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Abstract 
Many of the sensors finding their way into sensor networks run a 
lightweight operating system developed at U.C. Berkeley called 
TinyOS. This open-source operating system, designed 
specifically for highly-constrained wireless devices, enables 
building a variety of applications using highly modular code. 
Over one hundred groups worldwide, and several company 
products, use TinyOS. 
 
Our main contribution in this paper is a simulation interface for 
compiling TinyOS applications to OPNET model.  Our approach 
harnesses the wealth of tools made available by OPNET, such as 
wireless channel modeling, scenario management, and collected 
data management.  Using OPNET it is thus possible to 
simultaneously simulate multiple instantiations of different 
TinyOS applications, as well as the interaction of TinyOS 
sensors with other hardware devices (e.g., Ethernet and IP 
nodes). 
 
As part of our preliminary results, we have incorporated the 
timer, LED, and radio interfaces of TinyOS sensors into an 
OPNET model.  Within our implementation, TinyOS radio 
packets are converted to OPNET packets and sent and received 
using the OPNET API (although currently all communications 
links are modeled as full-duplex serial links).  We present two 
simulation results as proofs of our concept:  an LED-based 
counter, and a location-detection system.  These promising 
results demonstrate the viability of our approach to bridging the 
TinyOS world with the available infrastructure in the OPNET 
world. 
 
I. Introduction 
The TinyOS operating system has been specifically designed to 
support resource-constrained sensing devices [1]. Each sensing 
device (or simply sensor) typically contains an embedded 
processor, a digital radio, several A/D converters, and 
connectors for attaching sensor boards. Sensors support a wide 
range of applications, from environmental habitat monitoring to 
indoor location detection and homeland security.  However, the 
TinyOS operating system software running on each individual 
sensor is heavily optimized for that sensor’s particular 
application. 
 
Developing and debugging distributed algorithms on TinyOS 
sensors presents many challenges.  In particular, as sensor 
networks increase in size, scaling considerations cause the 
distributed algorithms running on these sensors to increase in 
complexity.  Furthermore, deploying a large sensor network 
simply to verify the implementation of a distributed algorithm 
can be time-consuming and cumbersome.  This is compounded 
by the fact that due to the limited capabilities of the sensors, 
debugging on the target hardware is difficult. 
 

Therefore, developing and implementing complex distributed 
algorithms for TinyOS sensors requires an effective simulation 
tool. An ideal simulation tool should support a “shared code” 
model, in which the same application code is shared between the 
target executable and the simulation model. Towards achieving 
this goal, we have developed a simulation interface to compile a 
TinyOS application into an OPNET model. This work is devoted 
to a description of this interface, its capabilities, and the more 
prominent technical challenges of its development. 
 
Our work is closely related to, and based in part on, another 
shared-code simulator for TinyOS, called TOSSIM [2].  The 
TOSSIM simulator is a free tool, created from scratch, that 
enables multiple instantiations of the same TinyOS application 
to be simulated.  It has been used successfully to debug the 
TinyOS radio stack [2].  While TOSSIM is a capable tool, it 
does not provide means for scenario management and statistics 
management, does not allow instantiations of different 
applications to be simulated together in the same memory space, 
and does not have the wealth of link models available in 
OPNET.  In short, the maturity of the OPNET simulator will 
give it an edge over TOSSIM for large, sophisticated TinyOS 
simulation projects. 
 
This paper is organized as follows. In section II we give an 
overview of the TinyOS operating system, and in section III we 
describe our OPNET implementation of TinyOS, including how 
the shared application code is compiled and linked to the 
TinyOS OPNET process model.  In section IV, we show a 
simulation of two sample TinyOS programs.  Concluding 
remarks are offered in section V. 
 
II. TinyOS Overview 
The TinyOS operating system design emphasizes modularity and 
compactness.  To enforce the modularity, TinyOS applications 
are written in a custom “C”-based programming language called 
NesC.  The NesC programming language requires functionality 
to be encapsulated in components with well-defined interfaces.  
A TinyOS application consists of a collection of these NesC 
components connected, or wired together.  Some components 
are specific to the target platform, other components are generic 
to the TinyOS operating system, and still other components are 
specific to the application being built.  When a TinyOS 
application is built for a particular platform, the build system 
knows how to wire the application-specific and TinyOS generic 
components to the hardware-specific components for that 
platform. 
 
The modularity of TinyOS also facilitates building very compact 
applications.  This is important for sensor platforms.  Sensor 
platforms have limited processing and memory resources, and 
usually perform well-defined functions.  It is desirable that only 
the parts of the operating system necessary for the specific 
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sensor application be present.  The design of TinyOS allows 
unused TinyOS components, such as unused sensor components, 
to be omitted from the target application object code. 
 
