends
valid Bitcoin, and it thus requests the missing parents from
the peer that originally sent the transaction. In the mean-
while, the transaction is classified as an orphan transaction
and added to an orphan pool that is maintained in the
mapOrphanTransactions data structure in the Bitcoin
core software. The transaction is not propagated forward to
other peers until all of its missing parents are found.

Once the orphan transaction is added to the orphan pool,
there are six cases that can cause its removal (corresponding to
lines 76, 2331, 2326−2330, 1609−1620, 876−906, 800−806,
40, 784−794, 627, 757−771, 1624−1632, and 1608 in the core
implementation of netprocessing.cpp [27]):

1. Parent transactions received. The node receives a parent
it requested from its peer. It then processes any orphan
transactions that depend on the newly received trans-
action. All transactions that are no longer orphan are
removed from the orphan pool and added to the mempool.

2. Parent transactions in block. The node receives a new
block but does not directly check if it contains miss-
ing parents of an orphan transaction. Instead, for every
transaction in the block, it checks whether an existing
orphan transaction spends from an input of the former
and removes the latter from the orphan pool if it does.
This may be useful when orphan transactions and their
missing parents are in the same block, or when a missing
parent is received in a previous block.

3. Orphan pool full. By default, the size of the orphan
pool is capped to a maximum of 100 orphan transac-
tions. When the orphan pool is full, an orphan transac-
tion is chosen at random and removed from the pool,
and this transaction is not added to the mempool. The
maximum size of the orphan pool can be modified at
startup by using the -maxorphantx argument when
running bitcoind or bitcoin-qt, or set in the
bitcoin.conf configuration file [28].

4. Timeout. By default, an orphan transaction expires and is
removed after 20 contiguous minutes in the orphan pool.

5. Invalid orphan transaction. The node deems that an
orphan transaction is invalid when the missing parents
of the orphan transaction have been received, but the
orphan transaction itself may be non-standard or not
have sufficient fee. Thus, this orphan transaction is not
accepted to the mempool. Furthermore, not only the
orphan transaction is removed from the orphan pool, but
also the peer that originally sent the orphan transaction is
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punished, i.e., no further transactions are accepted to the
mempool from the peer in the current round.

6. Peer disconnected. When a peer disconnects from a
node, all orphan transactions sent by this peer are re-
moved from the orphan pool in the finalization step. This
is likely because the node no longer expects to receive the
parents it requested from the peer. The orphan transaction
is not added to the mempool.

A transaction may get stuck [29] in mempools of nodes due
to low transaction fees. That is, the transaction is not included
in blocks and faces delays in confirmation. Bitcoin does allow
the transactions to be modified to increase the fee [30], and
the originator of the transaction may add a new input, i.e., a
new parent, as a spending source for the increased fee. The
transaction may become orphaned if the new input is missing
from the receiving node’s mempool or local blockchain, and
this transaction is then added to the orphan pool. We do not
classify such orphan transactions separately because they do
make it to the orphan pool.

B. Related work

To the best of our knowledge, there is very little work in
the Bitcoin research literature regarding orphan transactions.
Nevertheless, the few works that do consider them highlight
the potential value of the area, and the need for further work.

Miller and Jansen [25] take advantage of the fact that in the
older version of Bitcoin (i.e., v0.9.2), the protocol did not keep
track of the peer that sent an orphan transaction. They propose
that an adversary can leverage this vulnerability to mount a
denial of service attack by sending a large number of orphan
transactions to the victim node. The latter would be stuck
verifying the transaction signatures of orphan transactions for
a long time. However, this threat model is outdated since, in
the current version, the Bitcoin protocol does keep track of
the sender of an orphan transaction. The work also does not
present a characterization of the orphan transactions.

Delgado-Segura et. al. [24] present TxProbe, a technique
that makes use of orphan transactions to deduce the topology
of the Bitcoin network. In this approach, an adversary creates
a pair of double-spending transactions, and propagates each
to a different node. The nodes try to propagate the double-
spending orphan transaction to one another, if there exists
an edge between the two. However, each of the receiving
node rejects the incoming transaction as an invalid double-
spending transaction. The adversary then sends a transaction
that spends from one of the double-spending transactions
to the node that received the corresponding double-spending
transaction. This latter node will propagate the new transaction
to the second node, if there exists an edge between the two.
However, the second node will add the new transaction to
its orphan pool, since it already rejected its parent earlier.
The adversary can then probe the second node for the orphan
transaction to establish a side-channel: if the node responds
with the orphan transaction, the adversary deduces that there
exists an edge between the two nodes that received the pair
of double-spending transactions. The authors then extend this
basic approach to a larger Bitcoin graph. Though this work

presents an interesting side-channel in the Bitcoin network, it
also does not characterize orphan transactions.

Earlier version of Bitcoin software did not place a limit on
the number of orphan transactions that a node can store. Thus,
an adversary could launch a denial of service attack by sending
a large number of orphan transactions to a victim node,
causing memory exhaustion and system failure. Furthermore,
the Bitcoin software did not contain validation checks for the
size of an orphan transaction. Hence, an adversary could create
an orphan transaction with an arbitrarily large size and cause
memory exhaustion at the victim node [31]. Both of these
vulnerabilities were responsibly reported and fixed [26], [32].
While our work proposes increasing the size of the orphan
pool, the current validation checks should ensure that this
change will not enable denial of service attacks.

