
Prioritized Data Synchronization for
Disruption Tolerant Networks

Jiaxi Jin, Wei Si, David Starobinski, Ari Trachtenberg
Dept. of Electrical and Computer Engineering

Boston University
jin@bu.edu, weisi@bu.edu, staro@bu.edu, trachten@bu.edu

Abstract—We consider the problem of synchronizing priori-
tized data on two distinct hosts in disruption-tolerant networks
(DTNs). To this effect, we propose and analyze a new interactive
protocol for priority-oriented synchronization, called P-CPI,
that is especially efficient in terms of bandwidth usage. This
middleware protocol has features that are particularly useful for
DTN routing in constrained or tactical environments, including
(i) communication and computational complexity primarily tied
to the number of differences between the hosts rather than
the amount of the data overall and (ii) a memoryless fast
restart after interruption. We provide a novel analysis of this
protocol, substantiating a high-probability performance bound
and memoryless fast-restart in logarithmic time. As a proof of
concept, we demonstrate improved delivery rate and reduced
metadata and average delay in a DARPA-supported DTN routing
application called RAPID.

I. INTRODUCTION

A. Background

In disruption-tolerant networks (DTNs), also known as
delay-tolerant networks, mobile nodes (not only end-systems)
experience sporadic connectivity access to the rest of the
network [1]–[3]. Examples of such networks include those
operating in tactical environments, where disruptions occur
due to the lack of infrastructure.

One of the key issues in DTNs is how to route a packet
towards its destination when, at any given point of time, the
network is not fully connected. In order to speed up delivery
and ensure reliability, it has been suggested that the same
packet should be transferred to several different nodes, thus
creating several replicas (see, e.g., [3], [4]).

The problem with the replication approach is that the
number of replicas can potentially become very large, thus
wasting precious communication and storage resources and
severely degrading performance [4]. Within such a context,
a communication-efficient data synchronization protocol is
essential to ensure that nodes exchange only the replicas that
they do not already possess.

Furthermore, due to the limited bandwidth (and time) avail-
able at each meeting, two nodes may only be able to exchange
a subset of their differing packets. In such cases, it is critical
that highest priority data be forwarded first. Thus, several DTN
protocols [4], [5] assign priorities to packets based on metadata
information, such as packet importance, delivery deadlines,
and statistics of inter-meeting times between different pair of

nodes. In essence, packets with higher priority are transmitted
first. However, these works do not explicitly address the
problem of how to efficiently reconcile the data sets of the
two hosts.

B. Contributions

In this paper, we propose a new synchronization middleware
for reconciling two remote prioritized sets of data in DTNs,
based on a protocol called Priority-based Characteristic Poly-
nomial Interpolation (P-CPI). We conduct a worst-case and
high-probability analysis of P-CPI and prove that if the number
of differences between the data sets of two hosts is m, then
both the communication complexity and the computational
complexity are O(m logm) with high-probability (i.e., with
probability approaching one as m gets large). Further, we
prove that P-CPI can be stopped and restarted with minimal
overhead, meaning there is no need to keep state information
between any two meetings, and we derive bounds on the
computational overhead of such restarts. Finally, as a proof
of concept, we demonstrate P-CPI as a synchronization mid-
dleware, for the RAPID DTN routing protocol [4]. Simulations
for typical DTN settings demonstrate the potential of sizable
improvement for various performance metrics, including meta-
data overhead, delay and delivery rate.

C. Related Work

The literature offers several approaches for data synchro-
nization, although we wish to stress that none of them appear
to consider prioritization for their data. The most related work
to our synchronization algorithm are based on mathematical
synchronization of data [6]–[9], which are described in detail
in Section II. The work in [7] describes the approach of char-
acteristic polynomial interpolation, which has nearly-optimal
communication complexity, and [8] outlines an interactive
scheme for synchronization together with a worst-case and
average-case analysis. Our work contributes a high-probability
analysis of the communication complexity, which is shown to
coincide with the average-case performance.

