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Abstract

Advance reservation is a fundamental paradigm for
resource allocation. It is employed in various eco-
nomic sectors, including cloud computing and com-
munication networks. Although advance reservations
are widespread, little is known about the strategic
behavior of users facing the decision whether to re-
serve a resource in advance or not. In this article, we
present a game-theoretic framework, called Advance
Reservation (AR) games, to analyze this strategic be-
havior. We use AR games to analyze the impact of
pricing, charging, and information sharing policies on
the economic equilibria of the system and on its dy-
namic behavior. The analysis yields several insights
on how a service provider should design a system that
supports advance reservations.

Introduction

Advance reservation (AR) services form a pillar of
the economy. They are widely deployed in the in-
dustries of transportation (e.g., for reserving airplane
and train tickets), lodging (e.g., for booking hotel
rooms), and health care (e.g., for scheduling med-
ical appointments). AR is also gaining popularity
in communication networks [1, 2] and cloud comput-
ing [3, 4, 5].

A large portion of the existing research of advance
reservations in communication networks focuses on
algorithmic aspects, such as scheduling and rout-
ing [6, 7, 8]. Yet, in services supporting AR, it is often
up to the users to decide whether to make a reserva-
tion in advance. Hence, understanding the strategic
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behavior of users in systems that support AR is a
fundamental problem.

In this article, we describe a game-theoretic frame-
work, called Advance Reservation (AR) games, that
helps in reasoning about the strategic behavior of
users in systems supporting advance reservations. In
this framework, a random set of players, arriving at
different times, request to be served in a specific time
slot. Users can either make reservations in advance,
at a certain cost, or defer their decisions and request
service on the spot.

The AR cost may be a fee set by the service
provider, the time or resources required for making
the reservation, or the cost of financing payment.
When a user avoids AR, this cost is spared. However,
the probability to get service in the desired time slot
is reduced.

Using AR games, we analyze the impact of pricing
and other policies set by the provider on the behavior
of the users, and in turn, on the economic outcomes
of the system.

First, we investigate the impact of pricing policies.
Our analysis reveals the different types of game equi-
libria. We show that, in many cases, the AR fee that
brings the maximum possible revenue to the provider
has other equilibria, including one yielding no rev-
enue. We then explain how the provider can set the
AR fee to guarantee a positive revenue from advance
reservations.

Next, we use AR games to evaluate the impact of
charging policies. We investigate whether it is worth-
while for a provider to charge a fee from all users
making advance reservation or only from users that
get service.

Next, we consider the impact of information shar-
ing policies. We use AR games to answer whether it
is to the provider’s interest to inform users about the
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number of servers left available, or hide that infor-
mation from them.

Finally, we analyze dynamic AR games. The anal-
ysis sheds light into whether the system converges to
an equilibrium, and if yes to which, or cycles.

Details of the results presented in this article can
be found in [9, 10, 11]. Note that the operations re-
search literature contains several results on the man-
agement of advance reservations. For instance, the
work in [12] considers admission control strategies in
reservation system with different classes of customers,
while [13] deals with policies for accepting or reject-
ing restaurant reservations, and [14] analyzes the ef-
fects of customer regrets. None of this prior work
considers the strategic behavior of customers in mak-
ing AR, namely, that decisions of customers are not
only influenced by prices and policies set by providers
but also by their beliefs about the decisions of other
customers.

AR Games

In this section, we present the framework of AR
games. Table 1 summarizes the notations used
throughout the article.

AR games are a type of non-cooperative game. A
non-cooperative game consists of a set of players, in
which each player follows a strategy that determines
what action she chooses in any situation that she
faces. Each player is associated with a payoff func-
tion, which describes her payoff as a function of her
chosen action and the actions of all other players.

Many games studied in the literature assume that
the number of players is fixed and known by everyone.
However, when deciding whether to reserve resources
in advance, users typically do not know how many
other users compete for the same set of resources.
Therefore, a crucial element of AR games is to con-
sider a random number of players.

In AR games, the system consists of N servers that
offer a time-slotted service. This model can be used
to represent various practical systems (e.g., a link
with a fixed number of circuits or a cloud cluster
with a fixed number of virtual machines). We define
the demand D to be the number of users requesting
service at a given time slot (each user requests one

Table 1: Notation summary

server). The random variable D takes integer values
and is independent of the history. It follows a general
probability distribution with mean λ.

