SDR-based PHY Characterization of
Zigbee Devices

Stefan Gvozdenovic
Electrical & Computer Engineering
Boston University
Boston, MA, USA
tesla@bu.edu

Abstract—We demonstrate characterization of Zigbee devices
at the physical layer using commodity software-defined radio
(SDR) hardware and an open-source software testbed setup.
Using this testbed, we run different types of experiments to
characterize and distinguish between the performance of four
Zigbee devices. Receiver sensitivity experiments show that the
devices exhibit differences of up to 2-3 dB in terms of their
reception capability. Interframe spacing and capture experi-
ments demonstrate the ability to conduct fine-grained timing
experiments, craft multi-packet transmissions, and derive device-
specific reception curves. The results of this paper complement
previous work on Wi-Fi and illustrate the flexibility of our SDR-
based testbed to serve as as a cross-protocol evaluation platform.

Index Terms—benchmarking, wireless, physical layer, capture
effect, Internet of Things

I. INTRODUCTION

Zigbee, based on the underlying IEEE 802.15.4 standard [1],
has emerged as a popular protocol for the Internet of Things
(IoT) [2]. The protocol has been widely adopted for smart
home and building automation purposes as well as Industrial
IoT (IIoT) use cases, such as sensor networks in construction
and energy.

Typically, users rely on vendor-provided gateways to com-
municate with Zigbee devices. As a result, users have limited
direct insight into communication happening between Zigbee
devices. Direct monitoring of device communication is possi-
ble in specialized laboratories, but usually requires expensive
testing equipment. Consequently, direct performance compar-
isons of chipsets from different vendors are hard to come by
and not easy to generate.

We propose a commodity hardware-based, low-complexity
testing setup that not only allows for direct communication
with Zigbee devices, but also supports physical layer char-
acterization of said devices. This work makes the following
contributions:

o We present a desktop-sized experimental setup for mea-
suring Zigbee’s physical layer performance, which is low
in complexity and cost.

e We demonstrate the measurement capability of our
testbed by showing high-resolution differences among
commercial Zigbee devices in terms of reception sensi-
tivity.

Johannes K Becker
Electrical & Computer Engineering
Boston University
Boston, MA, USA
jkbecker @bu.edu

David Starobinski
Electrical & Computer Engineering
Boston University
Boston, MA, USA
staro@bu.edu

RX PC
_Probe Frame RX SDR .
i s b =<1
4 ” usB
Target Response? N f
Devi usB
evice TX SDR TX PC

Fig. 1: The SDR instrument controlled by the Host computer
communicates bidirectionally with a device under test (DUT),
sending probe frames and collecting acknowledgements from
the DUT.

e We conduct receiver capture and interframe spacing ex-
periments that allow us to clearly distinguish between the
behavior of the devices, as well as fingerprint the chipsets
on which they are based.

The rest of this paper is organized as follows: In Section II
we describe our experimental setup. In Sections III and IV
we explain our methodology and define the experiments
conducted in this work, followed by a result discussion in
Section V. Section VI discusses related work, and finally
Section VII concludes our paper and presents some avenues
for further work.

II. EXPERIMENTAL SETUP

The experimental testbed contains both a hardware setup,
shown in Figure 1, and a software setup. The hardware setup
is comprised of three main components:

e Two USRP B210 software-defined radios (SDRs): one to
transmit to the device under test (DUT) and another to
receive communication from the DUT.

e A host computer controlling the SDR instruments.

o A Zigbee device under test (DUT).

The software system is built on top of GNU Radio [3]
and the gr-802154 library [4]. It is comprised of three main
components:

o A transmission (TX) flowgraph that generates Zigbee
packets which are transmitted to the DUT.

e A receive (RX) flowgraph that parses incoming com-
munication from the DUT, and stores the recovered
information into a packet capture (PCAP) file.

e A post-processing script that reads the PCAP file and
calculates the necessary statistics from it.

All experiments are conducted inside a Ramsey STE3500
RF Test Shielded Enclosure [5] to prevent external signals
from interfering with the experiments. To ensure reproducible
measurements and portability of the experimental software
setup across different host computers, we run all measurements
inside a custom made Docker container. Finally, we use
Scapy [6] to craft Zigbee frames.

I[II. METHODOLOGY

Measuring reception rates of smart home devices in a
realistic setting without interfering with their normal behavior
and without disassembling them to gain access to debugging
ports such as the Cree lightbulb teardown [7] poses challenges
to the experimental methodology. Typical consumer-grade IoT
devices are tightly integrated and typically do not expose any
ports for debugging or programmatic interface with the device
outside of their intended application-level usage.