Next, we briefly discuss related work in DTN routing. The
RAPID [4] DTN routing protocol, which serves as our proof
of concept example, can be configured to minimize average
packet delay, maximize average delivery rate and minimize
the maximum delay of all packets. Nodes prioritize packets

2

by their utility functions, which are calculated in terms of
these metrics. Experiments in [4] show that under conditions
such as high packet generation rates and small packet sizes,
the fraction of metadata sent may be quite significant. This
fact motivates us to propose schemes to efficiently manage the
exchange of such metadata. Based on the same testbed, a pri-
oritized DTN routing protocol MAXPROP [10] is established
and tested; in this protocol, prioritized packet transmission
is based on history and saved intermediate results, but this
requires additional memory and therefore only works well for
relatively static network.

PREP [5] is another routing protocol that prioritizes packets,
according to the estimated cost from the current node to the
destination. Transmission cost is estimated between each pair
of nodes. In this manner, the network is seen as a graph. The
utility function of a packet is equivalent to the cost of the
shortest path in the graph (based on the information available
at the node). In PROPHET [2], each node keeps a vector of
delivery predictability, one entry for each destination. A node
decides to transfer a packet to the other node if the delivery
predictability of the destination of the packet at the other node
is higher than its own. The metadata exchanged include the
vectors of delivery predictability.

Finally, in gossip-based protocols, each node maintains
a partial view of the system and forwards messages to a
relatively small set of nodes, known as “partners”, chosen
randomly out of the entire membership. The reliability of the
protocol depends upon some critical properties of these views,
which may need to be synchronized by priority. Research
in [11] proposes a gossip protocol for transmitting messages
with two priorities to ensure high level of reliability even in
the presence of high rates of node failure. Priority issues are
also relevant in real-time synchronization [12] and distributed
computing [13].

D. Outline

The rest of this paper is organized as follows. Section II
provides abstract descriptions of Characteristic Polynomial
Interpolation (CPI)-based approaches [7]–[9] to data synchro-
nization, which are the building blocks of our protocol, and
then presents our new protocol. We describe the Priority-
based CPI (P-CPI) algorithm to handle partial and priority-
based synchronization and conduct a detailed analysis of its
performance. Section III discusses the implementation of P-
CPI into RAPID and shows simulation results. Section IV
concludes the paper.

II. PRIORITIZED SET RECONCILIATION

A. The set reconciliation problem

The basic model of the reconciliation problem is as follows.
A local host A and another remote host B possess sets SA and
SB respectively. While neither of hosts is assumed to know
the contents of the other host’s set in advance, their goal is
to compute the symmetric difference between two sets using
minimum amount of communication. The symmetric difference
of sets SA and SB is defined as the set of elements which are

in either of the sets but not in their intersection, i.e., SA⊕SB =
(SA−SB)∪(SB−SA). For the purpose of analysis, we assume
that the elements of the sets are all b-bit numbers (in practice
this can be done by hashing), which bounds the size of the
symmetric difference between two sets to 2b elements.

B. CPIsync

The work in [7] presents a Characteristic Polyno-
mial Interpolation-based synchronization algorithm (dubbed
CPIsync [14]) that translates the set reconciliation problem
into the problem of rational function interpolation. More pre-
cisely, given two sets of b-bit numbers SA and SB respectively,
this algorithm can synchronize the two sets using one message
of SA ⊕ SB samples. The algorithm is only logarithmically
dependent on the sizes of the sets (i.e., its complexity is
proportional to b). Thus, two data sets could each have millions
of entries, but if they differ in only m of them, then each
set can be synchronized with the other by a single round
communication using one message whose size is about that
of mb bits (i.e. the number of differences multiplied by the
number of bits per set element).

The characteristic polynomial of set S = {x1, x2, ..., xn}
is defined as

PS(Z) =

n∏
i=1

(Z − xi). (1)

The translation of the data into characteristic polynomials is
the key to CPIsync algorithm. During the synchronization, one
host sends sampled values of its characteristic polynomial to
the other host; the number of samples must be at least as
many as the number of symmetric differences (i.e. m) between
the two hosts. The second host then computes the differing
entries by interpolating the rational function corresponding
to the ratio of the two characteristic polynomials from the
received samples.

CPIsync requires hosts to have a bound m̄ on the number
of symmetric differences m between sets SA and SB to know
how many samples must be communicated between them. In
other words, one is assured to recover the symmetric difference
of size |SA ⊕ SB | if it is no larger than m̄.

