
 1

Simulation of TinyOS Wireless Sensor Networks Using OPNET
Daniel Sumorok, David Starobinski, Ari Trachtenberg

Boston University
Boston, MA 02115

E-mail: staro@bu.edu

Abstract
Many of the sensors finding their way into sensor networks run a
lightweight operating system developed at U.C. Berkeley called
TinyOS. This open-source operating system, designed
specifically for highly-constrained wireless devices, enables
building a variety of applications using highly modular code.
Over one hundred groups worldwide, and several company
products, use TinyOS.

Our main contribution in this paper is a simulation interface for
compiling TinyOS applications to OPNET model. Our approach
harnesses the wealth of tools made available by OPNET, such as
wireless channel modeling, scenario management, and collected
data management. Using OPNET it is thus possible to
simultaneously simulate multiple instantiations of different
TinyOS applications, as well as the interaction of TinyOS
sensors with other hardware devices (e.g., Ethernet and IP
nodes).

As part of our preliminary results, we have incorporated the
timer, LED, and radio interfaces of TinyOS sensors into an
OPNET model. Within our implementation, TinyOS radio
packets are converted to OPNET packets and sent and received
using the OPNET API (although currently all communications
links are modeled as full-duplex serial links). We present two
simulation results as proofs of our concept: an LED-based
counter, and a location-detection system. These promising
results demonstrate the viability of our approach to bridging the
TinyOS world with the available infrastructure in the OPNET
world.

I. Introduction
The TinyOS operating system has been specifically designed to
support resource-constrained sensing devices [1]. Each sensing
device (or simply sensor) typically contains an embedded
processor, a digital radio, several A/D converters, and
connectors for attaching sensor boards. Sensors support a wide
range of applications, from environmental habitat monitoring to
indoor location detection and homeland security. However, the
TinyOS operating system software running on each individual
sensor is heavily optimized for that sensor’s particular
application.

Developing and debugging distributed algorithms on TinyOS
sensors presents many challenges. In particular, as sensor
networks increase in size, scaling considerations cause the
distributed algorithms running on these sensors to increase in
complexity. Furthermore, deploying a large sensor network
simply to verify the implementation of a distributed algorithm
can be time-consuming and cumbersome. This is compounded
by the fact that due to the limited capabilities of the sensors,
debugging on the target hardware is difficult.

Therefore, developing and implementing complex distributed
algorithms for TinyOS sensors requires an effective simulation
tool. An ideal simulation tool should support a “shared code”
model, in which the same application code is shared between the
target executable and the simulation model. Towards achieving
this goal, we have developed a simulation interface to compile a
TinyOS application into an OPNET model. This work is devoted
to a description of this interface, its capabilities, and the more
prominent technical challenges of its development.

Our work is closely related to, and based in part on, another
shared-code simulator for TinyOS, called TOSSIM [2]. The
TOSSIM simulator is a free tool, created from scratch, that
enables multiple instantiations of the same TinyOS application
to be simulated. It has been used successfully to debug the
TinyOS radio stack [2]. While TOSSIM is a capable tool, it
does not provide means for scenario management and statistics
management, does not allow instantiations of different
applications to be simulated together in the same memory space,
and does not have the wealth of link models available in
OPNET. In short, the maturity of the OPNET simulator will
give it an edge over TOSSIM for large, sophisticated TinyOS
simulation projects.

This paper is organized as follows. In section II we give an
overview of the TinyOS operating system, and in section III we
describe our OPNET implementation of TinyOS, including how
the shared application code is compiled and linked to the
TinyOS OPNET process model. In section IV, we show a
simulation of two sample TinyOS programs. Concluding
remarks are offered in section V.

II. TinyOS Overview
The TinyOS operating system design emphasizes modularity and
compactness. To enforce the modularity, TinyOS applications
are written in a custom “C”-based programming language called
NesC. The NesC programming language requires functionality
to be encapsulated in components with well-defined interfaces.
A TinyOS application consists of a collection of these NesC
components connected, or wired together. Some components
are specific to the target platform, other components are generic
to the TinyOS operating system, and still other components are
specific to the application being built. When a TinyOS
application is built for a particular platform, the build system
knows how to wire the application-specific and TinyOS generic
components to the hardware-specific components for that
platform.

The modularity of TinyOS also facilitates building very compact
applications. This is important for sensor platforms. Sensor
platforms have limited processing and memory resources, and
usually perform well-defined functions. It is desirable that only
the parts of the operating system necessary for the specific

 2

sensor application be present. The design of TinyOS allows
unused TinyOS components, such as unused sensor components,
to be omitted from the target application object code.

Building TinyOS applications requires the NesC compiler,
which converts NesC code into standard C code suitable for
target-specific compilation with the GNU Compiler Collection
(gcc). From gcc’s point of view, the NesC compiler is a
preprocessor that processes header files and pre-processor
directives. Its job is to output a single pre-processed “C” source
file.