A preliminary version of this work was presented at the
2020 IEEE International Conference on Blockchain and Cryp-
tocurrency (ICBC) [1]. The main differences between the
aforementioned prior work and this work are as follows:

1) We introduce an entirely new section, Section V, where
we investigate the transient behavior of orphan transac-
tions in nodes that have joined the network for the first
time or after a long downtime.

2) We provide more detailed characterizations of orphan
transactions and their missing parents, in the new subsec-
tions III-F, III-G and III-H. In particular, we investigate
the appearance of orphan transactions and missing parents
in blocks as well as delays in receiving missing parents
from peers, and the impact of low transaction fees.

3) In new subsection IV-F, we evaluate the impact of
changing the default timeout value upon which orphan
transactions are discarded from the orphan pools. Our
study shows that the default timeout of 20 minutes is
adequate.

III. CHARACTERIZATION OF ORPHAN TRANSACTIONS

We next detail our approaches toward characterizing the
orphan transactions in the Bitcoin network. We begin with
a presentation of our set up for data collection. Since a
transaction becomes orphan due to the absence of one or more
parents, we next focus on determining the characteristics of
these missing parents. In particular, we compare the number
of parents of orphan transactions with number of parents
of all non-orphan transactions. Thereafter, we consider the
differences between the transaction fee, transaction size, and
transaction fee per byte of the missing parents of orphan trans-
actions versus all other transactions. Finally, we investigate
the presence of orphan transactions in blocks and the delay in
receiving missing parents from peers, and observe the effect
of low transaction fees on the propagation of transactions.

A. Measurement setup

For subsections III-B, III-C, III-D and III-E, we run two
live full nodes #1 and #2 as part of the Bitcoin network,
with the aim of collecting data for characterizing orphan
transactions. Both nodes execute Bitcoin Core v0.18 [33] on
the Linux Ubuntu 18.04.2 LTS distribution, running on Dell
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Fig. 1: Empirical complementary cumulative distribution func-
tion (CCDF) of (i) the number of parents of orphan transac-
tions and (ii) number of parents of non-orphan transactions.
In general, orphan transactions have fewer parents.

Inspiron 3670 desktops, each equipped with an 8th Generation
Intel® Core i5−8400 processor (9 MB cache, up to 4.0 GHz),
1 TB HDD and 12 GB RAM. The nodes are connected to the
Bitcoin network at all times with the default orphan pool size
of 100. We collect relevant data, such as arrival of transactions,
addition of transactions to the orphan pool, and the like, with
the help of a log-to-file system [34], [35], for roughly 2 weeks
over two rounds (November 18, 2019 11:00 AM to November
25, 2019 10:59 AM, and November 25, 2019 11:00 AM to
December 02, 2019 10:59 AM).

In subsections III-F, III-G and III-H, we extend our mea-
surement setup to four nodes with similar hardware and soft-
ware specifications as mentioned above. The experiments run
from July 6, 2020 3:00 PM for two weeks for subsections III-F
and III-G, and from November 11, 2020 1:30 PM for roughly
one week for subsection III-H.

B. Number of parents

Our first conjecture is that a transaction with a large number
of parents may be more likely to miss one or more parents than
a transaction with, say, only a couple of parents. To this effect,
we compare the number of parents of orphan transaction with
the number of parents of all other non-orphan transactions.

During the measurement period, the nodes receive an aggre-
gate of 4.20 × 106 unique transactions with 9.23 × 106 parents.
Of these, 8.71 × 104 are orphan transactions with 1.03 × 105

parents. These orphan transactions have an aggregate of
8.71 × 104 parents missing across the nodes. These nodes
miss, on average, 1.23 parents per orphan transaction with a
standard deviation of 4.68 parents. While only just above 2%
of the received transactions become orphan, the total number
is still significant.

Fig. 1 shows the complementary cumulative distribution
functions (CCDF) of the number of parents of orphan transac-
tions, and the CCDF of the number of parents of non-orphan
transactions. We observe that our conjecture is flipped - the
orphan transactions have a smaller number of parents. Indeed,
only about 4% of orphan transactions have more than one
parents, whereas roughly 25% of non-orphan transactions have
more than one parent.
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Fig. 2: Cumulative distribution functions (CDFs) of transaction
fee of missing parents of orphan transactions, and transaction
fee of all other transactions.

The most parents of an orphan transaction is 1.03 × 103,
whereas this number is 1.10 × 103 for non-orphan transactions.
On average, an orphan transaction has 1.18 parents with a
standard deviation of 4.78 transactions. On the other hand, a
non-orphan transaction has, on average, 2.20 parents with a
standard deviation of 11.84 transactions.

Surprisingly, orphan transactions do not necessarily have
more parents than non-orphan transactions, and we are left to
rely on other statistics, presented in the next few sections, to
characterize the orphan transactions.

C. Transaction fee of missing parents

For each incoming transaction that is orphaned, we log
the missing parent(s) that results in the transaction becoming
orphan. We analyze and compare the transaction fees of these
missing parents with all other transactions received by our
nodes that are not a missing parent of an orphan transaction.
We query the database maintained by the Bitcoin software for
relevant data on transactions. Out of 8.71×104 missing parents,
only about 3% are still missing by the end of the measure-
ment period. Henceforth, we assume that this relatively small
fraction does not pose a bias towards our findings.

Fig. 2 shows the cumulative distribution functions (CDFs)
of transaction fees (in satoshis) of missing parents, and the
CDF of transaction fees (in satoshis) of all other transactions
received by the nodes. The figure shows that a majority of the
missing parents have a lower transaction fee compared to all
other transactions received. Indeed, 50% of missing parents
have a transaction fee smaller than 210 satoshis. On the other
hand, fewer than 6% of all other transactions have a transaction
fee of smaller than 210 satoshis.