Protocol CPIsync(SA, SB , m̄): Set Reconciliation for
SA and SB with at most m̄ differences.
1. Each host evaluates its characteristic polynomial

at m̄ sample points.
2. Host A sends the m̄ evaluations of SA to Host B.
3. By characteristic polynomial interpolation, host B

computes the set differences, ∆A = SA − SB and
∆B = SB − SA.

4. Host B sends the result back to Host A.

As given in [7], CPIsync has a communication complexity
of Θ(m̄b). The main bottleneck of CPIsync is its computation
complexity, which is Θ(bm̄3+bmk), cubic in the upper bound
m̄. This computation cost would be unnecessarily expensive

3

when the upper bound guess m̄ on the symmetric difference
m is conservative (i.e. m̄� m).

C. Protocol: Priority CPI (P-CPI)

In this section, we propose a new protocol, called Priority-
based CPI (P-CPI), to support efficient prioritized data syn-
chronization in DTNs. P-CPI uses a “divide-and-conquer”
approach to handle prioritization (a similar approach named
I-CPI, essentially the same data structure yet with no pri-
ority, appeared in our previous work [8]). More precisely,
in P-CPI, set elements are first split by priority, then the
synchronization runs on each pair of subsets in decreasing
order of priority, which guarantees that the limited network
bandwidth is first used for data entries with high priority. If
the number of elements of same priority is too large for a
single CPIsync to solve, recurring partition based on number
field are performed until CPIsync succeeds on every paired
subsets. The partitioning process of the original set can be
symbolized by a data structure so-called partition tree, in
which each node represents a (sub)set of elements, and the
process of synchronization is essentially a depth-first traversal
on a partition tree .

D. Worst-case analysis

Our analysis on P-CPI makes use of some common notation.
First of all, our set elements are represented by b-bit vectors.
The difference bound m̄, is the designed upper bound of the
size of the symmetric difference that can be determined by one
call of CPIsync. Similarly, the partition factor p represents the
number of children that an internal node of our partition tree
can have. The priority ratio η is the ratio of the number of
differences (between the two sets being synchronized) that are
at high priority to the total number of differences. If there are
more than two priorities in the system, η represents the ratio of
number of differences with priority above a given threshold to
the total number of differences. Note that η = 1 for the worst
case when all the differences are of high priority and need
to be synchronized. Finally, I(ηm) is the overall number of
invocations to CPIsync during the execution of P-CPI on two
sets with ηm symmetric differences.

The following Lemma provides a worst-case upper bound
on the number of CPIsync calls by P-CPI.

Lemma 1: For P-CPI to synchronize two sets with m sym-
metric differences, the number of invocations of CPIsync is
bounded by

I(m) ≤ 1 +
m

m̄
pdlogp(2

b)e (2)

Proof: The work in [8] bounds the number of invocations
of CPIsync by

I(m) ≤ 1 +
m

m̄
pdlogp se (3)

as the worst-case condition for I-CPI, where s stands for set
size. Substituting s = 2b gives the desired bound.

Given that Θ(bm̄3 + bmk) is the computation complexity
of CPIsync [7], multiplied by (2) we attain the worst-case
computation complexity of P-CPI as Θ(mm̄2b2 p

logp).

Similarly, the worst-case communication complexity of P-
CPI is Θ(m p

log pb
2) given that the communication complexity

of CPIsync is Θ(mb).

E. High-probability analysis
In this subsection a new probabilistic analysis shows the

number of CPIsync invocations is O(ηm log(ηm)) with high-
probability. Since a set element can be represented by any b-bit
string, we assume a uniform-random distribution of the sym-
metric differences between sets, which is so implemented by a
pseudo-random hashing of the data before the synchronization.
Based on this assumption, we derive a high-probability bound
on the number of CPISync calls by P-CPI. The analysis
resembles that of quicksort [15], but the partitioning process
of the tree is different, thus requiring a different analysis.

Theorem 1: For P-CPI to synchronize two sets with ηm
uniform-randomly distributed differences in total, the number
of calls to CPIsync is O(ηm log(ηm)), with probability at

least 1− 1

ηm
.

Proof: Let m′ = ηm and, for the sake of exposition, let
the partition factor p = 2. Other partition factors would simply
change the base of our logarithms in the proof, and would not
affect the conclusion.