For each user, the time elapsing between her ar-
rival (i.e., the point at which she realizes that service
will be needed in a future slot) and the slot starting
time is referred to as her lead time. The lead time is a
continuous positive random variable following an ar-
bitrary probability distribution. As an example, con-
sider a system with several servers where each slot
lasts for one day, starting at 12:00 AM. A user real-
izes on Tuesday at 9:00 PM that she will need service
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Figure 1: Example of a realization of the demand
(i.e., the number of users requesting service) and the
lead times in a system with two servers. Users with
greater lead times have the opportunity to reserve a
server earlier. Note that the realizations of the de-
mand and lead times in different slots are indepen-
dent.

on Friday. Then, her lead time is 51 hours.

Any lead time distribution can be converted into
a continuous uniform distribution in [0, 1], using a
probability integral transformation [9]. Hence, from
now and on, we will assume that the lead time is
a uniform random variable in [0, 1], denoted by T .
Figure 1 illustrates the model.

Users have no prior information about the avail-
ability of servers (later in the article, we study a
variant of the game where information about server
availability is shared with the users). Each user de-
cides whether to make AR or not (respectively de-
noted by AR and AR′), based on her own lead time
and on statistical information about other users (i.e.,
the distributions of the demand and the lead time).

The servers are allocated in a first-reserved-first-
allocated fashion. If D > N , but the number of
reservations is smaller than N , then the unreserved
servers are arbitrarily allocated among the users that
requested service but did not make AR.

All the users have the same utility U from service.
Without loss of generality, we set U = 1. Making AR
is associated with a fixed cost C < 1. Hence, the pay-
off of a user that gets service is 1 − C if she chooses
the action AR and 1 if she chooses the action AR′.
The AR cost C reflects all aspects of making reserva-
tion. Analyzing a game with negative cost is trivial
(all users make AR). Thus, we assume, henceforth,

that C > 0.
A user that does not get service in her desired

slot leaves the system with zero payoff, regardless of
whether she attempted to make AR or not (later in
the article, we study a variant of the game where AR
fees are charged in advance from all users attempting
AR).

Since the random realizations of the demand and
lead times for each slot are independent of those in
other slots, it is sufficient to analyze the game in one
slot.

Equilibria Analysis

In a non-cooperative game, each user individually
chooses a strategy that maximizes her expected pay-
off. A Nash equilibrium is a balanced state, in which
none of the users has any incentive to deviate from
her chosen strategy after observing the strategies cho-
sen by the other users. Naturally, equilibrium strate-
gies are those of interest. Since all users are statisti-
cally identical, we only consider symmetric equilibria
(a common assumption made in the analysis of queue-
ing games [15]). In a symmetric equilibrium, all users
follow the same joint strategy function.

Since users only differ by their lead times, we can
define a strategy function σ, which maps a lead time
t to an action AR or AR′. As we show next, at equi-
librium, the strategy function must be a threshold
function of the form:

σ(t) =

{
AR if t > τ,
AR’ if t ≤ τ, (1)

where τ ∈ [0, 1] is the value of the threshold. Hence,
under a threshold strategy, only users whose lead
times are greater than the threshold τ make AR (i.e.,
only users who arrive early enough). If all users fol-
low a strategy with threshold τ , then τ also represents
the expected fraction of users that do not make AR.

All equilibrium strategies must be of threshold
form for the following reason. If a user makes AR, the
probability that she gets service is a non-decreasing
function of her lead time. If she does not make AR,
the probability to get service does not depend on her
lead time. Thus, we have the following property:
given any strategy function followed by all users, if
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a given user is better off making AR, then all users
with greater lead time are also better off making AR.
Similarly, if a given user is better off not making AR,
then all users with smaller lead time are also better
off not making AR.

We distinguish between two types of threshold
equilibrium. In the first type, the threshold is τ = 1,
which means that none of the users is making AR.
We refer to this equilibrium as none-make-AR. In the
second type, the threshold is τ ∈ (0, 1), which means
that the number of users making AR is a random vari-
able. We refer to this equilibrium as some-make-AR.
An equilibrium where all users make AR, regardless
of their lead times, does not exist [9].

We next explain the procedure to establish the
equilibrium threshold strategies and their different
types. For any threshold τ ∈ (0, 1), consider a vir-
tual user whose lead time is exactly equal to the
threshold. We refer to this virtual user as a threshold
user. Denote the probability that a threshold user
gets service upon making an advance reservation by
πAR(τ) and the probability that a threshold user gets
service upon not making an advance reservation by
πAR′(τ). Both functions are continuous (the formulas
of πAR(τ) and πAR′(τ) can be found in [9]).

In a some-make-AR equilibrium, the threshold user
must be indifferent between the actions AR and AR′.
Thus, a strategy with threshold τ is a some-make-AR
equilibrium if and only if:

(1− C)πAR(τ) = πAR′(τ). (2)

By isolating C in the equation above, we can define
a function that determines for any given threshold τ ,
what cost leads to that threshold. We denote this
function by C(τ).