Without access to any invasive methods, our experimental
results only rely on a device returning some frame type over
the air (such as an acknowledgement or a beacon response).
Thus, for each DUT, we first determine how a response can
be triggered by subjecting the device to various frame types.

We found out that DUTs respond either with a Beacon-type
message or an Acknowledgement (ACK) to a specific type of
probe frames. The device-specific type of probe frame and
typical response is listed in Table I in the columns Probe
Frame and Response. While both of these response types
indicate successful reception of the incoming request, only
ACKs contain the sequence number of the corresponding
Beacon (or Association) request. Thus, if the listening SDR
records an ACK with a specific sequence number, that means
that a beacon/association request with the same sequence
number was successfully received by the DUT. In cases where
a DUT responds with both an ACK and a beacon (such as the
Ikea bulb), we base our statistics on the received ACK.

IV. EXPERIMENTS

We run experiments against four Zigbee-based devices.
Table I shows the list of devices that were tested. Apart from
the EFR32 development board, the other tested devices are
common smart home appliances.

A. Receiver Sensitivity

The first experiment characterizes the relative receiver sensi-
tivity of different devices subjected to a range of probe frames
with different signal strengths. The signal is varied over a
range spanning four orders of magnitude to determine the
threshold at which each device can receive packets success-
fully. At every power level, the same packet is sent 100 times,
and responses are collected via the RX flowgraph. To ensure
equal path loss, we placed the SDRs and each of the DUTs
at an equal distance.

B. Shortest Supported Interframe Spacing

The goal of this experiment is to characterize how fast a
device can return to the receiving state after processing an
incoming packet (that is, receiving and acknowledging the
packet). Toward this end, we send two packets of the same
type/length/gain spaced by different offsets. The initial offset
is zero, which means the packets are sent with no gap between
them (back-to-back). Then, the offset is incremented in steps
that are multiples of 250us until we receive both packets
reliably. To know which of the two packets are received, we
capture the corresponding acknowledgements. We can always
differentiate between the two packets using their sequence
numbers. For every offset step of 250us, we perform 100 test
trials. Test trials are spaced 200ms apart and have their own
sequence number.

We expect four types of results from these experiments:

1) The receiver cannot process either packet if the packets
are sent too quickly one after the other;

2) The receiver processes the first packet, but is unable to
receive the second packet;

3) The receiver only successfully processes the second
packet;

4) The receiver successfully processes both packets.

C. Capture

A packet capture occurs when reception of a packet with
weak power is interrupted in favor of a packet with stronger
power. To measure the capture effect, we generate two com-
peting packets and emulate their collision in the transmission
flowgraph at various offsets of signal overlap (an approach
similar to [8], [9]). The signal strengths of both signals and
their offsets in time are tightly controlled relatively to each
other, such that the first packet is weaker than the second
packet by 20 dB. Then, the acknowledgements of both frames
are counted to estimate the corresponding reception rates,
as described in Section III. This experiment is similar to
the interframe spacing experiment in that the two frames
are sent with different sequence numbers. However, the key
difference is that: (a) the gains of the two packets are not
equal anymore, (b) the initial offset is when the two frames
are fully overlapping; the final offset is when two frames are
sent with no gap between them (i.e., back to back). The offset
is incremented in steps that are multiples of 250us. For every
offset step of 250us we perform 100 test trials. Test trials are
spaced 200ms apart and have their own sequence number.

V. RESULTS

A. Receiver Sensitivity

Results of the receiver sensitivity experiments are shown in
Figure 2. We notice a difference of about 2.5dB between the
most sensitive device and the least sensitive one. Devices that
use the EFR32 chipset show sensitivity within 1dB, but they
are still distinguishable by the experimental setup.

TABLE I: Tested IEEE 802.15.4 devices.

Make [FCCID] System [Probe Frame [Response
Microchip ATSAMR21G18A 2ACQ6-A19 CREE Lightbulb A19 Association Request Ack
SiliconLabs EFR32™ FHO-ICC-A-1 IKEA LED1732G11 Beacon Request Beacon & Ack
SiliconLabs EFR32™ FHO-E1526 IKEA TRADFRI Gateway Beacon Request Beacon & Ack
SiliconLabs EFR32™ N/A EFR32™ Mighty Gecko Wireless Starter Kit (WSTK) Beacon Request Ack

100
80
S
9]
£ 60
o
c
i
S 40
3
§ —&— Microchip (Cree)
204 —%¥— SiliconLabs (IKEA LED)
—@— SiliconLabs (IKEA Hub)
—&— SiliconLabs (WSTK)
a -

-56 -55 —54 -53

Signal gain Gs (dB)

-58 -57
Fig. 2: Receiver sensitivity experiments. Devices based on
the SiliconLabs EFR32-based chipset exhibit a more sensitive
reception than the Cree device based on the Microchip-
based chipset. Shaded areas around the curves represent 95%
confidence intervals.

