
Joint Monitoring and Routing in
Wireless Sensor Networks using

Robust Identifying Codes
Moshe Laifenfeld∗, Ari Trachtenberg∗, Reuven Cohen∗ and David Starobinski∗

∗Department of Electrical and Computer Engineering
Boston University, Boston, MA 02215

Email:{ moshel,trachten,cohenr,staro@bu.edu}

Abstract—Wireless Sensor Networks (WSNs) provide an im-
portant means of monitoring the physical world, but their limi-
tations present challenges to fundamental network services such
as routing. In this work we utilize an abstraction of WSNs based
on the theory of identifying codes. This abstraction has been
useful in recent literature for a number of important monitoring
problems, such as localization and contamination detection. In
our case, we use it to provide a joint infrastructure for efficient
and robust monitoring and routing in WSNs. Specifically, we
make use of efficient and distributed algorithm for generating
robust identifying codes, an NP-hard problem, with a logarithmic
performance guarantee based on a reduction to the set k-
multicover problem. We also show how this same identifying-
code infrastructure provides a natural labeling that can be used
for near-optimal routing with very small routing tables. We
provide experimental results for various topologies that illustrate
the superior performance of our approximation algorithms over
previous identifying code heuristics.

I. INTRODUCTION

Sensor networks provide a new and potentially revolutionary
means of reaching and monitoring our physical surroundings.
Important applications of these networks include environmen-
tal monitoring of the life-cycle of trees and various animal
species [1, 2] and the structural monitoring of buildings,
bridges, or even nuclear power stations [3, 4].

A. Identifying code abstraction

For several fundamental monitoring problems, such as local-
ization [5, 6] and identification of contamination sources [7, 8],
the theory of identifying codes [9] has been found to provide
an extremely useful abstraction. Within this abstraction, a
monitoring area is divided into a finite number of regions
and modeled as a graph, wherein each vertex represents a
different region as in Figure 1. In this model, two vertices
are connected by a link if they are within communication
range. An identifying code for the graph then corresponds to
a subset of vertices where monitoring sensors (i.e., codewords
of the code) are located, such that each vertex is within the
communication range of a different set of monitors (referred
to as an identifying set). Thus, a collection of monitors in a
network forms an identifying code if any given identifying set
uniquely identifies a vertex in the graph.

An important benefit of identifying codes is that they allow
monitoring of an area without the need to place or activate

a (possibly expensive) monitor in each sub-region. Since the
size of an identifying code is typically much smaller than
that of the original graph, this construction can result in a
substantial savings in the number of monitors. Alternatively,
for a fixed number of monitors, systems based on identifying
codes can achieve much higher resolution and robustness than
proximity-based systems, in which each sensor only monitors
its surrounding region.

Identifying codes provide also means for quantifying en-
ergy/robustness trade-offs through the concept of robust iden-
tifying codes, introduced in [5]. An identifying code is r-
robust if the addition or deletion of up to r codewords in the
identifying set of any vertex does not change its uniqueness.
Thus, with an r-robust code, a monitoring system can continue
to function properly even if up to r monitors per locality
experience failure. Of course, the size of an r-robust code
increases with r (typically linearly).

Despite the importance of identifying codes for sensor
monitoring applications, the problem of constructing efficient
codes (in terms of size) is still unsolved. Specifically, the
problem of finding a minimum identifying code for an ar-
bitrary graph has been shown to be NP-hard [10, 11]. In Ray
et al. [5], a simple algorithm called ID-CODE was proposed
to generate irreducible codes in which no codeword can be
removed without violating the unique identifiability of some
vertex. However, in some graphs, the size of the resulting code
using the ID-CODE algorithm can be arbitrarily poor [12].

B. Contributions

We begin with a presentation of a polynomial-time ap-
proximation algorithm with provable performance guarantees
(initially introduced in [13–15]) for the minimum r-robust
identifying code problem. Our algorithm, called rID− LOCAL,
generates a robust identifying code whose size is guaranteed to
be at most 1 +2 log(n) times larger than the optimum, where
n is the number of vertices (a sharper bound is provided in
Section II). This approximation is obtained through a reduction
of the original problem to a minimum set k-cover problem,
for which greedy approximations are well known.

Our approximation utilizes only localized information, thus
lending itself to two distributed implementations, which we
term rID− SYNC and rID− ASYNC. The first implementa-

Fig. 1. A floor plan quantized into 5 regions represented by 5 vertices
(circles). An edge in the model graph (blue line) represents RF connectivity
between a pair of vertices, and the 3 vertices marked by red stars denote an
identifying code for the resultant graph.

tion provides a tradeoff between runtime and performance
guarantees while using a low communications load and only
coarse synchronization; the second implementation requires
no synchronization at the expense of more communication.
Through simulations and analysis on Erdos-Renyi random
graphs and geometric random graphs, we show that these
algorithms significantly outperform earlier identifying code al-
gorithms. Our analysis is an extension of [16], which provides
and asymptotic bound on the size of an r-robust identifying
code in Erdos-Renyi random graphs.

Next, we demonstrate that the identifying code-based mon-
itoring infrastructure can be reused to efficiently implement
routing between any two nodes in the network. Specifically,
we show how to use routing tables of the same size as the
network’s identifying code to route packets between any two
nodes, within two hops of the shortest path. The significance of
this result is two-fold: (i) we can perform near-optimal routing
while significantly compressing routing table memory in each
sensor; (ii) one algorithm can be run to simultaneously setup
both monitoring and routing infrastructures, thus reducing the
network setup overhead.

Preliminary version of this work was presented in [15].

C. Outline

In Section II we provide a brief introduction to robust
identifying codes followed by a centralized approximation
algorithm with proven performance bounds. Thereafter, in
Section III we provide and analyze a distributed version of
this algorithm. In Section IV we analyze r-robust identifying
codes in random graphs, and in Section V we describe a novel
technique for reusing identifying codes for routing. Section VI
provides some simulation data for the various algorithms
considered.