In a binary partition tree, choose any root-to-leaf path P .
Consider a node good if the partition made at the node results
in two subsets, each with at least one third of its differences
before partitioning. Otherwise we consider the node bad. If a
root-to-leaf path in a partition tree contains t good nodes, then
as we go through it, the number of symmetric differences at
the t-th good node (denoted m′t) can be bounded as

m′t ≤
2

3
m′t−1 ≤

(
2

3

)t
m′0 (4)

since a good partition reduces the number of differences
contained by the current space to at most 2/3 of what is in
the last good node.

It follows that there can be at most

t ≤ log2m
′

log2

(
3

2

) < 2 log2m
′ (5)

good nodes in any path.
Next, we apply the Chernoff-Hoeffding bounds [15] to show

that
Pr
[
|P | > 4 log2m

′
]
<

1

m′2
, (6)

where |P | is the length of the chosen root-to-leaf path P ,
i.e. the sum of numbers of good and bad nodes.

Let Xi be a random variable taking the value 1 if the ith
node is bad, or 0 if it is good. The number of differences
contained by the set at ith node is denoted si. Since a node is
considered good when the number of differences it represents,
si, satisfies si−1/3 ≤ si ≤ 2si−1/3, we have:

Pr
[
Xi = 1

]
= 1−

2si−1/3∑
j=si−1/3

(
si−1
j

)
2si−1

≤ 2

3
. (7)

4

By our assumption made at the beginning of the subsection,
all the Xis are independent due to the uniform-random distri-
bution of symmetric differences. Let X be the total number

of bad nodes in the path P , according to (7), E[X] ≤ 2

3
|P |.

Using the Chernoff bound, for t > 4e|P |/3 ≥ 2eE[X],

P r
[
X > t

]
≤ 2−t ≤ 2−2 log2m

′
=

1

m′2
, (8)

provided that |P | ≥ 3

2e
log2m

′.
Since |P | = X + t by definition, from (5) and (8) we have

Pr
[
|P | > 4 log2m

′
]

= Pr
[
X + t > 4 log2m

′
]

≤ Pr
[
X > t

]
≤ 1

m′2

(9)

provided that |P | ≥ 3

2e
log2m

′. Note that Pr
[
|P | >

4 log2m
′
]

is trivially zero when |P | < 3

2e
log2m

′, therefore
(6) holds for any |P |.

Thus, the total number of good and bad nodes along any
root-to-leaf path does not exceed 4 log2m

′ with probability at
least 1− 1

m′ . This claim then follows from the union bound:

Pr
[
∃P, |P | > 4 log2m

′
]
≤

mPr
[
|P | >4 log2m

′
]
≤ 1

m′
.

(10)

Since CPIsync called at each leaf node determines at least
one symmetric difference, the number of leaf nodes in a
partition tree is O(m′), which is the same as the number of
root-to-leaf path. So the overall number of calls of CPISync,
I(m′), is:

I(m′) ∈ O(m′ logm′) (11)

with probability at least 1− 1

m′
Once again, by multiplying number of CPIsync invocations

in the high-probability case with CPIsync’s basic communi-
cation and computation complexity, we have that the high-
probability computation complexity of P-CPI is I(m′)Θ(bm̄3+
bmk) ∈ O(ηmb(m̄2 + k) log(ηm)) and the high-probability
communication complexity of P-CPI which is I(m′)(m̄b+2) ∈
O(ηmb log ηm) both with probability at least 1− 1

ηm .
For comparison purpose, we assume that m̄ and p are con-

stants given a-priori. Thus the number of CPIsync invocations
is O(mb) in the worst-case and O(m logm) in the high-
probability case. Since m cannot succeed 2b by definition, and
in practice m� 2b is most likely the case, we then conclude
that, in many applications, the high-probability performance
of P-CPI is markedly better than its worst-case complexities.

F. Restarting interrupted P-CPI

Provided the fact that nodes in DTNs often suffer from
interrupted communication, corresponding method for restart
becomes necessary. It has been proved that, in many popular

random-based mobility models such as Random Waypoint [16]
and Random Direction [17], the probability that two nodes
meet again within a short time period after their last separation
is fairly high. For instance, results in [18] shows that the prob-
ability that two nodes meet again in one time slot after moving
out of range is at least 0.2. In such circumstances, a fast
restart technique to recover synchronization from interruption
can significantly improve the efficiency of the synchronization
protocol.