B. Shortest Supported Interframe Spacing

Results of the interframe spacing experiments are shown in
Figure 2. The point at which the reception rate starts rising
indicates the shortest interframe spacing between the probe
frames of the corresponding devices. This interframe spacing
includes the first packet’s processing time as well as the time to
send the corresponding ACK frame. If the gap between frames
is shorter than the shortest supported interframe spacing, the
transmission of the ACK of the first frame collides with the
reception of the second frame, which corrupts them both.
Hence, the offset at which the reception rate starts rising can be
estimated as the following sum: (a) the length of the first frame
(512us for beacon request or 864us for association request);
(b) the processing time of the first frame (measured with the
Universal Radio Hacker (URH) software [10]); and (c) the
length of the acknowledgement frame (352us). Hence, the the
estimated rise offset is 864 + 190 + 352 = 1406us for the
Cree, 512 + 250 + 352 = 1114pus for the Ikea light bulb and
hub, and 5124704352 = 934 us for the EFR32 development
board. Our experimental results shown in Figure 2 are in line
with these estimations.

C. Capture

Results of the capture experiments are shown in Figure 4.
The reception rate of the stronger frame is near 100% for
low offsets (close to zero) and high offsets (close to the
frame length). At offsets ranging from O to 128us, the frames’
preambles collide. The weaker first frame, at a power level
which would normally allow its reception, is not received.

Instead, a preamble capture effect occurs whereby the radio
locks on to the second, stronger frame.

Yet, once the radio locks on to the first frame’s preamble
and starts decoding, the second frame is not captured as shown
by the 0% reception rate in the middle range of the graph.
At the end of the tested offset range, however, the second
frame is captured again. The length of the middle offset range
presumably indicates the turnaround time of the radio state
machine.

VI. RELATED WORKS

Speers et al. introduced a physical layer testbed called
Isotope for IEEE 802.15.4 devices capable of crafting cus-
tom preambles and manipulating the header in non-standard
ways [11]. In 2018, Knight and Speers presented an RF
fuzzing tool based on Isotope which allows access to physical
layer modifications using a USRP B210 software-defined
radio setup [12]. They modify the existing gr-ieee802-15-4
library [4] to produce arbitrary preamble sequences to test
their impact on devices under test. While we do not fuzz
802.15.4 preambles, our work synthesizes multiple packets
into one precisely configured signal which can be sent out.
This allows for physical layer testing not unlike fuzzing, but
more focused on receiver behavior in the presence of multiple
transmissions.

Xin et al. introduced a testbed based on commodity hard-
ware which allows for physical layer wireless testing of Wi-Fi
devices using SDR instruments [8], [9]. We generalize the
methodology used in that work to the Zigbee protocol and
perform both similar as well as entirely different tests on
Zigbee devices. In contrast to this previous work, the Zigbee
testing setup uses both TX and RX capabilities of the testbed
to collect statistics, whereas Xin et al. controlled the DUT
directly as a means to capture traffic and collect statistics.

VII. CONCLUSION

This work presented a testbed setup to measure PHY
layer performance over-the-air of arbitrary commercial Zigbee
devices. In contrast to prior work on Wi-Fi [8], [9], the testbed
does not require any physical control over the tested devices.
Therefore, this work could be further extended into more
offensive testing scenarios such as denial of service or fuzzing-
based approaches. The testbed could also be extended to IoT
devices using other wireless protocols.

ACKNOWLEDGMENT

The authors would like to thank John Mikulskis for his
contributions to Snout [13] which informed the experimental
setup used in this work. This work was support in part by

=
o
o

[——-— e —

~@— Microchip (Cree) P1
=% - Microchip (Cree) P2

Reception rate (%)
[0}
o

0 = el / T T
0.0 0.5 1.0 1.5 2.0 2.5
Interframe spacing (ms)

(a) Microchip (Cree)

— 100 ——w=_ =
>
£
E 50 4 —8— SiliconLabs (IKEA Hub) P1
k) —-#- SiliconLabs (IKEA Hub) P2
45_ /
]
)
SR == S N— . .
0.0 0.5 1.0 1.5 2.0 2.5