Functionally, TinyOS sensor applications can often be
represented as event-driven state machines. While in an idle
state, the sensor powers down resources and waits for an event.
When the sensor application receives an event, such as a timer
expiration or radio packet reception, the application does some
processing immediately, and then asks TinyOS to schedule, or
post, a Task. A Task is simply a function or procedure that is
executed at a later time. TinyOS maintains a queue of tasks, and
runs them to completion serially in the order they were posted.
Although the tasks cannot interrupt each other, tasks may be
interrupted by events. Each task can also post its own tasks.
When the task queue is empty, TinyOS goes to sleep and waits
for another event.

III. OPNET TinyOS Implementation

A. Build Strategy

Integrating TinyOS applications with OPNET presents several
technical challenges. The TinyOS build system permits
applications to be built for different platforms, including the
TOSSIM simulator platform. In our case, we defined a TinyOS
OPNET simulator platform consisting of OPNET node and
process models. We created new OPNET models for each
TinyOS application.

As part of our implementation, we also designed a tool to
transform TinyOS NesC application code into OPNET node and
process models. These synthesized OPNET models combined
OPNET specific code that implemented TinyOS functionality,
such as posting tasks, with application specific code. Our tool
was designed to conform as much as possible to the existing
TinyOS build system and also to maintain compatibility with
existing TinyOS programs.

The synthesis process relied on a special generic set of OPNET
node and process models for a TinyOS application, which were
customized and linked to an OPNET external code module
generated from the NesC application code. The customized
OPNET models were then copied to the appropriate models
directory, and compiled using OPNET command line tools
during the build process.

B. NesC Compilation

All application-specific and TinyOS generic code was compiled
to a single C file (the OPNET external code module) by the
NesC compiler. In the typical scenario, this step is followed by
compilation using the gcc compiler. However, since we used the

Windows version of OPNET, OPNET models had to be
compiled with the Microsoft compiler. Unfortunately, some of
the code generated by the NesC compiler was not compatible
with the Microsoft compiler without some tweaking. This
tweaking would probably not have been necessary had we used
the Unix version of OPNET that uses gcc. However, we believe
that code output by the modified NesC compiler is compatible
both with gcc and with the Microsoft compiler.

Another challenge of our simulation was enabling multiple
instantiations of the same TinyOS application. Each application
instantiation needed to have its own data space. By default,
when an application is compiled from NesC to C, its variables
are represented as global variables. Storing data in global
variables is a logical thing to do when compiling for the target
sensor platform, but creates problems when compiling for a
simulation platform where data from different instantiations
could clash over the same variable names.

Our solution to the instantiation problem involved modifying the
NesC compiler, and was largely based on the TOSSIM solution
to the same problem. The NesC compiler was modified to
collect all global variables into a unified structure that was
referenced by a global pointer. Each instantiation of a TinyOS
application maintained a different structure, and the global
pointer would affect context switching by changing its
dereferenced structure to correspond with the application being
evaluated. In order to ensure that the global pointer variable was
set correctly, we made use of state variables in the OPNET
process models that are ultimately linked to the NesC compiler
output. State variables allow different instantiations of a process
to have their own data storage space. The OPNET process
model code (and its state variables) interfaced with the NesC
derived code (and its global pointer variable) using function
calls. During application initialization, each instance of the
OPNET process model code allocated and kept track of the
global data area for the NesC derived code. Then, during the
simulation, the OPNET process model code appropriately set the
global pointer variable before calling the NesC derived code.

C. OPNET Process and Node Models

Bridging the OPNET and TinyOS environments required a
combination of OPNET platform specific NesC source files and
modifications to the NesC compiler itself (See Figure 1). Our
overall process flow begins with the compilation of TinyOS
application code with a modified NesC compiler that correctly
handles global variables to allow for multiple application
instantiations. The compiled code is also designed to be
compatible with Microsoft’s compiler, and it is thereby compiled
to an OPNET external code module. Finally, a generic OPNET
node and process model is created, customized, and linked to the
modified NesC output. In the remainder of this section, we
describe some of the details behind the OPNET process and
node model components of the simulation.

Recall that a TinyOS application is a collection of NesC
components, some of which are platform specific. In order to
simulate these components within OPNET, we had to define a
platform that translated TinyOS functionality into OPNET
functionality. We did this by creating OPNET-specific NesC

components that made calls to functions that were defined in an
OPNET process model.

The OPNET process models were designed by means of generic
OPNET models (i.e., they do not correspond to any particular
application) that simulate sensor platforms running TinyOS.
The build scripts ultimately customize the generic models for
each TinyOS application. Technically, the customization only
involves changing the names of functions and other identifiers.
However, this step is important, as it allows the automated
generation of independent OPNET models for each TinyOS
application.