A commonly-used technique for restarting a synchroniza-
tion is to save the intermediate results at the interruption, and
then reload them when the synchronization process resumes.
However, in distributed systems such as DTNs, the memory
capacity at each node is usually limited and therefore not
capable of saving too many intermediate results.

P-CPI enables a memoryless fast restart of previously inter-
rupted synchronization, and no modification to the original
P-CPI is needed for this feature. By using P-CPI protocol
in a practical DTN environment with intermittent connection,
synchronization between (mobile) nodes can be restarted fast
after interruption.

The execution of P-CPI is essentially a depth-first traversal
of one or more pairs of partition trees. If the execution is
interrupted and the synchronization breaks at a certain pair of
nodes (i.e. a break pair), we can conclude that there must be
unsynchronized pair(s) at positions not earlier than the break
pair in the depth-first traversal of the same pair of partition
trees. We call a pair of nodes synchronizable if they are unsyn-
chronized and contains no more than m̄ differences. In the case
of an interruption, hosts update their databases with symmetric
differences determined before the interruption and wait for
a restart. By restarting P-CPI between the same hosts later
(assuming no new differences are added), the synchronization
will resume once it finds the first synchronizable pair in their
partition trees.

Theorem 2: The worst-case number of CPIsync calls
needed to restart synchronization between p-ary partition trees
with bit-string length b is bp.

Proof: The algorithm proceeds according to the following
flow until it finds a synchronizable pair:
• if the CPIsync call on a pair of nodes fails to find

differences, which means at least one synchronizable pair
are their descendants, then the execution proceed to the
first left child nodes of the pair;

• else if the CPIsync call returns no differences (which
means no synchronizable pair exists in their descendants)
and at least one node in the pair has a non-empty right
sibling, then the execution proceed to their (first) right
siblings,

• otherwise (when no differences are found and no right
sibling exists), the algorithm returns and reports that the
current pair of partition trees are fully synchronized.

Since a p-ary partition tree recursively partitions the field
of range 2b equally into p partitions and each leaf nodes is on
a (sub)field of range at least (some constant) m̄ differences,
the height of the partition tree is at most b. The proceeding

5

flow described above attains at most p CPIsync calls per level
(as it proceeds along p siblings). Thus the number of CPIsync
calls is at most bp.

As an concrete example, consider two sets containing one
million elements and using P-CPI with a partition p = 2. In
that case, the number of CPIsync calls needed to restart an
interrupted synchronization is (at most) 40, no matter what is
the number of differences between the two sets, how many
of these differences were previously reconciled, and the value
of the parameter m̄ used in each CPIsync call. Provided a
practical scene where we assume the number of difference
between the two million-entry sets is around 100, the average
number of CPIsync calls is less than 20 in experiment, which is
half of what it is in worst-case. Further, no special information
needs to be maintained by the nodes for P-CPI to achieve this
performance.

III. NUMERICAL RESULTS

In this section, we present numerical results illustrating the
performance of P-CPI. We also describe our implementation of
P-CPI into RAPID and report the improvements observed from
simulations. We use RAPID as a proof of concept because it is
DARPA-supported and has been shown to compare favorably
to several other DTN routing protocols.

A. Modified RAPID with P-CPI Deployed

As pointed in [4], RAPID requires a full synchronization of
metadata ahead of any packet transmission. When the size of
the metadata is large, this approach bears the risk of limiting
the amount of useful information (i.e., packets) that can be
exchanged at a meeting between two nodes. The authors of [4]
left this problem open for future work.

P-CPI provides a good strategy to address this problem.
Using P-CPI, metadata and packets with high priority are
sent first. Then, if the link is still available, lower priority
information is carried over the link. Therefore, we propose a
modified version of RAPID with P-CPI deployed. In the modi-
fied protocol RAPID-PCPI, the estimated benefit of replicating
a certain packet is calculated by the same metadata-based
utility function as in RAPID and the high or low priority of a
packet is then determined by a threshold of expected benefit.
Packets with higher expected benefit evaluations are assigned
high priority while the rest are arranged to go with low priority.
In our implementation, the numbers of low and high priority
packets are set equal. However, the fraction of high priority
packets can also be made application dependent and dynamic,
if desired. We also note that a packet and its replicas could
be assigned different priorities at different nodes. However, a
higher level protocol can detect this when metadata for the
packet are reconciled and avoid the need of transmitting the
packet itself.