II. ROBUST IDENTIFYING CODES AND THE SET

MULTICOVER PROBLEM

Given a base set U of m elements and a collection S of
subsets of U, the set cover problem asks to find a minimum
sub-collection of S whose elements have U as their union
(i.e., they cover U). The set cover problem is one of the
oldest and most studied NP-hard problem [17] and it admits a
simple greedy approximation: iteratively choose the heretofore
unselected set of S that covers the largest number of uncovered
elements in the base set. The classic results of Johnson [18]

0

1

2

3

4

5

6

7

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
0 1 1 1 0 0 0 1
1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 2. A 1-robust identifying code for a cube (codewords are solid circles)
together with the graph’s adjacency matrix; the identifying set of vertex 1 is
{0, 1, 5}.

showed that, for minimum cover smin and greedy cover
sgreedy , we have that sgreedy

smin
= Θ(lnm). Hardness results [19]

suggest that this greedy approach is one of the best polynomial
approximations to the problem.

The minimum set k-multicover problem is a natural gen-
eralization of the set cover problem, in which, given (U,S),
we seek the smallest sub-collection of S that covers every
element in U at least k times (more formal definitions are
in Section II-C). Often this problem is addressed as a special
case of the covering integer problem [20]. The set k-multicover
problem admits a similar greedy heuristic to the set cover prob-
lem, with a corresponding performance ratio guarantee [20] of
at most 1 + log (maxSi∈S(|Si|)).
A. Technical definitions

Given an undirected graph G = (V, E), the ball B(v)
consists of all vertices adjacent to the vertex v, together with
v itself. It is possible to generalize this definition (and the
corresponding results in the paper) to directed graphs, but
this significantly complicates the notation and we omit these
extensions for sake of clearer exposition.

A non-empty subset C ⊆ V is called a code and its elements
are codewords. For a given code C, the identifying set IC(v)
of a vertex v is defined to be the codewords neighboring v,
i.e., IC(v) = B(v) ∩C (if C is not specified, it is assumed to
be the set of all vertices V). A code C is an identifying code
if each identifying set of the code is unique, in other words

∀u, v ∈ V u = v ←→ IC(u) = IC(v).

In our applications, we shall further require that IC(v) �= ∅
for all vertices v, so that an identifying code is also a vertex
cover or dominating set.

Definition 1 An identifying code C over a given graph G =
(V, E) is said to be r-robust if IC(u) ⊕ A �= IC(v) ⊕D for
all v �= u and A, D ⊂ V with |A|, |D| ≤ r. Here ⊕ denotes
the symmetric difference.

B. Reduction intuition

Consider a three dimensional cube as in Figure 2 and let
C = {0, 1, 2, 4, 5, 6, 7}. Clearly, the identifying sets are all
unique, and hence the code is an identifying code. A closer
look reveals that C is actually a 1-robust identifying code,

so that it remains an identifying code even upon removal or
insertion of any vertex into any identifying set.

A graph’s adjacency matrix provides a linear algebra view
of the identifying code problem. Specifically, we can consider
each row and column of the matrix to be a characteristic vector
of the ball around some vertex in the graph, meaning that their
i-th entry of the row j is 1 if and only if the i-th vertex of V
is in the ball around node j. Selecting codewords can thus be
viewed as selecting columns to form a matrix of size n× |C|.
We will refer to this matrix as the code matrix. A code is thus
identifying if the Hamming distance between every two rows
in the code matrix is at least one (recall that the Hamming
distance of two binary vectors is the number of ones in their
bitwise XOR). It has been shown in [6] that if the Hamming
distance between every two rows in the code matrix is at least
2r + 1 then the set of vertices is r-robust.

We next form the n(n−1)
2 ×n difference matrix by stacking

the bitwise XOR results of every two different rows in the
adjacency matrix. The problem of finding a minimum size
r-robust identifying code is thus equivalent to finding a min-
imum number of columns in the difference matrix for which
the resulting matrix has minimum Hamming distance 2r + 1
(between any two rows). This equivalent problem is nothing
but a set 2r+1-multicover problem, if one regards the columns
of the difference matrix as the characteristic vectors of subsets
S over the base set of all pairs of rows in the adjacency matrix.

In the next subsection we formalize this intuition into a
rigorous reduction.

C. Reduction

In this section we formally reduce the problem of finding
the smallest sized r-robust identifying code over an arbitrary
graph G to a 2r+1-multicover problem. Formally we connect
the following problems:

a) SET MULTI-COVER (SCk):

INSTANCE: Subsets S of U , an integer k ≥ 1.
SOLUTION: S′ ⊆ S such that for every element u ∈ U ,

|{s ∈ S′ : u ∈ s}| ≥ k.
MEASURE: The size of the multicover: |S ′|.

b) Robust ID-CODE (rID):

INSTANCE: Graph G = (V, E), and integer r ≥ 0.
SOLUTION: An r-robust identifying code C ⊆ V .
MEASURE: The size |C|.

Theorem 1 Given a graph G of n vertices, finding an r-
robust identifying code requires no more computations than a
(2r+1)-multicover solution over a base set of n(n−1)

2 elements
together with O(n3) operations of length n binary vectors.

To prove the theorem we start with a few definitions.

Definition 2 The difference set DC(u, v) is defined to be the
symmetric difference between the identifying sets of vertices
u, v ∈ V :

DC(u, v) .= IC(u)⊕ IC(v),

For simplicity of notation, we shall omit the subscript when
looking at identifying codes consisting of all graph vertices,
i.e., D(u, z) = DV (u, z).

Definition 3 Let U = {(u, z)|u �= z, u, z ∈ V }. Then the
distinguishing set δc is the set of vertex pairs in U for which
c is a member of their difference set:

δc = {(u, z) ∈ U | c ∈ DC(u, z)}.
It has been shown in [6] that a code is r-robust if and

only if the size of the smallest difference set is at least 2r+1.
Equivalently, a code is r-robust if and only if its distinguishing
sets form a 2r+1-multicover of all the pairs of vertices in the
graph.