Generic
NesC Code

OPNET
NesC Code

Application
NesC Code

NesC
Compiler

External Module
“C” code.

Generic OPNET
Models

Customized
OPNET Models

Customization
Script

Microsoft
Compiler

Compiled OPNET
Models

Figure 1

The OPNET process model is responsible for implementing the
TinyOS operating system in the OPNET environment. From the
point of view of the process model, the TinyOS application is an
external code module with function call entry points. Events
received by the OPNET process model are processed and sent to
the TinyOS application code. The TinyOS application code, in
turn, makes function calls back to the process model to cause
simulation events to be scheduled.

We constructed the OPNET process model (See Figure 2) to
handle TinyOS tasks, as well as the TinyOS Timer, Light
Emitting Diode (LED), and Radio interfaces. Due to their small
size, many sensors do not have display interfaces, and rely on
LEDs to provide visual status information to operators. We
simulated this LED interface using OPNET statistics: switching
on a LED corresponds to toggling the statistic value from zero to
one. This allows us to plot status of the LEDs as a function of
time after the simulation (see Figure 4). We implemented tasks
and timers by scheduling OPNET local interrupts. The Interface
Control Information (ICI) associated with each interrupt kept
track of the callback functions associated with the timers and
tasks.

Figure 2

The OPNET process model converts TinyOS radio packets into
OPNET packets, and then sends them using OPNET streams.
For the purposes of this work, we used an OPNET serial line
link model to simulate the OPNET radio channel. Such a serial
link correctly models propagation and transmission delay of a
radio link, but it does not model the interference due to
simultaneous transmissions. This link also concretely
demonstrates the ability to convert TinyOS packets to and from
OPNET packets for the purpose of simulating inter-sensor
communication. It is a simple (if potentially time-consuming)
exercise to make a more accurate communication model by
using the OPNET wireless toolkit to model wireless propagation
and the TinyOS Medium Access Protocol (MAC), and we leave
this for future work.

As usual, the OPNET process model needs to be part of an
OPNET node model. Therefore, in addition to the process
model, we constructed a generic node model for TinyOS
applications (See Figure 3). The node model contains the
OPNET TinyOS process model and some point-to-point
transmitters and receivers. It also contains user-configurable
attributes for the TinyOS node address, the length of the boot
period, and the debug flags. During the simulation, the boot
time of the sensor was set to a random variable uniformly
distributed between zero and the value of the boot period
attribute. This feature mirrors a similar feature in the TOSSIM
simulator. The debug flags attributes enable TOSSIM-
compatible debugging output.

 3

Figure 3

IV. Simulation Examples
In this section we describe the simulation of two sample TinyOS
applications: an LED-based counter and a location-detection
service.

A. Counter to LEDs and Radio
Our first sample application serves to validate our OPNET
simulation technique and involves two related TinyOS
programs: CntToLedsAndRFM and RfmToLeds. These
applications are ideal for testing because they utilize the Timer,
LEDs (which come in three colors: red, yellow, and green), and
Radio interfaces (38 kbps device) of our sensors, despite being
functionally very simple. Furthermore, these applications come
as part of the standard TinyOS installation and were not
themselves modified in any way to work with OPNET.

The CntToLedsAndRFM program sets a 4 Hz periodic timer,
and increments a counter every time the timer expires. Also,
when the timer expires, a radio packet containing the counter
value is broadcasted, and the three sensor LEDs are set to the
three least significant bits of the binary encoding of the counter
value. For examples, if the timer value is 5, the yellow, green,
and red LEDs are respectively On, Off, and On. If the timer
Value is 17, the yellow, green, and red LEDs are respectively
Off, Off, and On. Figure 4 shows the LED outputs for this
program as a function of time.

The RfmToLeds program acts as the reception counterpart to
CntToLedsAndRFM. It listens for radio packets containing
broadcasted counter values and updates the LEDs of the
receiving sensor to reflect the three least significant bits of these
values.

Our simulation network topology is depicted in Figure 5. The
topology consists of four nodes, with radio links between nodes
0 and 2, and between nodes 0 and 3. In our simulation, only
node 0 ran the CntToLedsAndRFM program. The other three
nodes ran the RfmToLeds application. For our simulation
topology, the LEDs of nodes 2 and 3 are expected to mirror the
LEDs of node 0, while the LEDs of node 1 are not. Figure 6

shows that the LED outputs of nodes 0, 1, 2, and 3 behave as
expected.