50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

Number of packets generated per hour per destination

M
e
ta

d
a
ta

 f
ra

c
ti
o
n

RAPID with Wholesale Exchange
RAPID with Optimal Sync

Fig. 1. Fraction of metadata versus packet generation rate

Protocol RAPID-PCPI(X,Y):
0. Initialization: Establish the partition tree of packets

with binary priorities at node X and Y.
1. Synchronization (high priority): Synchronize metadata

of packets of high priority with Y .
2. Packet Delivery (high priority): Deliver/Replicate

packets of high priority.
3. Synchronization (low priority): Synchronize metadata

of packets of low priority with Y .
4. Packet Delivery (low priority): Deliver/Replicate

packets of low priority.
5. Termination: End transfer when out of radio range

or all packets replicated.

B. Performance Evaluation

We next illustrate through simulation the performance of
RAPID, with and without P-CPI being deployed. As a base-
line, we assume that the original RAPID protocol uses an
“oracle” (which is unfeasible in practice) to determine in
advance the list of differing metadata entries. We refer to this
approach as Optimal Sync. As a baseline, we also consider the
case where RAPID uses Wholesale Exchange, i.e., exchanges
metadata in wholesale, during each synchronization. The sim-
ulations are conducted with the RAPID simulator developed
by the authors of [4], the mobility model in this paper is also
named DieselNet.

The default parameters for the simulation are listed in Table
I, most of which are the same with simulation setup in [4].

The metrics we use to evaluate the system performance
include average delay, delivery rate, metadata fraction and
communication overhead. More specifically, the delay of a de-
livered packet is defined to be the duration from its generation
to delivery and the delay of undelivered packet is the duration
from its generation to the end of simulation.

We first run simulations using the default settings shown in
Table I. Figure 1 shows the metadata fraction, i.e., the ratio of
exchanged metadata to all exchanged data in the network, as
a function of the packet generation rate. The figure illustrates

6

Number of nodes max of 40
Buffer size 400 MB
Average transfer opp. size given by real transfers

among buses
Duration 19 hours each trace
Size of a packet 1 KB
Average bandwidth 400 Kb/s
Packet generation interval 1 hour
Optimization metric average delay
Number of priority levels 2

TABLE I
EXPERIMENT PARAMETERS

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of packets generated per hour per destination

M
et

ad
at

a
fr

ac
tio

n

RAPID with Optimal Sync (harsh)
Modified RAPID with P−CPI (harsh)
RAPID with Optimal Sync (standard)
Modified RAPID with P−CPI (standard)

Fig. 2. Fraction of exchanged metadata to all data sent in the network

50 100 150 200 250 300
320

340

360

380

400

420

440

460

480

Number of packets generated per hour per destination

A
vg

 d
el

ay
 w

ith
in

 d
ea

dl
in

e(
m

in
)

RAPID with Optimal Sync (harsh)
Modified RAPID with P−CPI (harsh)
RAPID with Optimal Sync (standard)
Modified RAPID with P−CPI (standard)

Fig. 3. Average packet delivery time: delay from packet generation till
delivery or end of simulation, no delivery deadline

the problem left open by the authors of [4], exchange of
metadata could potentially jam the network traffic (and an
optimal synchronization protocol can effectively reduce this

50 100 150 200 250 300
150

160

170

180

190

200

210

220

Number of packets generated per hour per destination

A
vg

 d
el

ay
 w

ith
in

 d
ea

dl
in

e(
m

in
)

RAPID with Optimal Sync (harsh)
Modified RAPID with P−CPI (harsh)
RAPID with Optimal Sync (standard)
Modified RAPID with P−CPI (standard)

Fig. 4. Average packet delivery time: delay from packet generation till
delivery or expiration with delivery deadline of 10000 s.

50 100 150 200 250 300

10%

20%

30%

40%

50%

60%

Number of packets generated per hour per destination

%
de

liv
er

ed

RAPID with Optimal Sync (harsh)
Modified RAPID with P−CPI (harsh)
RAPID with Optimal Sync (standard)
Modified RAPID with P−CPI (standard)

Fig. 5. Percentage of packets delivered before expiration with delivery
deadline of 10000 s

effect). In fact, at high packet generation rate, RAPID with P-
CPI (which is proved to be nearly-optimal in communication)
yields about a three-fold reduction in the metadata fraction.