In fact, the average transaction fee of a missing parent is
5.56 × 103 satoshis with a standard deviation of 7.17 × 104

satoshis. In comparison, the average transaction fee of all other
transactions is 9.91 × 103 satoshis with a standard deviation
of 5.53 × 104 satoshis. Interestingly, 18 of the missing parents
have no transaction fee at all (i.e., 0 satoshis), whereas all other
transactions received have a non-zero transaction fee.

Therefore, a transaction is likely to become an orphan, if
its missing parent has a transaction fee lower than that of
other transactions. As a future work, it would be interesting
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Fig. 3: CCDFs of transaction size of missing parents of orphan
transactions, and transaction size of all other transactions.

to deduce if there exists a threshold for the transaction fee
below which all transactions become missing, i.e., they are not
relayed by the network.

D. Transaction size of missing parents

We next compare the sizes of missing parents of orphan
transactions with the sizes of all other transactions. Do the
missing parents of orphan transactions have a larger size than
an average transaction?

Fig. 3 shows the CCDF of the size of missing parents of
orphan transactions (in bytes) and the CCDF of the size of
all other transactions. The figure shows that missing parents
usually have a larger size than all other transactions. Roughly
90% of the missing parents have a size larger than 250 bytes,
whereas only about 45% of all other transactions have a size
larger than 250 bytes.

Missing parents of orphan transactions have a size be-
tween 1.88 × 102 and 2.40 × 105 bytes. By comparison, all
other transactions have a size in the range of 8.50 × 101

to 2.24 × 105 bytes. In fact, on average, missing parents
have a size of 5.29 × 102 bytes with a standard deviation of
4.02 × 103 bytes. On the other hand, all other transactions
have, on average, a size of 4.80 × 102 bytes with a standard
deviation of 2.12 × 103 bytes.

The statistics in this section show that the missing parents
of orphan transaction have, on average, a larger transaction
size than all other transactions. As in the previous section,
we leave to future work the question whether there exists a
size threshold above which transactions stop being propagated
through the network.

E. Relating transaction fee to size of missing parents

We showed in subsections III-C and III-D that, in aggregate,
missing parents tend to have a lower fee and a larger size
than the average received transactions. However, it would be
interesting to see if there exists a relation between the fee and
size of each individual transaction.

To this end, Fig. 4 shows the CDF of transaction fee per byte
(in satoshis) of missing parents and the CDF of transaction fee
per byte of all transactions received. The figure shows that the
missing parents generally have a lower transaction fee per byte
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Fig. 4: CDFs of transaction fee per byte of missing parents of
orphan transactions, and transaction fee per byte of all other
transactions.

when compared to all received transactions. Indeed, 80% of
missing parents have a transaction fee per byte of 5.97 satoshis
or less, whereas roughly 78% of all received transactions have
a transaction fee per byte higher than 5.97 satoshis.

On average, missing parents have a transaction fee per byte
of 6.25 satoshis with a standard deviation of 21.52 satoshis.
On the other hand, all received transactions have a transaction
fee per byte of 21.73 satoshis with a standard deviation of
47.13 satoshis.

Our data thus show that individual missing parents have a
low transaction fee per byte. This could be because transac-
tions with lower fees may not get properly propagated through
the Bitcoin network [36], possibly because of configurable
mempool size [37]. Note that nodes may choose not to accept
transactions with a low transaction fee per byte to their
mempool, and thereby not propagate them further [38].

F. Orphan transactions in blocks

Next, we examine what fraction of orphan transactions end
up being included in blocks. Each node receives on average
1.58 × 103 blocks during the measurement period. Similarly,
each node adds on average 4.64 × 104 unique transactions
to its orphan pool (we show in subsection IV-C that the
same transaction may be added multiple times to the orphan
pool - here we make sure to count such a transaction only
once). Out of these unique orphan transactions, on average,
2.06 × 104 transactions, i.e., 44.50%, appear in blocks received
by the nodes during the measurement period. A block received
during this period contains, on average, 2.17 × 103 transactions
with a standard deviation of 7.31 × 102 transactions. Of these,
an average of 13.06 transactions were orphan at some point
during the measurement period, with a standard deviation of
25.90 transactions.

We next check whether orphan transactions were recovered
(i.e., removed from the orphan pool) before they appear in
blocks. Specifically, we investigate whether missing parents of
these orphan transactions were received from peers or not. Our
analysis shows that only about 11% of the orphan transactions
that appear in blocks were recovered before the respective
block is received. For such orphan transactions, Fig. 5 shows,
on an aggregate level, the CDF of the time elapsing from the
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Fig. 6: CCDF of time elapsing from the point a transaction
becomes orphan till one of its parents is found.

point a transaction is removed from the orphan pool because
its missing parents are found till the block containing the said
orphan transaction is received. On average, missing parents of
such orphan transactions are found 5.70 × 103 seconds before
the block containing the orphan transaction is received, with
a standard deviation of 2.04 × 104 seconds.

We find that many missing parents (i.e., on average, 67.58%
of the total), of orphan transactions appear in the same block
as the latter. The remaining missing parents (i.e., 32.42% of the
total) appear in a block received prior to the block containing
the orphan transaction. Hence, many orphan transaction remain
in that state until they are added into a block. This could
lead to inefficiencies in the Bitcoin protocol [34], [35] since
transactions are not propagated to peers for as long as they
remain orphan (cf. subsection II-A).