Lemma 1 Given G = (V, E) the following statements are
equivalent:

1) C = {c1, ..., ck} is an r-robust identifying code.
2) |DC(u, v)| ≥ 2r + 1, for all u �= v ∈ V
3) The collection {δc1, ..., δck

} forms a (2r+1)-multicover
of U = {(u, v) | ∀ u �= v ∈ V }.

Proof of Theorem 1: Given MinSetCover : (k, U, S) →
S′, an algorithm for solving the minimum set-multicover
problem, SCk, consider the following construction of an r-
robust identifying code.

ID : (G, r)→ C

1) Compute the identifying sets over V , {I(u)|u ∈ V }.
2) Compute the distinguishing sets Δ = {δu|u ∈ V }.
3) Apply the set-multicover algorithm,

C← MinSetCover(2r + 1,U, Δ)
4) Output the set of u ∈ V that correspond to δu ∈ C, i.e.,

C← {u ∈ V |δu ∈ C}
The resulting code, C, is guaranteed by Lemma 1 to be an
r-robust identifying code, and the optimality of the set cover
in step 3 guarantees that no smaller identifying code can be
found. To complete the proof we observe that computing
the identifying sets I(u) naively requires θ(n2) additions of
binary vectors, and computing Δ requires n operations for
each of the n(n−1)

2 elements in |U|.

D. Localized robust identifying code and its approximation

The construction used in the proof of Theorem 1 to-
gether with the well know greedy approximation for the set-
multicover problem [20] can be used to derive an approxima-
tion to the r-robust identifying code problem.

An example of rID− CENTRAL(0, G) given in Algorithm 1,
where G is a 10 nodes ring is shown in Figure 3, where the op-
timal identifying code is achieved; however the outcome may
vary depending on the way ties are broken and therefore on
the labeling scheme of the nodes. In the example of Figure 3
ties are broken in favor of vertices of lower label.
rID− CENTRAL requires the knowledge of the entire graph

in order to operate. It was observed in [6, 21] that an r-robust
identifying code can be built in a localized manner, where

1

3

57

9

0
8

12

12

12
12

12

12

12

8
1

3

57

9

0
2

0

4

7
6

6

6

7

4
1

3

57

9

0
1

0

1

0
2

3

0

3

2
1

3

57

9

0
1

0

0

0
1

0

0

2

0
1

3

57

9

0
0

0

0

0
0

0

0

0

0

2

4

6

8

10

Fig. 3. Demonstration of the rID − CENTRAL (with r = 0) for 10 nodes ring, starting on the left. Nodes are labeled 1 to 10 clockwise (the labels appear
in the inner perimeter). Solid circles represent codewords, and the distinguishing sets sizes, obtained from the greedy set-multicover (SET-MULTICOVER)
iterations in rID − CENTRAL, appear in the outer perimeter. The resultant identifying code (right) can be shown to be optimal.

Algorithm 1 Centralized r-robust code rID− CENTRAL(r, G)

We start with a graph G = (V, E) and a non-negative integer
r. The greedy set multicover approximation is denoted SET-
MULTICOVER(k,U,S).

1) Compute the identifying sets over V {I(u)|u ∈ V }
2) Compute the distinguishing sets Δ = {δu|u ∈ V }.
3) Apply C←SET-MULTICOVER(2r + 1,U, Δ)
4) Output Ccentral ← {u ∈ V |δu ∈ C}

each vertex only considers its two-hop neighborhood. The
resulting localized identifying codes are the subject of this
section, and the approximation algorithm we derive is critical
to the distributed algorithm of the next section.

Let G = (V, E) be an undirected graph, we define the
distance metric ρ(u, v) to be the number of edges along the
shortest path from vertex u to v. The ball of radius l around
v is denoted B(v; l) and defined to be {w ∈ V |ρ(w, v) ≤ l}.
So far we encountered balls of radius l = 1, which we simply
denoted by B(v).

Recall that a vertex cover (or dominating set) is a set of
vertices, S, such that every vertex in V is in the ball of radius
1 of at least one vertex in S. We extend this notion to define
an r-dominating set to be a set of vertices Sr such that every
vertex in V is in the ball of radius 1 of at least r vertices in
Sr.

Lemma 2 Given a graph G = (V, E), an (r +1)-dominating
set C is also an r-robust identifying code if and only if
|DC(u, v)| ≥ 2r + 1 for all u, v ∈ V such that ρ(u, v) ≤ 2.

Proof: The forward implication is an application of
Lemma 1. For the reverse implication we take C to be an
r + 1 dominating set and assume that |DC(u, v)| ≥ 2r + 1
for ρ(u, v) ≤ 2; we will show that this assumption
is also valid for ρ(u, v) > 2. This is because, for
ρ(u, v) > 2, we have that B(v) ∩ B(u) = ∅, meaning
that |DC(u, v)| = |B(v) ∩ C| + |B(u) ∩ C|. Since C is an
r + 1 dominating set, it must be that |B(y) ∩ C| ≥ r + 1
for all vertices y, giving that |DC(u, v)| > 2r + 1. Applying
Lemma 1 we thus see that C must be r-robust.

The localized robust identifying code approximation
Lemma 2 can serve as the basis for a reduction from an
identifying code problem to a set cover problem, similarly
to Theorem 1. The main difference is that we will restrict
basis elements to vertex pairs that are at most two hops apart,
and we then need to guarantee that the resulting code is still
r-robust.

Towards this end we define Ū = {(u, v) | ρ(u, v) ≤ 2}, the
set of all pairs of vertices (including (v, v)) that are at most
two hops apart. Similarly, we will localize the distinguishing
set δv to Ū as follows:

δ̄v = (δv ∩ Ū) ∪ {(u, u)|u ∈ B(v)}, (1)

The resulting localized identifying code approximation is thus
given by Algorithm 2 and can be shown in a similar manner to
provide an r-robust identifying code for any graph that admits
one.