Interframe spacing (ms)

(c) Ikea Hub

Reception rate (%)

Reception rate (%)

100
50 + SiliconLabs (IKEA LED) P1
—& - SiliconLabs (IKEA LED) P2
I,
Il
0f=sa ~ . .
0.0 0.5 1.0 1.5 2.0 2.5
Interframe spacing (ms)
(b) Ikea LED
100 g ——F—
50 -) —A— SiliconLabs (WSTK) P1
A -#- SiliconLabs (WSTK) P2
I’
1
o
0 Fchmmgeeed . .
0.0 0.5 1.0 1.5 2.0 2.5

Interframe spacing (ms)

(d) EFR32 WSTK

Fig. 3: The shortest supported interframe spacing experiments show how fast a device can return to a receiving state. Each
device shows a clear minimum interframe spacing time at which it is capable of receiving a second packet. Furthermore, the
reception rates were measured to stay at 100% until interframe spacing reaches 10ms. P1 and P2 indicate ACKs for the first

and second packet, respectively.

100

80

60 —&— Microchip (Cree)
—¥— SiliconLabs (IKEA LED)
—8— SiliconLabs (IKEA Hub)
40 1 —— SiliconLabs (WSTK)

Reception rate (%)

20

0 100 200 300 400
Interframe spacing (us)

Fig. 4: Reception rates of the stronger (second) frame. The
reception rate of the weaker (first) frame is zero throughout
the measured range, hence is not shown.

NSF under grants CNS-1409053 and CNS-1908087, and by
an Ignition Award from Boston University.

REFERENCES

[1] IEEE Standards Association, 802.15.4-2015 - IEEE Standard for Low-
Rate Wireless Networks, IEEE, Ed., New York, New York, USA, 2015.

[2] Market Research Future, “ZigBee Market Research Report - Forecast
to 2023,” Market Research Future, no. May, 2020. [Online]. Available:
https://www.marketresearchfuture.com/reports/zigbee-market-2617

[3] E. Blossom, “GNU radio: tools for exploring the radio frequency
spectrum,” Linux journal, vol. 2004, no. 122, p. 4, 2004.

[4] B. Bloessl, C. Leitner, F. Dressler, and C. Sommer, “A GNU Radio-
based IEEE 802.15.4 Testbed,” in 12. GI/ITG KuVS Fachgesprich

[5

=

[6

=

[7]

[8

—

[9]

[10]

(11]
[12]

[13]

Drahtlose Sensornetze (FGSN 2013), Cottbus, Germany, sep 2013, pp.
37-40.

Ramsey Electronics, “STE3500,” 2019. [Online]. Available:
http://www.ramseyelectronics.com/product.php?pid=14

SecDev, “Scapy. packet crafting for python2 and python3.” [Online].
Available: https://github.com/secdev/scapy

J. Hobson, “Repurposing iot lightbulb chip for anything,” 2015.
[Online]. Available: https://hackaday.com/2015/02/15/repurposing-iot-
lightbulb-chip-for-anything/

L. Xin, J. K. Becker, S. Gvozdenovic, and D. Starobinski, “Benchmark-
ing the physical layer of wireless cards using software-defined radios,”
in Proceedings of the 22nd International ACM Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems, 2019, pp. 271—
278.

J. K. Becker, S. Gvozdenovic, L. Xin, and D. Starobinski, “Testing
and Fingerprinting the Physical Layer of Wireless Cards with Software-
Defined Radios,” Computer Communications, 2020, accepted.

J. Pohl and A. Noack, “Universal Radio Hacker: A Suite
for Analyzing and Attacking Stateful Wireless Protocols,” in
12th USENIX Workshop on Offensive Technologies (WOOT 18).
Baltimore, MD: USENIX Association, 2018. [Online]. Available:
https://www.usenix.org/conference/woot18/presentation/pohl

R. Speers, T. Goodspeed, and I. R. Jenkins, “Fingerprinting IEEE
802.15.4 Devices with Commodity Radios,” pp. 1-7, 2014.

M. Knight, “Designing RF Fuzzing Tools to Expose PHY Layer Vul-
nerabilities,” in GNU Radio Conference 2018, 2018.

J. Mikulskis, J. K. Becker, S. Gvozdenovic, and D. Starobinski, “Snout:
An Extensible IoT Pen-Testing Tool,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. New
York, NY, USA: ACM, nov 2019, pp. 2529-2531. [Online]. Available:
https://dl.acm.org/doi/10.1145/3319535.3363248