G. Delay in receiving missing parents from peers

As noted in subsection II-A, when a node adds a transaction
to its orphan pool, it sends requests for the missing parents
to the peer that sent the transaction. Therefore, we next
investigate, on an aggregate level, how long it takes for a
requested missing parent of a transaction to be found once
it is added to the orphan pool. In our experiment, orphan
transactions have a total of 2.03 × 105 missing parents. Of
these, only 3.24 × 104 are found during the measurement
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Fig. 7: CCDFs of time spent in relay queue of parent trans-
actions that are relayed with and parent transactions that are
relayed before their respective child transactions.

period (cf. subsection III-A) which represents about 15.98%
of the total number of missing parents recorded.

Fig. 6 shows for the requested missing parents that are found
(i.e., sent by a peer), the CCDF of time elapsing from the point
a transaction is added to the orphan pool till its missing parent
is found (or one of the missing parents is found in the case
of multiple parents). We observe that 10% of such missing
parents are found within roughly 550 ms. Yet, on average,
a missing parent is found within 2.89 × 107 ms, i.e., roughly
8 hours after the respective child transaction was added to
the orphan pool, with a standard deviation of 3.91 × 107 ms.
We note that the average delay is high because many missing
parents are found several hours after the respective child
transaction becomes orphan. Indeed, about 50% of the missing
parents are found at least 2 hours after the respective child
transaction is added to the orphan pool. Similarly, roughly
35% of the missing parents have a delay larger than the mean.

H. Impact of transaction fee

The findings in subsection III-F showed that some parent
transactions take a long time to be recovered. To explain
this, we next perform an analysis of the propagation of
transactions to show the effect of low transactions fees. For
this purpose, we collect all transactions that are announced by
our measurement nodes to their peers during the measurement
period. Next, we identify pairs of transactions in our data
set that have a child-parent relationship, i.e., both the child
and parent transactions were announced to the same peer. We
compare and contrast two cases of interest, namely when a
parent transaction is announced to a peer (i) before the child
transaction; or (ii) together with its child transaction.

Recall that when a node receives a transaction, it performs
various validation checks before adding the transaction to its
mempool. Once the transaction passes all validation checks,
it is added to the mempool as well as to a relay queue. The
transaction is eventually retrieved from the relay queue and
propagated to peers of the node. The transactions are retrieved
from the queue in order of their transaction fees, i.e., the
transactions, grouped with their ancestors in the relay queue,
with higher fees are announced first.
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Our first comparison is based on the delay from the point
a transaction is added to the relay queue until it is sent out
to peers of the node. We perform this analysis for both cases
of interest identified earlier. Fig. 7 shows the CCDFs of time
spent in the relay queue for both cases. The figure shows that
parent transactions that are relayed together with their child
transactions spend more time in the relay queue than parent
transactions that are relayed before their child transactions.
Indeed, the former spend, on average, 2.97 × 104 ms in the
relay queue with a standard deviation of 6.14 × 104 ms. The
latter, on the other hand, spend, on average, 6.42 × 103 ms in
the relay queue with a standard deviation of 1.71 × 104 ms.

Our next comparison is depicted in Fig. 8, which shows
the CCDFs of the transaction fee of the two types of parent
transactions. The figure indicates that parent transactions that
are announced to peers together with their child transactions
usually have a smaller transaction fee than parent transactions
that are announced to peers before their child transactions.
We find that the former have, on average, a transaction fee
of 2.02 × 104 satoshis with a standard deviation of 7.32 × 104

satoshis. The latter, on the other hand, have, on average, a
transaction fee of 8.72 × 104 satoshis with a standard deviation
of 3.32 × 105 satoshis.

The results of this section show that transactions with low
transaction fees spend more time in the relay queue. Many
such transactions are announced to peers only when their child
transactions are also added to the queue. We hypothesize that
the child and parent transactions together have enough fee to
offset the low transaction fee of the parent transaction.

IV. COMPARISON OF ORPHAN TRANSACTION BEHAVIOR
WITH DIFFERENT ORPHAN POOL PARAMETERS

We next characterize the network and performance overhead
incurred by orphan transactions, looking at both the default
orphan pool size of 100 transactions, and various alternative
pool sizes. We begin with a presentation of our extended mea-
surement setup, followed by an investigation of the network
overhead under additions and removals of orphan transactions
for different orphan pool sizes. Next, we discuss performance
overhead that a larger orphan pool size may present. Finally,
we present the effect of varying orphan transaction timeouts.

A. Measurement setup

For subsections IV-B, IV-C, IV-D and IV-E, we extend our
measurement setup from subsection III-A to six live full nodes,
running with identical hardware and software specifications as
before. We run two rounds of experiments. In the first round,
which runs from November 18, 2019 11:00 AM to November
25, 2019 10:59 AM, two nodes are configured with a default
orphan pool size of 100 transactions (nodes #1 and #2), two
nodes with an orphan pool size of 20 transactions (nodes #3
and #4), and the remaining two nodes with an orphan pool size
of 50 transactions (nodes #5 and #6). In the second round,
which runs from November 25, 2019 11:00 AM to December
02, 2019 10:59 AM, two nodes are configured with a default
orphan pool size of 100 transactions (nodes #1 and #2), two
nodes with an orphan pool size of 500 transactions (nodes #3
and #4), and the remaining two nodes with an orphan pool
size of 1000 transactions (nodes #5 and #6). We have made
all relevant logs generated during the experiments open source
and accessible on GitHub [39].