Algorithm 2 Localized r-robust code rID− LOCAL(r, G)
We start with a graph G = (V, E) and a non-negative integer
r. The greedy set multicover approximation is denoted SET-
MULTICOVER(k,U,S).

1) Compute the set of nodes pairs, which are two hops
away, Ū.

2) Compute Δ̄ = {δ̄u|u ∈ V } using (1).
3) Apply C←SET-MULTICOVER(2r + 1, Ū, Δ̄)
4) Output Clocal ← {u ∈ V |δ̄u ∈ C}

Theorem 2 Given an undirected graph G = (V, E) of n
vertices, the performance ratio rID− LOCAL is upper bounded
by: cgreedy

cmin
< ln γ + 1,

where γ = maxv∈V |B(v)|(|B(v; 3)| − |B(v)| + 1).

Proof: The proof derives from the performance guarantee
of the greedy set multicover algorithm [20], which is upper
bounded by 1+lnα for a maximum set size α. The size of δ̄v

is |B(v)|(|B(v; 3)|− |B(v)|+1), which, at its maximum, can

be applied to the performance guarantee in [20] to complete
the proof.

Roughly speaking this performance bound is similar to the
bound we derived for the centralized algorithm, when the size
of the largest B(v; 3) is of the order of the number of vertices
n. However, when |B(v; 3)| is much smaller, the performance
bound of Theorem 2 can be significantly tighter.

In the next subsection we present a distributed imple-
mentation of the identifying code localized approximation.
The following lemma supplements Lemma 2 by providing
additional “localization”. At the heart of this lemma lies the
fact that each codeword distinguishes between its neighbors
and the remaining vertices.

Lemma 3 The distinguishing sets δ̄v and δ̄u are disjoint for
every pair (u, v) with ρ(u, v) > 4.

Proof: Clearly, δ̄v includes all vertex pairs (x, y) ∈ Ū
where x is a neighbor of v and y is not. More precisely,
(x, y) ∈ δ̄v if

x ∈ B(v) and y ∈ B(x; 2)−B(v). (2)

Moreover, for all such (x, y), ρ(x, v) ≤ 3 and ρ(y, v) ≤ 3.
On the other hand, for (x′, y′) ∈ δ̄u with ρ(u, v) > 4, either
x′ or y′ must be a neighbor of u, and hence of distance > 3
from v. Thus, δ̄v and δ̄u are disjoint.

Lemma 3 implies that, when applying the greedy algorithm,
a decision to choose a codeword only affects decisions on
vertices within four hops; the algorithm is thus localized to
vicinities of radius four.

III. DISTRIBUTED ALGORITHMS

Several parallel algorithms exist in the literature for set
cover and for the more general covering integer programs
(e.g., [22]). There are also numerous distributed algorithms
for finding a minimum (connected) dominating set based
on set cover and other well known approximations such as
linear programming relaxation (e.g., [23]). In a recent work,
Kuhn et al. [24] devised a distributed algorithm for finding
a dominating set with a constant runtime. The distributed
algorithm uses a design parameter which provides a tradeoff
between the runtime and performance.

Unfortunately, the fundamental assumption of these algo-
rithms is that the elements of the basis set are independent
computational entities (i.e., the nodes in the network); this
makes it non-trivial to apply them in our case, where elements
correspond to pairs of nodes that can be several hops apart.
Moreover, we assume that the nodes are energy constrained
so that reducing communications is very desirable, even at the
expense of longer execution times and reduced performance.

We next provide two distributed algorithms. The first is
completely asynchronous, guarantees a performance ratio of
at most ln γ + 1, and requires Θ(cdist) iterations at worst,

Fig. 4. Asynchronous distributed algorithm state diagram in node v ∈ V

where cdist is the size of the identifying code returned by
the distributed algorithm and γ = maxv∈V |B(v)|(|B(v; 3)|−
|B(v)| + 1|). The second is a randomized algorithm, which
requires a coarse synchronization, guarantees a performance
ratio of at most ln γ + 1, and for some arbitrarily small

ε > 0 operates within O

(
γn

K+2+ε
K−1

K

)
time slots (resulting

in O(cdist maxv∈V |B(v; 4|)) messages). K ≥ 2 is a design
parameter that trades between the size of the resulting r-robust
identifying code and the required number of time slots to
complete the procedure.

In the next subsection we describe the setup and initializa-
tion stages that are common to both distributed algorithms.

A. Setup and initialization

With a setup similar to [6] we assume that every vertex
(node) is pre-assigned a unique serial number and can com-
municate reliably and collision-free (perhaps using higher-
layer protocols) over a shared medium with its immediate
neighborhood. Every node can determine its neighborhood
from the IDs on received transmissions, and higher radius balls
can be determined by distributing this information over several
hops. In our case, we will need to know G(v; 4) the subgraph
induced by all vertices of distance at most four from v.

Our distributed algorithms are based on the fact that, by
definition, each node v can distinguish between the pairs of
nodes which appear in its corresponding distinguishing set
δ̄v given in (2). This distinguishing set is updated as new
codewords are added to the identifying code being constructed,
C; their presence is advertised by flooding their four-hop
neighborhood.

B. The asynchronous algorithm rID− ASYNC

The state diagram of the asynchronous distributed algo-
rithm is shown in Figure 4. All nodes are initially in the
unassigned state, and transitions are effected according to
messages received from a node’s four-hop neighborhood. Two
types of messages can accompany a transition: assignment
and declaration messages, with the former indicating that the
initiating node has transitioned to the assigned state, and the
latter being used to transmit data. Both types of messages
also include five fields: the type, which is either “assignment”
or “declaration”, the ID identifying the initiating node, the
hop number, the iteration number, and data, which contains

the size of the distinguishing set in the case of a declaration
message.