By studying the structure of the function C(τ), we
can prove that the game has the following structure:

• Low AR costs only yield some-make-AR equi-
libria.

• Medium AR costs yield several equilibria,
which include both some-make-AR equilibria
and a none-make-AR equilibrium.

• High AR costs only yield a none-make-AR
equilibrium.

Figure 2: The cost C as a function of the threshold τ ,
which represents the expected fraction of users that
do not make AR under a some-make-AR equilibrium
strategy. If the AR cost exceeds C(1), then a none-
make-AR equilibrium also exists. The cost function
reveals the equilibrium structure of the game. The
parameters are N = 10 servers and a demand follow-
ing a Poisson distribution with mean λ = 10.

Figure 2 shows the cost function C(τ) in a game
with N = 10 servers and a Poisson distributed de-
mand with mean λ = 10. As shown in the figure,
for any AR cost falling in the lower range, there
is one corresponding threshold value and, therefore,
one some-make-AR equilibrium. For any AR cost
falling in the middle range, there are two correspond-
ing threshold values and, therefore, two some-make-
AR equilibria. In addition, none-make-AR is also an
equilibrium. Finally, AR costs belonging to the up-
per range (i.e., costs greater than the maximum value
of C(τ)) only yield a none-make-AR equilibrium.

Impact of Pricing

Suppose the AR cost is a fee charged by the provider.
AR games reveal an interesting dilemma that a
provider may face when attempting to maximize his
revenue under strategic customer behavior.
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Let DAR(τ) be a random variable denoting the
number of reservation requests under a threshold
strategy τ . The expected revenue as a function of
τ is

R(τ) = C(τ) · E[min{DAR(τ), N}]. (3)

The reason for taking the minimum between N and
DAR(τ) is that users do not have information about
service availability. Thus, the number of reservation
requests may exceed the number of servers. However,
fees are only charged from users getting service.

Given the parameters of the system, one can find
which value of τ maximizes R(τ). Numerical analysis
shows that the fee that leads to the optimal threshold
often belongs to the range of medium AR costs. By
choosing a fee in that range, the provider takes the
risk of ending up with zero revenue.

As an example, consider again a system with N =
10 servers and a demand that follows a Poisson distri-
bution with λ = 10. For these settings, the maximum
value of R(τ) is 1.5. This maximum is achieved with
the threshold τ = 0.29 (i.e., on average, 71 percent
of the users make AR). The fee corresponding to this
threshold is C = 0.215. Figure 2 shows that this fee
yields multiple equilibria including a none-make-AR
one.

Instead of taking the risk of ending up with zero
revenue, the provider may opt to be risk-averse and
to set a fee yielding a sub-optimal, but guaranteed
revenue. As shown in Figure 3, the highest fee that
yields a unique some-make-AR equilibrium is C =
0.125. At this equilibrium, on average, 88 percent of
the users make AR and the expected revenue is 1.017.
This revenue is about 30% lower than the optimal
revenue.

Impact of Charging Policy

The model of the previous section assumes that AR
fees are charged only from users granted service (we
refer to that charging scheme as the first policy and
the resulting game as the first game). In this section,
we consider a scheme in which all users that make AR
requests pay the fee, even if not granted service (we
refer to this charging scheme as the second policy and

the resulting game as the second game). Our goal is
to evaluate which policy is more profitable for the
provider.

We denote the cost and revenue functions of policy
i, where i ∈ {1, 2}, by Ci(τ) and Ri(τ), respectively.
Under the second policy, the payoff of users that make
AR and do not get service is −C rather than 0, as in
the first policy.

Using similar arguments as in the analysis of the
first policy, one can show that this game has an equi-
librium structure with three ranges of costs. The
types of equilibria in each range are the same as in
the first game. The difference between the two games
is the cost function. In the second game, a some-
make-AR equilibrium exists if and only if:

πAR(τ)− C = πAR′(τ). (4)

As before, we isolate C and define a cost function
C2(τ). From the definition of the two cost func-
tions, one can show that C1(τ) > C2(τ), for any
τ ∈ (0, 1). This result has an intuitive interpreta-
tion. Under the second policy, the expected payoff of
a user that makes AR is smaller. Hence, the provider
must charge a smaller fee, in order to convince the
same fraction of users to make AR.

The provider revenue from AR fees, under the sec-
ond policy, is simply the number of users making AR
requests multiplied by the reservation fee. Thus, the
expected revenue is:

R2(τ) = C2(τ) · E[DAR(τ)]. (5)

For any given threshold τ , the expected number of
users paying the AR fee is obviously higher under
the second policy. However, since C1(τ) > C2(τ),
there exists a trade-off between the two policies.