We present P-CPI as a practical synchronization middleware
in DTN routing protocols such like RAPID. We next show the
detailed comparison between RAPID using Optimal Sync and
P-CPI and the additional benefits brought by prioritization. We
run simulations in two different scenarios, a standard scenario
which inherits the default settings in Table I, and another harsh
scenario with the average packet size set to 100 bytes and
the average bandwidth set to 40 Kb/s, the result is shown in
Figure 2 to 6.

Figure 2 shows that the metadata overhead becomes much
more significant in such situations. As a result, the metadata
reduction achieved with P-CPI results in major performance

7

50 100 150 200 250 300

 20KB

 50KB

 75KB

Number of packets generated per hour per destination

C
om

m
un

ic
at

io
n

ov
er

he
ad

 p
er

 m
ee

tin
g

RAPID with Optimal Sync (harsh)
Modified RAPID with P−CPI (harsh)
RAPID with Optimal Sync (standard)
Modified RAPID with P−CPI (standard)

Fig. 6. Average communication overhead per meeting

gains. The reason P-CPI performs even better than Optimal
Sync is that Optimal Sync initially performs an optimal
synchronization of the entire metadata, while P-CPI first
synchronizes high priority metadata and packets and then, if
time is still available, synchronizes low priority metadata and
packets. This reduction in the metadata fraction can lead to an
improvement of about 5% in the percentage of packets deliv-
ered. Thus, Figure 3 shows that P-CPI stays closed to optimal
with standard settings in the average delivery time (delay), and
further reduces it and outperforms the Optimal Sync in harsh
scenario. Figure 4 shows that the the average delay of delivered
packets within deadline of P-CPI is better than Optimal Sync,
which is more apparent under resource-constrained conditions.
Similarly, Figure 5 indicates corresponding improvement for
the percentage of packets delivered within the given deadline.
Figure 6 demonstrates the effectiveness of P-CPI in sense of
communication overhead. Again the reason that P-CPI is better
than Optimal Sync is P-CPI sends not all but only part of
the metadata at first. The simulation results of Figure 2 to 6
demonstrate that the newly proposed modified RAPID with
P-CPI performs nearly the same as the original RAPID with
Optimal Sync with standard settings and even better in harsh
scenario.

IV. CONCLUSION

In this paper, we have introduced, analyzed, and simulated
a new synchronization middleware for DTNs, called Priority-
based Characteristic Polynomial Interpolation (P-CPI). Specif-
ically, we have provided novel worst-case and high-probability
performance analysis of the computation and communication
complexity of P-CPI. Our simulations demonstrated that the
computation and communication complexity of P-CPI grows
close to linearly with the number of differences, depending
only weakly (i.e., logarithmically) on the number of elements
in the sets. These complexities also scale proportionally to the
desired priority ratio. We have also proven that P-CPI can be

stopped and quickly restarted at any time without incurring any
extra memory overhead, a feature that is particularly useful in
networks with a large number of nodes.

In addition to the analysis, we have demonstrated the prac-
tical benefit of using P-CPI in a DTN setting by implementing
it as a synchronization conduit for the well-established RAPID
DTN routing protocol. Simulations obtained using the original
RAPID simulator show that P-CPI leads to significant reduc-
tion in the communication overhead of metadata compared to
a simple wholesale transfer approach, hence solving a problem
left open by the authors of RAPID. As a practical approach to
synchronization, P-CPI yields near optimal performance in the
average delivery time of packets and other related metrics. We
expect that P-CPI could serve as an effective synchronization
middleware for other DTN routing protocols besides RAPID,
an interesting area left for future work.

ACKNOWLEDGMENTS

This work was supported in part by DoD under grant
W15P7T-12-C-0019, NASA under grant NNX09CA95C, and
NSF under grant CCF-0916892. The authors would like to
thank Dr. Rajesh Krishnan and Carlos Gutierrez for fruitful
discussions.

REFERENCES

[1] K. Fall, “A delay-tolerant network architecture for challenged internets,”
in SIGCOMM ’03: Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications,
2003, pp. 27–34.