Following the initialization stage, every node declares its
distinguishing set’s size. As a node’s declaration message
propagates through its four hop neighborhood, every forward-
ing node updates two internal variables, IDmax and δmax,
representing the ID and size of the most distinguishing node
(ties are broken in favor of the lowest ID). Hence, when a
node aggregates the declaration messages initiated by all its
four hop neighbors (we say that the node reached its end-of-
iteration event), IDmax should hold the most distinguishing
node in its four hop neighborhood. A node that reaches end-
of-iteration event transitions to either the wait-for-assignment
state or to the final assigned state depending if it is the most
distinguishing node.

The operation of the algorithm is completely asynchronous;
nodes take action according to their state and messages re-
ceived. During the iterations stage, nodes initiate a declaration
message only if they receive an assignment message or if
an updated declaration (called an unassignment message) is
received from the most distinguishing node of the previous
iteration. All messages are forwarded (and their hop number
is increased) if the hop number is less than four. To reduce
communications load, a mechanism for detecting and elimi-
nating looping messages should be applied.

Every node, v, terminates in either an “unassigned” state
with |δ̄v| = 0 or in the “assigned” state. Clearly, nodes that
terminate in the “assigned” state constitute a localized r-robust
identifying code.

Algorithm 3 Asynchronous r-robust algorithm (rID− ASYNC)
We start with a graph G, with vertices labeled by ID, and
a non-negative integer r. The following distributed algorithm
run at node v ∈ V produces an r-robust identifying code.

Precomp • Compute δ̄v using (2).
• Initiate a declaration message and set state = unassigned.
• Set IDmax = ID(v), δmax = |δ̄v |.

Iteration • Increment hop(ms) and forward all messages of hop(ms) < 4.
• if received an assignment message with state �= assigned then

– Update δ̄v by removing all pairs covered 2r + 1 times.
– Initiate a declaration message and set state = unassigned.
– Perform Comp(ID(v), |δ̄v|).

• if state = waitfor − assignment and received an unassignment
message then

– Initiate a declaration message and set state = unassigned.
– Perform Comp(ID(v), |δ̄v|).

• if received a declaration message ms with state �= assigned then
perform Comp(ID(ms), data(ms)).

• if end-of-iteration reached then,

– if IDmax = ID(v) and |δ̄v | > 0 then state = assigned,
initiate an assignment message.

– otherwise IDmax = ID(v), δmax = 0, and state=waitfor-
assignment.

Comp(id, δ)• if δmax < δ or (δmax = δ and IDmax > id) then δmax =
δ, IDmax = id

1) Example: We illustrate the operation of
rID− ASYNC(0, G) over a simple ring topology of 10
nodes in Figure 5. The nodes are labeled from 1 to 10
clockwise. Solid circles represent assigned vertices (or

codewords), and the size of the distinguishing sets and the
value of IDmax, at the end of each iteration, appear in the
outer perimeter, separated by a comma. The network is shown
at the end of the first iteration in the upper left subfigure,
where all nodes have evaluated their distinguishing sizes and
communicated them to their 4-hop neighborhoods. We can
see that all nodes can distinguish up to 9 pairs, and that all but
node 6 have concluded node 1 to be the most distinguishing
(IDmax = 1) by the rule that lower labels take precedence.
Since node 6 is just outside B(1; 4) it concludes that node 2
is the most distinguishing in its 4 hop neighborhood. Note
that theoretically node 6 could have assigned itself to be a
codeword without loss in performance since it is more than 4
hops away from node 1.

At the start of iteration 2 (subfigure 2a) node 1 transmits an
assignment message that gets propagated in B(1; 4) (shown
as solid arrows). The assignment message transitions all the
nodes in its way from wait-for-assignment to unassigned state
and triggers them to reevaluate their distinguishing set sizes
and send declaration messages. One half of node 2 declaration
message is shown by the dashed arrows. This declaration mes-
sage reaches node 6 when it is still in the wait-for-assignment
state. Since node 6 is awaiting an assignment message from
node 2, this declaration message serves as an unassignment
message and transitions node 6 to the unassigned state and
invokes a declaration message that is shown as dashed arrows
in subfigure 2b, which makes the rest of the nodes to conclude
that node 6 is the most distinguishing. Iterations 3 to 6 operate
in a similar manner and are shown in the bottom of Figure 5.
In total rID− ASYNC returns an identifying code of size 6 -
only one node more than a minimum one. The outcome of
rID− ASYNC is heavily dependent on the way nodes resolve
ties and therefore is sensitive to nodes relabeling; however the
performance guarantee of the theorem of the next subsection
holds for any such arrangement.

2) Performance evaluation:

Theorem 3 The algorithm rID− ASYNC requires Θ(cdist)
iterations and has a performance ratio

cdist
cmin

< ln γ + 1,

where γ = maxv∈V |B(v)|(|B(v; 3)| − |B(v)| + 1|).
The first part of the Theorem follows from Theorem 2

and the fact that only the most distinguishing set in a four
hop neighborhoods is assigned to be a codeword. To see the
number of iterations of the algorithm, we first note that in
each iteration at least one codeword is assigned. The case of a
ring topology (Figure 5) demonstrates that, in the worst case,
exactly one node is assigned per iteration.