Building TinyOS applications requires the NesC compiler, 
which converts NesC code into standard C code suitable for 
target-specific compilation with the GNU Compiler Collection 
(gcc).  From gcc’s point of view, the NesC compiler is a 
preprocessor that processes header files and pre-processor 
directives.  Its job is to output a single pre-processed “C” source 
file. 
 
Functionally, TinyOS sensor applications can often be 
represented as event-driven state machines.  While in an idle 
state, the sensor powers down resources and waits for an event.  
When the sensor application receives an event, such as a timer 
expiration or radio packet reception, the application does some 
processing immediately, and then asks TinyOS to schedule, or 
post, a Task.  A Task is simply a function or procedure that is 
executed at a later time.  TinyOS maintains a queue of tasks, and 
runs them to completion serially in the order they were posted.  
Although the tasks cannot interrupt each other, tasks may be 
interrupted by events.  Each task can also post its own tasks.  
When the task queue is empty, TinyOS goes to sleep and waits 
for another event. 
 
III. OPNET TinyOS Implementation 
 
A. Build Strategy 
 
Integrating TinyOS applications with OPNET presents several 
technical challenges.  The TinyOS build system permits 
applications to be built for different platforms, including the 
TOSSIM simulator platform.  In our case, we defined a TinyOS 
OPNET simulator platform consisting of OPNET node and 
process models.  We created new OPNET models for each 
TinyOS application. 
 
As part of our implementation, we also designed a tool to 
transform TinyOS NesC application code into OPNET node and 
process models.  These synthesized OPNET models combined 
OPNET specific code that implemented TinyOS functionality, 
such as posting tasks, with application specific code.  Our tool 
was designed to conform as much as possible to the existing 
TinyOS build system and also to maintain compatibility with 
existing TinyOS programs. 
 
The synthesis process relied on a special generic set of OPNET 
node and process models for a TinyOS application, which were 
customized and linked to an OPNET external code module 
generated from the NesC application code.  The customized 
OPNET models were then copied to the appropriate models 
directory, and compiled using OPNET command line tools 
during the build process. 
 
B. NesC Compilation 
 
All application-specific and TinyOS generic code was compiled 
to a single C file (the OPNET external code module) by the 
NesC compiler.  In the typical scenario, this step is followed by 
compilation using the gcc compiler.  However, since we used the 

Windows version of OPNET, OPNET models had to be 
compiled with the Microsoft compiler.  Unfortunately, some of 
the code generated by the NesC compiler was not compatible 
with the Microsoft compiler without some tweaking.  This 
tweaking would probably not have been necessary had we used 
the Unix version of OPNET that uses gcc.  However, we believe 
that code output by the modified NesC compiler is compatible 
both with gcc and with the Microsoft compiler. 
  
Another challenge of our simulation was enabling multiple 
instantiations of the same TinyOS application.  Each application 
instantiation needed to have its own data space.  By default, 
when an application is compiled from NesC to C, its variables 
are represented as global variables.  Storing data in global 
variables is a logical thing to do when compiling for the target 
sensor platform, but creates problems when compiling for a 
simulation platform where data from different instantiations 
could clash over the same variable names. 
 
Our solution to the instantiation problem involved modifying the 
NesC compiler, and was largely based on the TOSSIM solution 
to the same problem.  The NesC compiler was modified to 
collect all global variables into a unified structure that was 
referenced by a global pointer.  Each instantiation of a TinyOS 
application maintained a different structure, and the global 
pointer would affect context switching by changing its 
dereferenced structure to correspond with the application being 
evaluated.  In order to ensure that the global pointer variable was 
set correctly, we made use of state variables in the OPNET 
process models that are ultimately linked to the NesC compiler 
output.  State variables allow different instantiations of a process 
to have their own data storage space.  The OPNET process 
model code (and its state variables) interfaced with the NesC 
derived code (and its global pointer variable) using function 
calls.  During application initialization, each instance of the 
OPNET process model code allocated and kept track of the 
global data area for the NesC derived code.  Then, during the 
simulation, the OPNET process model code appropriately set the 
global pointer variable before calling the NesC derived code. 
 
C. OPNET Process and Node Models 
 
Bridging the OPNET and TinyOS environments required a 
combination of OPNET platform specific NesC source files and 
modifications to the NesC compiler itself (See Figure 1).  Our 
overall process flow begins with the compilation of TinyOS 
application code with a modified NesC compiler that correctly 
handles global variables to allow for multiple application 
instantiations.  The compiled code is also designed to be 
compatible with Microsoft’s compiler, and it is thereby compiled 
to an OPNET external code module.  Finally, a generic OPNET 
node and process model is created, customized, and linked to the 
modified NesC output.  In the remainder of this section, we 
describe some of the details behind the OPNET process and 
node model components of the simulation. 
 