Figure 4

Figure 5

 4

Figure 6

B. Location Detection
 Our second simulation example demonstrates a TinyOS
application used for location detection. This application can be
used in a system that enables users to determine their location in
areas where GPS is not available (such as indoor settings) [3].
To set up the system, small sensors are scattered in fixed
locations throughout an area. The sensors periodically broadcast
beacons that identify themselves. By design, each sensor will
receive beacons from unique set of other sensors.
 A hypothetical user of the system would carry a small
sensing device that listens to the various transmitted beacons.
If the user is close to a fixed-position sensor, the user will
receive beacons from the same sources as the fixed position
sensor. Therefore, assuming that the user has information on the
fixed position of each sensor, she could then identify her
location based on the unique set of beacons that were heard.
 We implemented this location detection system with a
TinyOS application and simulated it using our framework on
OPNET. Figure 7 depicts the simulated network topology. Four
fixed-position sensors (nodes 0 though 3) are arranged in a line
topology, and the user (node 4) is very close to the sensor in
fixed position 3. Since the user receives beacons from sensors 1,
2, and 3, she should identify her location as the location of node
2.
 Unlike the LED-counter example, this example uses the
TOSSIM-compatible debug output that sends debug output to
the console. The flexible debug system allows debug output to
be enabled or disabled for different parts of a TinyOS
application. For example, the AM debug attributes allows
debugging of the radio component. The USR1, USR2, and
USR3 are reserved for higher-level TinyOS application
components. Figure 8 shows the interface being used to enable
the USR1 debug output for node 4.
 The debug output of a 20 second simulation is shown in
Figure 9. The Figure shows that the user identified her location
as that of node 2. It also shows that there were zero differences
between what the user received and what she would expect to
receive if she were at the location of node 2. The location

detection algorithm from [3] picks the location that minimizes
this “differences” number. Figures 10 and 11 respectively show
the user at location of node 1, and the results of the simulation.
As expected, the user identified her location correctly. It is
possible to use some of OPNETs more sophisticated analysis
tools to experiment with the system, deriving, for example, error
probabilities in various topologies and transmitter
configurations. We leave the results of such analysis to future
work.

Figure 7

Figure 8

Figure 9

 5

Figure 10

Figure 11

V. Conclusion
 We have demonstrated the viability of using OPNET to
simulate TinyOS applications. Due to the simplicity of the
target sensor platforms, it is very difficult to debug a TinyOS
platform without a simulation tool. With the exception of
TOSSIM, there are currently no other simulation options for
TinyOS. While TOSSIM is adequate for some simulation work
(and is a free tool), OPNET’s mature simulation library and data
management and scenario management tools make OPNET a
preferable tool for large, complicated, or heterogeneous
simulations.

Our specific implementation provides OPNET code supporting
the timer, radio, and LED TinyOS components, and models
wireless communication as a full-duplex serial link. As such, it
is only a proof of concept; a complete simulation would require
implementation of all the TinyOS sensor components together
with a more realistic communication model using OPNET’s
wireless toolkit to model RF interference and TinyOS’s MAC

protocol. We believe that such extensions should be fairly
straightforward and would not require any further changes to the
NesC compiler.

An important feature of our simulation technique is that it uses
the shared code approached and shares the application code
between the target sensor and simulation environments. This
allows target code to be simulated exactly at it would be used on
the target sensors, at the cost of requiring some hacking of the
build process. Our simulation tool can thus be used to develop
and verify distributed algorithms on sensor networks.

 Finally, we have demonstrated our tool on three
TinyOS applications (two of which were simulated together).
Due to their shared-code nature, these applications were also
built for and ran on the Crossbow Mica2dot target sensor
platform. These simple examples show that OPNET has the
potential to be an extremely useful, and effective, tool for
developing and implementing TinyOS applications for sensor
networks.

The source codes of this project are available at
http://nislab.bu.edu/opnet_tinyos.html

Acknowledgments

This work was supported in part by the US National Science
Foundation under grants CAREER ANI-0132802, CAREER
CCR-0133521, and ANI-0240333.

References

[1] Philip Levis, Sam Madden, David Gay, Joe Polastre, Robert

Szewczyk, Alec Woo, Eric Brewer and David Culler, “The
Emergence of Networking Abstractions and Techniques in
TinyOS,” Proceedings of the First USENIX/ACM Symposium on
Networked Systems Design and Implementation, 2004.

[2] Philip Levis, Nelson Lee, Matt Welsh, David Culler, “TOSSIM:

Accurate and Scalable Simulation of Entire TinyOS Applications,”
Proceedings of the First International Conference on Embedded
Networked Sensor Systems, 2003.

[3] Saikat Ray, David Starobinski, Ari Trachtenberg and Rachanee

Ungrangsi, “Robust Location Detection with Sensor Networks,”
IEEE Journal on Selected Areas in Communication (Special Issue
on Fundamental Performance Limits of Wireless Sensor Networks),
in press.

 6