It follows that the amount of communications required in
the iteration stage is Θ(cdist|V |max(|B(v; 4)|)), which can be
a significant load for a battery powered sensor network. This
can be significantly reduced if some level of synchronization
among the nodes is allowed. In the next section we suggest a

1

3

57

9

9,1
9,1

9,1

9,1

9,1
9,2

9,1

9,1

9,1

9,1

1
2

6

9,1

9,1

9,1

9,1
9,2

9,1

9,1

9,1

9,1

1

6

5,6

7,6

6,6

8,6
9,6

8,6

6,6

7,6

5,6

1

3

57

9

4,2

4,2

4,2

4,24,3

4,2

4,2

4,2
1

3

57

9
2,7

3,7

3,7

4,7

2,7

3,7
1

3

57

9
2,3

1,3

2,3

2,5

1,3

2,3

1

3

57

9

0,8

1,8

2,8

1,8

1,8

1 2a 2b

3 6

Fig. 5. Operation of rID− ASYNC over a ring of 10 nodes, labeled from 1 to 10 clockwise (displayed in the inner perimeter), and r = 0. Solid circles
represent assigned vertices, and the size of the distinguishing set and the value of IDmax at the end of each iteration appear in the outer perimeter, separated
by a comma. The iteration number appears at the upper left corner of each subfigure. The path of assignment (declaration) messages is shown by solid
(dashed) arrows.

synchronized distributed algorithm that eliminates declaration
messages altogether.

C. A low-communications randomized algorithm rID− SYNC

In this subsection we assume that a coarse time synchro-
nization among vertices within a neighborhood of radius
four can be achieved. In particular, we will assume that the
vertices maintain a basic time slot, which is divided into
L subslots. Each subslot duration is longer than the time
required for a four hop one-way communication together with
synchronization uncertainty and local clock drift. After an
initialization phase, the distributed algorithm operates on a
time frame, which consists of F slots arranged in decreasing
fashion from sF to s1. In general, F should be at least as
large as the largest distinguishing set (e.g., F = n(n−1)

2 will
always work). A frame synchronization within a neighborhood
of radius four completes the initialization stage.

The frame synchronization enables us to eliminate all the
declaration messages of the asynchronous algorithm. Recall
that the declaration messages were required to perform two
tasks: (i) determine the most distinguishing node in its four
hop neighborhood, and (ii) form an iteration boundary, i.e.,
end-of-iteration event. The second task is naturally fulfilled
by maintaining the slot synchronization. The first task is per-
formed using the frame synchronization: every node maintains
a synchronized slot counter, which corresponds to the size
of the current most distinguishing node. If the slot counter
reaches the size of a node’s distinguishing set, the node assigns
itself to the code. The subslots are used to randomly break ties.

1) Iterations stage: Each iteration takes place in one time
slot, starting from slot sF . During a slot period, a node

may transmit a message ms indicating that it is assigning
itself as a codeword; the message will have two fields: the
identification number of the initiating node, id(ms), and the
hop number, hop(ms). A node assigns itself to be a codeword
if its assignment time, which refers to a slot as and subslot
l, has been reached. Every time an assignment message is
received, the assignment slot as of a node is updated to match
the size of its distinguishing set; the assignment subslot is
determined randomly and uniformly at the beginning of every
slot.

Algorithm 4 Synchronous r-robust algorithm (rID− SYNC)
We start with a graph G and non-negative integer r. The
following distributed algorithm run at node v ∈ V produces
an r-robust identifying code.

Precomp • Set: slot = sF , subslot = L, state = unassigned.
• Compute δ̄v using (2) and set as = |δ̄v|

Iterate: while state = unassigned and slot ≥ s1 do,

• l = random{1, ..., L}
• Increment hop(ms) and forward all messages of hop(ms) < 4.
• if received assignment message, ms then,

update δ̄v by removing all pairs covered 2r + 1 times and set as =
|δ̄v |.

• elseif subslot = l and slot = as then,
Transmit an assignment message, state = assigned.

2) Example: We illustrate in Figure 6 the operation of
rID− SYNC(0, G), given in Algorithm 4, over a simple ring
topology of 10 nodes. The nodes are labeled from 1 to
10 clockwise. Solid circles represent assigned vertices (or
codewords), and the size of the distinguishing sets and the
value of L, at the end of each iteration, appear in the outer
perimeter, separated by a comma. The network is shown at the
end of slot 9 in the upper left subfigure, where all nodes have

3

8

9,4
9,6

9,9

9,7

9,4
9,8

9,8

9,4

9,7

9,8

1

3

57

9

1,5
2,3

2,7
1,3

2,8

2,6

4

9

4,4
4,6

4,0

4,5
4,7

4,1

4,9

4,0

1

3

57

9

2,2

1,0
1,2

2,1
1

3

57

9

9,1
9,0

9,1

9,1

9,0
9,0

9,1

9,1

9,0

9,1

1

3

57

9

9 4 2

9 2 1

L=3
−−−−−−>

L=10
−−−−−−>

Fig. 6. Operation of rID− SYNC over a ring of 10 nodes, labeled from 1 to 10 clockwise (displayed in the inner perimeter) for r = 0 and L = 10 (top) and
L = 3 (bottom). Solid circles represent assigned vertices, and the size of the distinguishing set and randomly selected subslot, l, at the end of each iteration,
appear in the outer perimeter, separated by a comma. The slot number appears at the upper left corner of each subfigure. Dashed arrows represent assignment
messages.

evaluated their distinguishing set sizes and selected randomly
a transmission sub-slot from L − 1 to 0. We can see that
all nodes can distinguish up to 9 pairs, and that node 3 was
the first to transmit its assignment message as it selected the
largest subslot number. This message is spread through its
4 hop neighborhood preventing other nodes from assigning
themselves. However, since node 8 is just outside B(3; 4)
it is free to assign itself as indicated in the subfigure. Note
this fundamental difference from rID− ASYNC where in a
similar situation node 8 wouldn’t be assigned (see Figure 5).
rID− SYNC stays idle for the next 5 slots where nodes
keep rough synchronization using their internal clocks. The
assignment processes resumes at slots 4 and 2 to conclude the
procedure returning an identifying code of size 6 - only one
node more than a minimum one. Similarly to rID− ASYNC
The outcome of rID− SYNC can vary depending on the way
nodes resolve ties and therefore is sensitive to the random
selection of subslots. The bottom of Figure 6 shows a run
with a small number of subslots (L = 3), which due to large
amount of over-assignments returns a relatively large code.
Nevertheless, the performance guarantee of the theorem below
holds for any combination of random selections of subsets and
labeling.