Since our nodes are co-located, we want to verify that the
nodes connect independently to outside peers in the network,
and that our co-location does not impose a bias in the mea-
surements. We achieve this by recording a node’s connected
peers over time, in one second intervals. We then check for
common peers amongst the nodes throughout the measurement
period, i.e., both the first and the second rounds.

Fig. 9 and Fig. 10 show the common peers amongst
nodes during the measurement period (i.e., the first and second
rounds of measurement respectively) as similarity matrices.
A similarity score of 1.0 between two nodes indicates that
both nodes have exactly the same peers; a similarity score of
0.0 indicates that the corresponding nodes have no common
peers. The matrices in the figures qualitatively suggest that the
six nodes have a very low number of peers in common, and
therefore, do not present bias towards measurements.

In fact, the maximum number of peers that all six nodes
have in common during the first round of measurements was
11 peers out of a maximum of 124 peers. On average, at
any second during the measurement period, all six nodes
have 8.30 peers in common with a standard deviation of 1.04
peers. Similarly, during the second round of measurements, the
maximum number of peers that all six nodes have in common
is 11 peers out of a maximum of 124 peers. On average,
at any second during the measurement period, all six nodes
have 8.51 peers in common with a standard deviation of 0.92
peers. These statistics confirm that nodes largely connect to,
and interact with peers independently.

For subsection IV-F, we extend our measurement setup
from subsection III-A to twelve live full nodes, running with
identical hardware and software specifications as before. Our
experiments run uninterrupted for two weeks from June 17,
2020 12:00 PM to July 1, 2020 11:59 AM. We configure
two nodes with a timeout of 10 minutes, two nodes with a
timeout of 15 minutes, four nodes with the default timeout
of 20 minutes, two nodes with a timeout of 30 minutes,
and the remaining two nodes with a timeout of 60 minutes.
We configure all nodes with an orphan pool size of 500
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Fig. 9: Similarity matrix depicting average number of com-
mon peers across nodes during the first round of measure-
ment period.
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Fig. 10: Similarity matrix depicting average number of
common peers across nodes during the second round of
measurement period.
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Fig. 11: Fraction of orphan transactions that are removed from the orphan pool due to each of the six causes across all nodes,
under different pool sizes.

transactions, since smaller sizes lead to a large fraction of
evictions as discussed in subsection IV-B.

B. Removal of orphan transactions from orphan pool

As specified in subsection II-A, there are six different cases
in which a transaction is removed from the orphan pool. In
this section, we analyze the fraction of orphan transactions
that are removed from the orphan pool in each case.

Specifically, Fig. 11 shows the fraction of transactions
removed from the orphan transaction falling within each of
the six cases across the nodes with varying orphan pool sizes.

One trend is apparent: the major cases of transaction re-
moval from the orphan pool are when the pool is full and

when a transaction overstays its maximum allowed time in the
pool. The figure clearly shows that as the size of the orphan
pool increases, the major case of eviction of transactions from
the orphan pool changes from the pool being full to the
transactions timing out. That is, as the size of the orphan pool
increases, more transactions are removed from the orphan pool
due to timeout rather than a full orphan pool. In fact, one
of the nodes configured with an orphan pool of size 1000
(i.e., node #6) has no transactions evicted from the orphan
pool, indicating that the pool never becomes full.

The remaining four cases contribute very little to the trans-
action being removed from the orphan pool. Of these, the
major case that of transaction eviction from the orphan pool,
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Fig. 12: Number of unique and total number of orphan
transactions received across nodes with varying orphan pool
sizes.

across nodes, is that the node receives the missing parent it had
requested from its peers. Fig. 11 shows that as the size of the
orphan pool increases, the fraction of orphan transactions that
receive their respective missing parents gradually increases.

C. Addition of orphan transactions to orphan pool

In the previous section, we showed that for smaller orphan
pools, most transaction removals occur when the pool becomes
full. However, this is not the case with orphan pools of larger
sizes. Once an orphan transaction is removed from the orphan
pool without being added to the mempool (cf. subsection II-A),
it may be added back to the orphan pool. This happens when,
after its removal from the orphan pool, a peer announces the
same transaction while its parents are still missing from the
mempool or the blockchain. In this section, we specifically
look at the number of times a transaction may be added to the
orphan pool with varying orphan pool sizes.

To this end, the left bar in each column of Fig. 12 shows
the unique transactions added to the orphan pools with varying
sizes. The right bar of the respective column shows the total
transactions added to the orphan pools with varying sizes.
All values are normalized to the average number of unique
transactions added to the orphan pools with a default size
of 100 over the measurement period which, on average, is
5.72 × 104 transactions.

We observe yet another trend: for smaller orphan pool
sizes, identical transactions may be added several times to the
orphan pool. This is likely because smaller orphan pool fill
more quickly as the number of incoming orphan transactions
grows. As such, transactions need to be removed more often
from the orphan pool whilst they are still orphan - a peer
may re-announce a transaction that was previously removed
from the orphan pool. Because the node does not have the
transaction in either its mempool or the orphan pool, it accepts
the transaction again to its orphan pool.

When the size of the orphan pool is larger than the default
size of 100, the number of duplicate additions of transactions
to the orphan pool goes down. This is likely due to the
availability of space in the orphan pool for new orphan
transactions; fewer transactions need to be evicted from the
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Fig. 13: Network overhead incurred by nodes with varying
orphan pool sizes across nodes.

orphan pool. In the next section, we explain why multiple
additions may pose a problem for network efficiency.