[2] A. Lindgren, A. Doria, and O. Schelén, “Probabilistic routing in inter-
mittently connected networks,” SIGMOBILE Mob. Comput. Commun.
Rev., vol. 7, pp. 19–20, July 2003.

[3] S. Jain, M. Demmer, R. Patra, and K. Fall, “Using redundancy to
cope with failures in a delay tolerant network,” in SIGCOMM ’05:
Proceedings of the 2005 conference on Applications, technologies,
architectures, and protocols for computer communications, 2005, pp.
109–120.

[4] A. Balasubramanian, B. N. Levine, and A. Venkataramani, “DTN routing
as a resource allocation problem,” in IN PROC. ACM SIGCOMM.
ACM, 2007, pp. 373–384.

[5] R. Ramanathan, R. Hansen, P. Basu, R. Rosales-Hain, and R. Krishnan,
“Prioritized epidemic routing for opportunistic networks,” in Proceed-
ings of the 1st international MobiSys workshop on Mobile opportunistic
networking, ser. MobiOpp ’07. New York, NY, USA: ACM, 2007, pp.
62–66.

[6] K. A. S. Abdel-Ghaffar and A. El Abbadi, “An optimal strategy for
comparing file copies,” IEEE Trans. Parallel Distrib. Syst., vol. 5, pp.
87–93, January 1994.

[7] Y. Minsky, A. Trachtenberg, and R. Zippel, “Set reconciliation with
nearly optimal communication complexity,” IEEE Trans. on Information
Theory, vol. 49, 2003.

[8] Y. Minsky and A. Trachtenberg, “Scalable set reconciliation,” in 40th
Annual Allerton Conference on Communication, Control, and Comput-
ing, Monticello, IL, October 2002.

[9] D. Starobinski, A. Trachtenberg, and S. Agarwal, “Efficient pda syn-
chronization,” IEEE Transactions on Mobile Computing, vol. 2, no. 1,
pp. 41–50, 2003.

[10] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine, “Maxprop:
Routing for vehicle-based disruption-tolerant networks,” in INFOCOM
2006. 25th IEEE International Conference on Computer Communica-
tions. Proceedings, april 2006, pp. 1 –11.

[11] A. Allavena, A. Demers, and J. E. Hopcroft, “Correctness of a gossip
based membership protocol,” in Proceedings of the twenty-fourth annual
ACM symposium on Principles of distributed computing, ser. PODC ’05.
New York, NY, USA: ACM, 2005, pp. 292–301.

8

[12] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance proto-
cols: An approach to real-time synchronization,” IEEE Trans. Comput.,
vol. 39, pp. 1175–1185, September 1990.

[13] B. hong Lim and A. Agarwal, “Waiting algorithms for synchronization in
large-scale multiprocessors,” ACM Transactions on Computer Systems,
vol. 11, pp. 253–294, 1991.

[14] S. Agarwal, D. Starobinski, and A. Trachtenberg, “On the scalability
of data synchronization protocols for pdas and mobile devices,” IEEE
Network, vol. 16, pp. 22–28, 2002.

[15] D. P. Dubhashi and A. Panconesi, Concentration of Measure for the
Analysis of Randomised Algorithms. Cambridge University Press, 2009,
pp. 46-47.

[16] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A
performance comparison of multi-hop wireless ad hoc network routing
protocols,” in Proceedings of the 4th annual ACM/IEEE international
conference on Mobile computing and networking, ser. MobiCom ’98.
New York, NY, USA: ACM, 1998, pp. 85–97. [Online]. Available:
http://doi.acm.org/10.1145/288235.288256

[17] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Performance
analysis of mobility-assisted routing,” in Proceedings of the 7th ACM
international symposium on Mobile ad hoc networking and computing,
ser. MobiHoc ’06. New York, NY, USA: ACM, 2006, pp. 49–60.
[Online]. Available: http://doi.acm.org/10.1145/1132905.1132912

[18] A. Jindal and K. Psounis, “Fundamental mobility properties for realistic
performance analysis of intermittently connected mobile networks,” in
Pervasive Computing and Communications Workshops, 2007. PerCom
Workshops ’07. Fifth Annual IEEE International Conference on, march
2007, pp. 59 –64.