3) Performance evaluation: Algorithm rID− SYNC re-
quires at most O(n2) slots (O(Ln2) subslots), though it
can be reduced to O(Lγ) if the maximum size of a dis-
tinguishing set is propagated throughout the network in the
precomputation phase. The communications load is low (i.e.,
O(cdist ·maxv∈V (|B(v; 4)|))), and includes only assignment

messages, which are propagated to four hop neighborhoods.
In the case of ties, rID− SYNC can provide a larger code

than gained from the localized approximation. This is because
ties in the distributed algorithm are broken arbitrarily, and
there is a positive probability (shrinking as the number of
subslots L increases) that more than one node will choose the
same subslot within a four hop neighborhood. As such, the L is
a design parameter, providing a tradeoff between performance
ratio guarantees and the runtime of the algorithm as suggested
in the following Theorem.

Theorem 4 For asymptotically large graphs, Algorithm
rID− SYNC guarantees (with high probability) a performance
ratio of

cdist
cmin

< K(lnγ + 1),

where γ = maxv∈V |B(v)|(|B(v; 3)| − |B(v)| + 1|). The

algorithm also requires O

(
γn

K+2+ε
K−1

K

)
subslots to complete

for design parameter K ≥ 2 and arbitrarily small ε > 0.

Proof: If no more than K tied nodes assign themselves
simultaneously on every assignment slot, then we can upper
bound the performance ratio by a factor K of the bound in
Theorem 2, as in the theorem statement. We next determine
the number of subslots L needed to guarantee the above
assumption asymptotically with high probability.

Let P (K) denote the probability that no more than K tied
nodes assign themselves in every assignment slot. Clearly,
P (K) ≥ (1− p̄(K))cdist , where p̄(K) is the probability that,

when t nodes are assigned independently and uniformly to L
subslots, there are at least K < t assignments to the same
subslot. One can see that

p̄(K) =
∑t

k=K L
(

t
k

)
L−k

(
1− 1

L

)t−k ≤∑t
k=K

(
t
k

)
L1−k

≤∑t
k=K L

(
te
Lk

)k ≤ tL
(

te
LK

)K
,

for e being the natural logarithm and based on the assump-
tion that te

LK < 1. Let t = cdist = n (this only loosens the

bound) and L = e
K n

K+2+ε
K−1 . Then,

P (K) ≥
(

1− tL

(
te

LK

)K
)cdist

≥
(

1− e

K

1
n1+ε

)n

→ 1.

IV. RANDOM GRAPHS

Recently, Erdos-Renyi random graphs and random geomet-
ric graphs were studied in the context of identifying codes [16,
25]. In [16] it was shown that for asymptotically large random
graphs, any subset of a certain threshold size (logarithmic
in the size of the graph) is almost surely an identifying
code. It was also shown that the threshold is asymptotically
sharp, i.e., the probability of finding an identifying code of
slightly smaller size asymptotically approaches zero.Unit disk
geometric random graphs, in which vertices are placed on a
two-dimensional plane and connected if their distance is less
than some unit, were studied in [25]. Unlike large Erdos-Renyi
random graphs, most of the large unit-disk geometric random
graphs do not possess identifying codes.

The study of random graphs is important since it can offer
insights and provide designs of such codes. In this section we
extend the work in [16] to provide a threshold on the size of an
r-robust identifying code in asymptotically large Erdos-Renyi
random graphs.

Let G(n, p) = (V, E) be a random graph of n vertices where
the existence of an edge between any pair of distinct vertices
is determined independently and in random with probability
p. The following theorem hold asymptotically in n.

Theorem 5 Let r ≤ O(log log log n), and q = p2 + (1− p)2

such that 1−q ≥ Ω
(

log n
n

)
. Then asymptotically in n and for

an arbitrary small ε > 0 any subset of size

c ≥ 2 logn + (2r − 1 + ε) log log n

log 1/q

is almost surely an r-robust identifying code.

The proof appears in the Appendix.
Recall that Moncel et al. showed in [16] that any subset of

size (2+ε) log n
log 1/q is almost surely an identifying code. Theorem 5

implies that for a small r a relatively small addition of (2r−
1) log log n vertices almost surely makes the code r-robust.
Theorem 5 also provide means of random design of r-robust
identifying codes. Figure 7 shows a numerically derived upper

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Edge probability

B
ou

nd
 o

n
th

e
pr

ob
 th

at
 C

 is
 n

ot
 r

ob
us

t I
D

 c
od

e

n=10000 random graph

r=1

r=2

r=3

r=5

Fig. 7. An upper bound on the probability that a set of vertices of the size
of Theorem 5 is not a robust identifying code

bound on the probability that a set of the size of Theorem 5 is
not r-robust, for random graph of 10000 vertices and r ≤ 5.

In [16] it was also shown that the threshold size of an
identifying code is tight in the sense that all slightly smaller
subsets are almost surely not identifying codes. Clearly, this
result also holds for robust identifying codes. It is not obvious
if this bound can be tightened for robust identifying codes.

V. ROUTING WITH IDENTIFYING CODES

The existence of an identifying code for a network permits
a natural routing scheme using small routing tables (typically
referred to as “compact routing schemes” [26–28]).

By routing scheme we mean a combination of a labeling
scheme L (consisting of a label/address Li for node i), routing
scheme T (consisting of a routing table Ti at node i), and a
routing function f(Ls, Lt, Li, Ti). The routing table uses the
labels of the source node s, the destination node t, the current
node i, and the information in the local routing table T i to
choose the next port through which a packet should be sent.
For the scheme to be considered compact, the table size should
be small (i.e., ∀i |Ti| � O(N)), and the label size should
also be small (usually polylogarithmic in N). Furthermore,
the description of f should be of constant size (e.g., we do
not want to include the whole graph structure in f) and its
time complexity should be low (usually polynomial in label
size and logarithmic or constant in the table size).