D. Network overhead

We next estimate the network overhead (i.e., the number of
bytes received) caused by receiving duplicate orphan trans-
actions from peers. In our experiments, each time an orphan
transaction is received, we add the size of the transaction: 32
bytes for the transaction hash in the inv message [40] and 32
bytes for the transaction hash in the getdata message [41].
Note that this provides a lower bound for the number of bytes
transmitted each time a transaction is received, as the inv
and getdata messages contain other fields, the total size of
which would depend on the number of transactions packed in
each message. We do not include this size in our calculation
for simplicity. Similarly, we do not include the transport layer
overhead in our estimation.

Fig. 13 shows statistics on the network overhead for du-
plicate orphan transactions received for the varying orphan
pool sizes. The lower part of the stacked bar in each column
shows the total number of bytes that are received when all
unique orphan transactions are received for the first time. The
upper part of the stacked bar in the respective column shows
total number of bytes received when duplicates of the orphan
transactions are received; note that the . -axis in this figure is
logarithmic. We also provide the cost of receiving duplicate
orphan transactions (above each bar) as a fraction of the cost
of receiving each orphan transaction for the respective orphan
pool size. Assuming that the arrivals of orphan transactions
is evenly distributed over the measurement period, an orphan
pool size of 20 translates to an average rate of 1.32 kbps
of transaction data in Fig. 13. On the other hand, for an
orphan pool size of 1000, the average arrival rate of orphan
transactions translates to only about 0.13 kbps of transaction
data.

From the figures, we see that nodes with a smaller orphan
pool size incur a larger network overhead due to the repeated
addition of orphan transactions to the orphan pool. On the
contrary, nodes with an orphan pool of larger size incur
minimal network overhead, since the number of duplicate
orphan transactions received is smaller (cf. subsection IV-C).
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Nodes
Round 1 Round 2

Add
(%)

Remove
(%)

Add
(%)

Remove
(%)

#1 18.23 17.26 18.71 16.90
#2 15.26 13.53 15.86 13.36
#3 18.67 18.61 18.37 17.36
#4 16.37 13.86 15.95 13.33
#5 18.22 17.90 18.67 17.58
#6 15.85 13.31 16.84 13.94

TABLE I: Average CPU usage of nodes with different orphan
pool sizes.

E. Performance overhead

Finally, we explore the CPU and memory overhead incurred
by varying orphan pool sizes. We empirically measure the
CPU overhead with data from Unix procfs, and approximate
the memory overhead. Our analysis shows that larger orphan
pool sizes do not incur notable overhead for our node systems.

1) CPU overhead: The CPU overhead is observed by
recording the CPU usage of the Bitcoin process every time
an orphan transaction is added or removed from the orphan
pool. TABLE I shows the average CPU usage of the Bitcoin
process over the measurement period. The table shows that the
difference in the average CPU usage of the Bitcoin process is
barely distinguishable among the various orphan pool sizes.
We attribute this to the data structure used for the orphan
pool: relevant std::map operations typically have worst-case
logarithmic time complexity [42]–[44].

2) Memory overhead: The Bitcoin core maintains three
data structures related to orphan transactions. The first data
structure represents the orphan pool. Each entry for an orphan
transaction in the orphan pool contains i) the hash of the
transaction (32 bytes), ii) a pointer to the actual transaction
(16-byte integer on 64-bit architecture; 8-byte integer on 32-
bit architecture; the size of this pointer is double that of an
ordinary pointer because a std::shared_ptr is made of
2 pointers [45], iii) the ID of the peer that sent the transaction
(8-byte integer), iv) expiration time of the transaction (8-byte
integer), and v) position of orphan transaction in the orphan
pool (8-byte integer on 64-bit architecture; 4-byte on 32-bit
architecture).

Considering that the transaction would be stored in the
mempool anyway if it were not an orphan, each orphan
transaction incurs a memory overhead of 72 bytes on a 64-bit
architecture, and 60 bytes on a 32-bit architecture.

The second data structure is used to maintain links between
a missing parent and all orphan transactions that may spend
from it. This efficiently resolves orphan status of all orphan
transactions that depend on a missing parent once the latter is
received from peers.

Each entry in this data structure contains i) the hash of the
parent (32 bytes), ii) the index of the parent in the orphan
transaction (4 bytes), and iii) a pointer to the orphan transac-
tion in the orphan pool (8-byte integer on 64-bit architecture;
4-byte integer on 32-bit architecture). That is, each entry in this
data structure takes up 36+8×# bytes on a 64-bit architecture,

and 36 + 4 × # bytes on a 32-bit architecture, where # is the
number of all orphan transactions that spend from a missing
parent.

It is tricky to theoretically justify a hard bound on the
overhead incurred by this data structure. A transaction may
spend from an arbitrary number of parents, an unknown
number of which may be missing. Furthermore, not all parents
may be missing at the same time, i.e., a peer may not respond
with all requested missing parents at the same time. On the
other hand, an arbitrary number of orphan transactions may
spend from the same missing parent.

Our empirical data, however, suggests that, orphan transac-
tions across nodes with the varying orphan pool sizes have, on
average, between 1 and 4 missing parents. where transactions
across nodes with smaller pool sizes miss more parents;
transactions across nodes with larger orphan pool sizes are
very unlikely to miss more than 1 parent. Indeed, more than
90% of orphan transactions received by nodes configured with
an orphan pool of size 1000 miss only 1 parent.