One can show that for any threshold τ and any
distribution of D, the first policy always yields higher
revenue than the second one, that is,

R1(τ) > R2(τ). (6)

In other words, charging a fee from all users attempt-
ing to make AR, including those not granted service,
is never optimal [9].
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Figure 3: The fee and the average revenue per server as a function of the threshold, for the same system as
in Figure 2. The fee that leads to the equilibrium with the greatest revenue, also leads to an equilibrium
with zero revenue. By lowering the fee, a provider can guarantee a positive revenue, though smaller than
optimal.

Impact of Information Sharing

In this section, we use the framework of AR games
to explore the impact of sharing information about
service availability with the users. Our goal is to
determine whether a provider, wishing to maximize
the number of reservations, is better off sharing in-
formation about service availability or not. To-
wards that end, we define and analyze a variant of
the game, in which the number of available servers
n ∈ {0, 1, . . . , N}, is shared with the users upon their
arrivals.

When information about availability of servers is
shared, all users that make AR (after noticing that
at least one server is available) have a fixed payoff
1 − C. The expected payoff of a user that does not
make AR is equal to her probability to get service,
conditioned on the number of available servers she
observes upon her arrival.

Using similar argument as in the previous games,
one can show that all users follow a threshold strategy
at equilibrium. However, in this game, the users do
not only differ by their lead times, but also by the
number of available servers they observe. Thus, in

this case, the threshold strategy function maps two
variables, the lead time t and the number of available
servers n, to a decision AR or AR’. For each value of
n, we have a different threshold τn. More formally:

σ(t, n) =

{
AR if t > τn,
AR′ if t ≤ τn.

(7)

Users are more likely to get service when observing
more available servers. Hence, one can prove that

0 ≤ τn−1 ≤ τn ≤ 1, ∀n ∈ {2, N}. (8)

That is, if a user is better off making AR when ob-
serving n available servers, she is also better off mak-
ing AR when observing n− 1 available servers.

In order to find the equilibrium structure, we define
N virtual users. The n-th threshold user is a virtual
user with lead time equals to τn that observes n avail-
able servers. Assume that all users follow the same
threshold strategy function. In this case, the proba-
bility that the n-th threshold user gets service, if she
does not make AR, depends only on the threshold
τn. We denote this probability by πn(τn) (see [10] for
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an explicit formula). Showing that πn(τn) is a non-
increasing function of τn is sufficient to prove that,
unlike the previous games, this game has a unique
equilibrium.

To find the equilibrium, one should first check
whether πN (1) is greater or smaller than 1 − C. If
it is greater, then all users that observe N avail-
able servers are better off not making AR. Thus, the
system keeps staying with N available servers and
none-make-AR is the unique equilibrium. Otherwise,
the unique equilibrium is some-make-AR. In a some-
make-AR equilibrium, each threshold user is indif-
ferent between the actions AR and AR’. Thus, the
N thresholds are the unique solution of the set of N
equations:

1− C = πn(τn), ∀n ∈ {1, ..., N}. (9)

To illustrate the equilibrium, consider a game with
N = 6 servers, a Poisson distributed demand with
mean λ = 6 and an AR cost C = 0.15. To find
the equilibrium strategy, we first check which type of
equilibrium the game satisfies. Since C < 1−π6(1) =
0.16, we determine that the game has a some-make-
AR equilibrium. We then solve Equation (9) and
get that the unique solution is {τ1 = 0.056, τ2 =
0.213, τ3 = 0.395, τ4 = 0.584, τ5 = 0.777, τ6 = 0.973}.

Due to the complexity of the equilibrium structure
(each equilibrium consists of N thresholds instead
of one), finding a closed-form expression for the ex-
pected number of reservations is challenging. Thus,
in order to determine which information sharing pol-
icy maximizes the number of reservations, we resort
to simulations.

We consider two systems, both withN = 10 servers
and Poisson distributed demand. In the first system,
λ = 10, while in the second system λ = 12. In each
system, we consider AR costs between 0.01 and the
highest cost that yields a some-make-AR equilibrium.
For each combination of mean demand and cost, we
derive the equilibrium strategy function.

We then run 10, 000 simulations for each combi-
nation using the corresponding equilibrium strategy
function. Figure 4 shows that, for each combination
of AR cost and mean demand, the average number of
reservations is higher when no information is shared.

Figure 4: The number of reservations as a function of
the AR cost in a system with N = 10 servers. Hid-
ing information about the number of servers available
brings more users to make advance reservation, on
average.