Recall that a TinyOS application is a collection of NesC 
components, some of which are platform specific.  In order to 
simulate these components within OPNET, we had to define a 
platform that translated TinyOS functionality into OPNET 
functionality.  We did this by creating OPNET-specific NesC 



components that made calls to functions that were defined in an 
OPNET process model. 
 
The OPNET process models were designed by means of generic 
OPNET models (i.e., they do not correspond to any particular 
application) that simulate sensor platforms running TinyOS.  
The build scripts ultimately customize the generic models for 
each TinyOS application.  Technically, the customization only 
involves changing the names of functions and other identifiers.  
However, this step is important, as it allows the automated 
generation of independent OPNET models for each TinyOS 
application. 
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Figure 1 

 
The OPNET process model is responsible for implementing the 
TinyOS operating system in the OPNET environment.  From the 
point of view of the process model, the TinyOS application is an 
external code module with function call entry points.  Events 
received by the OPNET process model are processed and sent to 
the TinyOS application code.  The TinyOS application code, in 
turn, makes function calls back to the process model to cause 
simulation events to be scheduled. 
 
We constructed the OPNET process model (See Figure 2) to 
handle TinyOS tasks, as well as the TinyOS Timer, Light 
Emitting Diode (LED), and Radio interfaces.  Due to their small 
size, many sensors do not have display interfaces, and rely on 
LEDs to provide visual status information to operators.  We 
simulated this LED interface using OPNET statistics:  switching 
on a LED corresponds to toggling the statistic value from zero to 
one.  This allows us to plot status of the LEDs as a function of 
time after the simulation (see Figure 4).  We implemented tasks 
and timers by scheduling OPNET local interrupts.  The Interface 
Control Information (ICI) associated with each interrupt kept 
track of the callback functions associated with the timers and 
tasks. 
 

 
Figure 2 

 
The OPNET process model converts TinyOS radio packets into 
OPNET packets, and then sends them using OPNET streams.   
For the purposes of this work, we used an OPNET serial line 
link model to simulate the OPNET radio channel.  Such a serial 
link correctly models propagation and transmission delay of a 
radio link, but it does not model the interference due to 
simultaneous transmissions.  This link also concretely 
demonstrates the ability to convert TinyOS packets to and from 
OPNET packets for the purpose of simulating inter-sensor 
communication.  It is a simple (if potentially time-consuming) 
exercise to make a more accurate communication model by 
using the OPNET wireless toolkit to model wireless propagation 
and the TinyOS Medium Access Protocol (MAC), and we leave 
this for future work.   
 
As usual, the OPNET process model needs to be part of an 
OPNET node model.  Therefore, in addition to the process 
model, we constructed a generic node model for TinyOS 
applications (See Figure 3).  The node model contains the 
OPNET TinyOS process model and some point-to-point 
transmitters and receivers.  It also contains user-configurable 
attributes for the TinyOS node address, the length of the boot 
period, and the debug flags.  During the simulation, the boot 
time of the sensor was set to a random variable uniformly 
distributed between zero and the value of the boot period 
attribute.  This feature mirrors a similar feature in the TOSSIM 
simulator.  The debug flags attributes enable TOSSIM-
compatible debugging output. 
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Figure 3 

 
IV. Simulation Examples 
In this section we describe the simulation of two sample TinyOS 
applications:  an LED-based counter and a location-detection 
service. 
 
A. Counter to LEDs and Radio 
Our first sample application serves to validate our OPNET 
simulation technique and involves two related TinyOS 
programs: CntToLedsAndRFM and RfmToLeds.  These 
applications are ideal for testing because they utilize the Timer, 
LEDs (which come in three colors:  red, yellow, and green), and 
Radio interfaces (38 kbps device) of our sensors, despite being 
functionally very simple.  Furthermore, these applications come 
as part of the standard TinyOS installation and were not 
themselves modified in any way to work with OPNET. 
  
The CntToLedsAndRFM program sets a 4 Hz periodic timer, 
and increments a counter every time the timer expires.  Also, 
when the timer expires, a radio packet containing the counter 
value is broadcasted, and the three sensor LEDs are set to the 
three least significant bits of the binary encoding of the counter 
value.  For examples, if the timer value is 5, the yellow, green, 
and red LEDs are respectively On, Off, and On.  If the timer 
Value is 17, the yellow, green, and red LEDs are respectively 
Off, Off, and On.  Figure 4 shows the LED outputs for this 
program as a function of time. 
 
The RfmToLeds program acts as the reception counterpart to 
CntToLedsAndRFM.  It listens for radio packets containing 
broadcasted counter values and updates the LEDs of the 
receiving sensor to reflect the three least significant bits of these 
values. 
 