Similarly, across nodes with varying orphan pool sizes, the
number of missing parents that orphan transactions share is in
the range (0, 1) on average. For every node, more than 98% of
all orphan transactions received by that node share no parent.

Finally, for efficient random eviction of transactions from
the orphan pool when the pool is full, a list is maintained.
Each entry in the list is a pointer to a transaction in the orphan
pool, with an overhead of 8-bytes for a 64-bit architecture and
4-bytes for a 32-bit architecture.

Consider, for example, a node configured with an orphan
pool of size 1000 on a 64-bit architecture. This configuration
incurs an average memory overhead of roughly 72 KB for
the first data structure, 44 KB for the second data structure,
and 8 KB for the third data structure for an aggregated average
overhead of 122 KB, several orders of magnitude smaller than
the typical memory on a modern system.

F. Varying orphan transaction timeouts

The findings in subsection IV-B show that as one increases
the size of the orphan pool, transactions get primarily evicted
due to timeouts. A natural question is whether changing the
timeout from the default value of 20 minutes may help improve
performance, and in particular the recovery of missing parents.
Toward this end, we next present experimental results to
evaluate the impact of varying timeouts.

Fig. 14 depicts the fraction of transactions removed from
the orphan pool for each of the six cases specified in subsec-
tion II-A and different timeouts.

Increasing the timeout beyond the default of 20 minutes
does not appear to decidedly improve performance. Specifi-
cally, the faction of transactions for which the parent trans-
actions are recovered is 8.14% for the default timeout of
20 minutes, 5.81% for a timeout of 30 minutes, and 10.63%
for a timeout of 60 minutes. On the other hand, reducing the
timeout degrades performance (i.e., 5.60% for a timeout of
15 minutes and 4.03% for a timeout of 10 minutes). Thus,
the default timeout of 20 minutes appears appropriate.
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Fig. 14: Fraction of orphan transactions that are removed from the orphan pool due to each of the six causes across all nodes,
under different timeouts.

V. ORPHAN TRANSACTIONS IN NODES JOINING
THE NETWORK

A new node that joins the Bitcoin network has an empty
mempool. Similarly, a node that stays off the Bitcoin net-
work for a long period has a stale mempool, meaning that
transactions in its mempool are not useful and are discarded
when it rejoins the network. This is primarily because such
transactions are already included in blocks that are created
while the node is away from the network. In this section,
we analyze how an empty or stale mempool affects orphan
transactions. We first describe our experimental setup and then
present results.

A. Measurement setup

We configure three nodes with the same identical hardware
and software specifications as described in subsection III-A.
The nodes are configured with the default orphan pool size of
100 transactions and the default orphan transaction timeout of
20 minutes. To emulate the behavior of a node that has just
joined the Bitcoin network with an empty or stale mempool,
we clear the mempool of the nodes every 12 hours. The
experiment runs from July 6, 2020 3:00 PM for two weeks.
That is, we collect and present results obtained from data
gathered over 84 session that are 12 hours long.

B. Fraction of orphan transactions

We first measure the fraction of incoming transactions that
become orphan. We divide each of the 12 hour sessions
into bins of 5 minute intervals. For each bin, we calculate
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Fig. 15: Percentage of transactions that become orphan during
each 5 minute bin interval of the 12 hour long sessions.

the fraction of transactions that became orphan among all
incoming transactions.

Fig. 15 shows, on an aggregate level, the fraction of
transactions that became orphan during each bin’s interval for
the entire 12 hour session. We observe that when a node starts
up, a large fraction of transactions (i.e., above 25%) are added
to the orphan pool. As the nodes stay connected, the fraction
of orphan transactions drops, with occasional upward surges
which can be attributed to the unsteady stream of incoming
transactions as shown in Fig. 16.

We note that a node has fewer peers when it starts up as
compared to in steady-state. Therefore, it receives a relatively
smaller number of transactions at the beginning, as shown in
Fig. 16.
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Fig. 17: CDF of arrival times of orphan transactions during
measurement periods. Roughly 50% of all orphan transactions
are received in the first two hours.

C. Arrival times of orphan transactions

We next analyze when during the measurement period
orphan transactions are added to the orphan pool. For this
purpose, we characterize the arrival times of orphan transac-
tions (i.e., the time at which an incoming transaction is deemed
orphan and added to the orphan pool). The results are averaged
over the 84 sessions, each of which is 12 hours long.

Fig. 17 shows, on an aggregate level, the CDF of the arrival
times. We observe that the majority of orphan transactions
arrive soon after a node starts up. Indeed, on average, roughly
50% of orphan transactions arrive within the first two hours
of the 12 hours measurement sessions.

D. Removal of orphan transactions from orphan pool

Finally, we present an analysis of the causes of removal
of transactions from the orphan pool, after a node joins the
network. We note from the previous section that a large
fraction of orphan transactions arrive within the first two
hours. Hence, we zoom into this time frame and examine how
each of the six scenarios (cf. subsection II-A) contributes to
transactions being removed from the orphan pool.