The simulation results also indicate that the gap
between the outcomes of the two different informa-
tion sharing policies increases with the AR cost.
When the cost is low, the motivation to make reser-
vations is high and almost all servers are reserved,
regardless of the policy. As the reservation cost in-
creases, the gap becomes more significant. For ex-
ample, consider an AR cost C = 0.12 and an average
demand λ = 10. In this case, the average number
of reservations when the information is not shared is
more than 10 times higher than when the information
is shared.

Impact of Learning

The AR games analyzed so far assume that all users
follow an equilibrium strategy. To relax this assump-
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tion, we study a dynamic version of the game, in
which users initially follow an arbitrary threshold
strategy. Our goal is to find whether the system con-
verges to an equilibrium or cycles. If it converges
and multiple equilibria exist, we wish to find to which
equilibrium the system converges.

In dynamic games, the game repeats many times.
At each iteration, players update their strategies, af-
ter observing the actions of players at previous itera-
tions. Different learning models differ by the types of
historical data players obtain throughout the game.
They also differ by the way the players estimate the
strategies that will be followed by the rest of the play-
ers.

We next focus on best response dynamics. In this
type of learning, the players observe the actions made
by other players in the previous iteration and assume
that the other players will not change their strategy
in the current iteration.

Most of the literature assumes that the same set
of players participate at each iteration. However, in
the framework of AR games, this assumption does
not hold. Thus, we assume that a new set of play-
ers participate in each iteration. At each iteration,
users are informed about the fraction of users that
did not make AR in the previous iteration. Users ex-
ploit this information to estimate the threshold strat-
egy followed in the previous iteration. Each user then
chooses an action that maximizes her own expected
payoff, assuming that she is the only one deviating
from the estimated threshold strategy.

One can show that the best response of each user
to an arbitrary threshold strategy is also a threshold
strategy. Thus, we can define a joint best response
function that describes the actions of all users to a
given threshold estimation. We denote the threshold
followed at iteration i by αi and its estimator by α̂i.
We denote the joint best response function by BR(·).
The dynamic process is then given by:

αi = BR(α̂i−1). (10)

By studying this dynamic process, one can show
that [11]:

• If the game has a unique some-make-AR equilib-
rium with threshold τ , then the game does not

converge to an equilibrium. Instead, it cycles in
the range [0, τ ].

• If the game has multiple equilibria including a
none-make-AR equilibrium, then it is guaran-
teed to eventually converge to the none-make-
AR equilibrium.

From the result above, we deduce that if the AR
cost corresponds to a fee charged by the provider,
then the provider is better off being risk-averse (i.e,
to charge a low fee with guaranteed revenue).

Figure 5 illustrates the convergence process in a
system with N = 10 servers, a Poisson distributed
demand with mean λ = 10 and reservation cost C =
0.215. The system has three equilibria: τ = 0.29,
τ = 0.53 and τ = 1. Starting with α̂i = 0, (i.e.,
initially all users make AR), the dynamic threshold
α̂i cycles for some period of time, but eventually con-
verges to the equilibrium τ = 1 (i.e., none of the users
makes AR). If τ = 1 were not an equilibrium, then
the system would keep cycling and yielding positive
revenue for the provider.

Conclusions and Future Work

In this article, we propose a game-theoretic frame-
work, called AR games, to study the behavior of users
in systems that support advance reservations. Using
this framework, we obtain several insights that can
serve as guidelines in the design of AR systems.

In particular, we show that all Nash equilibria are
of threshold form. Only users with lead time greater
than the threshold make AR. Hence, two types of
equilibrium prevail: some-make-AR and none-make-
AR.

The analysis of dynamic AR games shows that a
provider aiming at maximizing his revenue is likely
to end up with no revenue, if a none-make-AR equi-
librium exists for the same AR fee. Thus, a provider
should rather opt being risk-averse in that case.

We also show that it is in the best interest of the
provider to charge AR fees only from users granted
services, and not to inform users about the number
of servers available.

This work opens several areas for future research.
For instance, one open question is how to incorporate
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Figure 5: An illustration of a dynamic game [11]. If the game has a none-make-AR equilibrium, then
eventually, the strategy of the users converges to it.

re-trials by users not granted service. The analysis
of a system with re-trials is complex due to the de-
pendencies of the demand across different time slots.
The model could also be generalized to allow users
to reserve multiple servers in one slot or to reserve
servers across multiple slots. Another challenge is to
find dynamic pricing schemes that would increase the
revenue of the provider, especially when users have
information about server availability. The framework
of AR games should prove useful in exploring all these
interesting problems.
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