Our simulation network topology is depicted in Figure 5.  The 
topology consists of four nodes, with radio links between nodes 
0 and 2, and between nodes 0 and 3.  In our simulation, only 
node 0 ran the CntToLedsAndRFM program.  The other three 
nodes ran the RfmToLeds application.  For our simulation 
topology, the LEDs of nodes 2 and 3 are expected to mirror the 
LEDs of node 0, while the LEDs of node 1 are not.  Figure 6 

shows that the LED outputs of nodes 0, 1, 2, and 3 behave as 
expected. 
 

 
Figure 4 

 
 

 
Figure 5 
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Figure 6 

 
B. Location Detection 
 Our second simulation example demonstrates a TinyOS 
application used for location detection.  This application can be 
used in a system that enables users to determine their location in 
areas where GPS is not available (such as indoor settings) [3].  
To set up the system, small sensors are scattered in fixed 
locations throughout an area.  The sensors periodically broadcast 
beacons that identify themselves.  By design, each sensor will 
receive beacons from unique set of other sensors. 
 A hypothetical user of the system would carry a small 
sensing device that listens to the various transmitted beacons. 
If the user is close to a fixed-position sensor, the user will 
receive beacons from the same sources as the fixed position 
sensor.  Therefore, assuming that the user has information on the 
fixed position of each sensor, she could then identify her 
location based on the unique set of beacons that were heard. 
 We implemented this location detection system with a 
TinyOS application and simulated it using our framework on 
OPNET.  Figure 7 depicts the simulated network topology.  Four 
fixed-position sensors (nodes 0 though 3) are arranged in a line 
topology, and the user (node 4) is very close to the sensor in 
fixed position 3.  Since the user receives beacons from sensors 1, 
2, and 3, she should identify her location as the location of node 
2. 
 Unlike the LED-counter example, this example uses the 
TOSSIM-compatible debug output that sends debug output to 
the console.  The flexible debug system allows debug output to 
be enabled or disabled for different parts of a TinyOS 
application.  For example, the AM debug attributes allows 
debugging of the radio component.  The USR1, USR2, and 
USR3 are reserved for higher-level TinyOS application 
components.    Figure 8 shows the interface being used to enable 
the USR1 debug output for node 4. 
 The debug output of a 20 second simulation is shown in 
Figure 9.  The Figure shows that the user identified her location 
as that of node 2.  It also shows that there were zero differences 
between what the user received and what she would expect to 
receive if she were at the location of node 2.  The location 

detection algorithm from [3] picks the location that minimizes 
this “differences” number.  Figures 10 and 11 respectively show 
the user at location of node 1, and the results of the simulation.  
As expected, the user identified her location correctly.  It is 
possible to use some of OPNETs more sophisticated analysis 
tools to experiment with the system, deriving, for example, error 
probabilities in various topologies and transmitter 
configurations.  We leave the results of such analysis to future 
work. 
 

 
Figure 7 
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Figure 10 

 

 
Figure 11 

 
V. Conclusion 
 We have demonstrated the viability of using OPNET to 
simulate TinyOS applications.  Due to the simplicity of the 
target sensor platforms, it is very difficult to debug a TinyOS 
platform without a simulation tool.  With the exception of 
TOSSIM, there are currently no other simulation options for 
TinyOS.  While TOSSIM is adequate for some simulation work 
(and is a free tool), OPNET’s mature simulation library and data 
management and scenario management tools make OPNET a 
preferable tool for large, complicated, or heterogeneous 
simulations. 
  
Our specific implementation provides OPNET code supporting 
the timer, radio, and LED TinyOS components, and models 
wireless communication as a full-duplex serial link.  As such, it 
is only a proof of concept; a complete simulation would require 
implementation of all the TinyOS sensor components together 
with a more realistic communication model using OPNET’s 
wireless toolkit to model RF interference and TinyOS’s MAC 

protocol.  We believe that such extensions should be fairly 
straightforward and would not require any further changes to the 
NesC compiler. 
 
An important feature of our simulation technique is that it uses 
the shared code approached and shares the application code 
between the target sensor and simulation environments.  This 
allows target code to be simulated exactly at it would be used on 
the target sensors, at the cost of requiring some hacking of the 
build process.  Our simulation tool can thus be used to develop 
and verify distributed algorithms on sensor networks. 
  
 Finally, we have demonstrated our tool on three 
TinyOS applications (two of which were simulated together).  
Due to their shared-code nature, these applications were also 
built for and ran on the Crossbow Mica2dot target sensor 
platform.  These simple examples show that OPNET has the 
potential to be an extremely useful, and effective, tool for 
developing and implementing TinyOS applications for sensor 
networks. 
 

The source codes of this project are available at 
http://nislab.bu.edu/opnet_tinyos.html    
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