Fig. 18 shows, on an aggregate level, the fraction of trans-
actions that are removed from the orphan pool within the first
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Fig. 18: Fraction of transactions that are removed from the
orphan pool due to each of the six causes (cf. subsection II-A)
over the first two hours of the 12 hour long sessions.

two hours after a node joins the Bitcoin network. By design,
when a node boots up, its orphan pool is empty. Therefore,
we observe that immediately after a node joins the network,
transactions are not removed from the orphan pool because the
pool becomes full. Instead, a larger fraction of transactions are
removed from the orphan pool because their missing parents
are found. However, as the number of orphan transactions
increases, the orphan pool fills up and evictions due to a full
orphan pool become the leading reason for transactions being
removed from the orphan pool. The remaining five causes
contributes relatively little to the eviction of transactions from
the orphan pool. These findings further confirm our earlier
findings that Bitcoin nodes ought to operate with a larger
orphan pool size to avoid unnecessary evictions and redundant
network overhead (cf. subsection IV-D).

VI. DISCUSSIONS AND LIMITATIONS

We next discuss our results and point out some of their
limitations.

Propagation of parent transactions. Recall that an orphan
transaction is not propagated forward to other peers until all
of its missing parents are found (cf. subsection II-A). One
might then ask: why are there orphan transactions at all?
Should not the peer that sent the orphan transaction to the
measurement node have had the missing parents, or else it
would not have forwarded the transaction to the measurement
node? Answering this question, there are several reasons why
a transaction forwarded by peers can end up in the orphan
pool despite the peer having its missing parents.

First, results presented in Section V show that a large
fraction of transactions that a node receives after joining the
Bitcoin network become orphan. The peers of this node do
not know in advance what transactions the node already has
and, therefore, it is likely that the node will miss parents of
transactions being announced by its peers. Since many Bitcoin
nodes experience churn [34], [35], such scenarios are quite
common.

In addition, each node maintains its own minimum accept-
able fee which is a function of the node’s configured mempool
size and the amount of memory available. Any transaction
received by the node that has a fee below this minimum is
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rejected and is not added to the mempool and relayed to peers.
A preliminary measurement shows that some transactions that
are rejected due to low fee end up as missing parents of orphan
transactions. We leave a detailed investigation to a future work.

Peer selection in measurement nodes. We focus on
observing behavior of orphan transactions in regular, full
Bitcoin nodes that participate in propagating information in
the network but do not mine blocks. Our nodes discover and
connect to peers on their own, similar to any regular, full
Bitcoin node, so as not to introduce any unwanted bias in
our data.

Performance impact of orphan transactions. We learned
from Section V that nodes receive most orphan transactions
during the first few hours of connecting to the network.
As such, we can expect that a larger fraction of orphan
transactions will arrive within these first few hours. This larger
initial incoming traffic can be avoided by increasing the orphan
pool size.

Ideas for future development. Our analysis shows that it
is useful for nodes to configure a larger orphan pool size in
order to reduce unnecessary network overhead. This may be
especially beneficial for nodes that rejoin the network after a
long downtime or that join the network for the first time.

Package Relay [46]–[48] is a proposed feature currently
under discussion in the Bitcoin community. The goal of the
feature is to package a transaction with all of its ancestors
currently present in a node’s mempool when relaying the trans-
action forward to its peers. It may be valuable to study whether
this feature also helps reduce the number of transactions that
become orphan.

VII. CONCLUSION

We have investigated circumstances under which a Bitcoin
transaction is orphaned in Section III. Our data shows that
orphan transactions have, on average, fewer parents than other
transactions. The parents that cause transactions to become
orphaned also have a lower transaction fee and a larger
size relative to all received transactions. On an individual
level, the missing parents also have, on average, a lower
transaction fee per byte as compared to parents of all received
transactions. This information can be utilized by Bitcoin users
to appropriately set their own transaction fees and facilitate
propagation through the network.

We have also documented the network and performance
overhead incurred by orphan transactions for orphan pools of
varying sizes. Our analysis in Section IV reveals that as the
orphan pool size grows, more transactions are removed from
the pool, not because the pool is full but because the transac-
tions timeout. This in turn reduces the duplicate addition of
transactions to the orphan pool, resulting in a much smaller
network overhead. Our evaluations show that the performance
overhead incurred by a larger orphan pool is insignificant, and
it is thus advisable to set a larger orphan pool of larger size.
On the other hand, changing the orphan transaction timeout
from the default of 20 minutes does not appear to help.
Indeed, increasing the default orphan transaction timeout does
not decidedly improve performance, and reducing the timeout
degrades performance.

We have also investigated the transient behavior of orphan
transactions in nodes that join the network for the first time
or after a long downtime (i.e., they do not contain useful
transactions in their mempools) in Section V. Our analysis
shows that immediately after a node joins the network, on av-
erage, over 25% of the received transactions become orphans.
Furthermore, over the measurement period, a large fraction
of the orphan transactions, i.e., roughly 50%, are added to
the orphan pool during the first two hours. We also observe
that, when a node first starts up with an empty orphan pool,
most transactions are removed from the orphan pool due
to reception of their missing parents. However, after a few
minutes, an overflow of the orphan pool becomes the primary
cause for the removal of orphan transactions. This finding
further confirms the inadequacy of the default orphan pool
size that is limited to 100 transactions.

Finally, our measurements show that missing parents are
sometimes found many hours after their child transaction
became orphan. We conjecture that this large delay may be
caused by the Replace-by-Fee (RBF) feature [30] of Bitcoin.
Another important finding is that in many cases, one or more
missing parents are included in the same block as the orphan
transaction. Since orphan transactions are not propagated, this
may slow down the block propagation process (due to potential
failure of compact blocks [34], [35]). Detailed investigation of
these phenomena represent interesting areas for future work.
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