Compact routing has been studied for some time in the
computer science literature, with the typical focus being on
designing routing schemes that give good performance in the
worst case scenario for all graphs, or for some class of graphs;
a good survey of existing approaches is provided by [29]. The
closest related routing scheme in the literature is based on a
dominating set, and this is not surprising because identifying
codes are a special type of dominating set.

A. Related Work

Considerable work (see e.g., [30–32]) has been done on
compact routing using dominating sets, and, in particular
connected dominating sets. In the context of ad hoc and
sensor networks these methods are referred to as clustering
algorithms (see e.g., [33, 34] for a survey). Dominating sets
are sets of nodes (also called clusterheads) whose combined
neighborhoods (clusters) include all nodes in the graph. There-
fore, if information for the shortest path routing to each

clusterhead (node in a dominating set) is stored, any node
can be reached through one of its clusterheads with an almost
optimal path length. In connected dominating sets [30, 32]
the routing is done only using nodes from the dominating
set, which serve as the network’s “backbone”. This has the
advantage that other nodes can be added and removed from
the network without affecting the routing, but it also has
the disadvantage of possibly considerably lengthening the
routing distance. Most of the work on (connected) dominating
sets based routing has focused on efficiently finding small
(connected) dominating sets, commonly resulting in little
overlap between clusters, i.e., small amount of nodes that
belong to more than one cluserhead. Although minimizing the
clusterhead infrastructure size is in general desirable it poses
robustness issues, as a single cluserhead failure most likely
results in a disconnected topology. To reduce this problem
denser clusterhead infrastructures that provide redundancy in
the event of a failure were suggested (see e.g., [34] for a
survey).

The routing scheme presented here is based on identifying
codes (the clusterheads form an identifying code in the graph
representing the network), which generally form a superset of
a dominating set. The proposed scheme sports the following
advantages:

• It combines the routing and the monitoring infrastruc-
tures; hence saving both energy and setup time.

• It provides a natural labeling scheme for the network by
simply using the identifying sets of the code. Dominating-
set routing schemes typically assume that such a labeling
is externally determined.

• It provides robustness against failures of a limited amount
of infrastructure nodes, as commonly nodes are covered
by more than one codeword (clusterhead).

• Its routing length is comparable to dominating set routing
schemes.

The identifying codes based routing scheme suggested here
guarantees a near optimum routing length, but uses non code
nodes for routing. Our method can be modified to utilize only
nodes in some connected identifying set by using dynamic
identifying sets, which are basically identifying codes that
form a walk in the graph, and therefore a connected set of
nodes (see [35]). In some cases the size of an identifying code
may be close to the size of a dominating set. For example, in
a random graph, the identifying code is only larger than a
dominating set by at most a logarithmic factor.

Still, in general the size of an identifying code will be larger
than the size of a dominating set. Moreover, identifying codes
may not exist for some graphs (though dominating sets always
exist). In such a case our proposed algorithms permit a small
number of nodes to share the same identifying sets (or label) -
minimally breaking the identifying property of the code. The
nodes that break the identifying property are distinguished
by other means, such as adding distinguishing bits to their
label. The maximum number of added bits in an efficient
scheme is approximately log2 of the size of the largest set

of indistinguishable nodes. Since the indistinguishable nodes
are guaranteed to be within 2 hops of each other, this task
becomes relatively simple.

B. Routing with an identifying code

Given identifying code for a graph G, our scheme induces
a compact routing scheme as follows: Number the codewrods
in C as c0, . . . , c|C|−1; the label of node i will be the
characteristic vector of its identifying set (and is thus unique).
At every node, the routing table will include one entry for
each of the codewords, which will include the port leading to
the shortest path to this codeword.

The routing function f at some node i will be as follows:

1) If t is i’s neighbor, send directly to t.
2) Otherwise, choose a codeword cj , such that cj ∈ B(i),

i.e., such that the j-th bit of Li is one. Route by the port
assigned to cj in the routing table Ti.

We note that the routing scheme presented here may be
extended to a hierarchical routing scheme using higher radius
identifying codes to further reduce the size of the routing
table [36].

For a graph permitting an identifying code, we can see that
the routing table size is at most |C|2 bits, the label size is |C|,
and the routing function runs in time linear in the label size.
If |C| is large but the size of IC(u) is small for all u ∈ V ,
a more compact label may be used by choosing a different
representation of the list: either a linked list of codewords or
a run length encoding of the label.

Theorem 6 The function f is a valid routing function.

Proof: At every node the routing table includes an entry
for each of the codewords. The entry contains the next port in
the shortest path routing to the codeword. Therefore, shortest
path routing to the selected codeword is guaranteed. Since
the selected codeword is a neighbor of the destination, the
packet will be directly routed once the codeword is reached.

Interestingly, the routing distance r(s, t) between nodes s
and t is almost identical to the shortest path distance d(s, t).

Theorem 7 The routing scheme above guarantees that
r(s, t) ≤ d(s, t) + 2.

Proof: If t is a codeword then routing to t is done using
the shortest path by the routing tables. Suppose t is not a
codeword, and assume c is in the identifying set of t. The
routing scheme routes to c by shortest path, and then to t
by one more hop. Therefore r(s, t) ≤ d(s, c) + 1. By the
triangle inequality d(s, c) ≤ d(s, t) + d(t, c) = d(s, t) + 1.
The theorem follows.

The possibility of routing using the codewords is based
on the code also being a dominating set. The creation of

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
5

10

15

20

25

30
n=128 random graph

Edge probability

A
ve

ra
ge

 ID
 c

od
e

si
ze

Lower bound (Karpovsky et. al.)

Ray et. al.
Centralized

Fig. 8. Average simple identifying code (r = 0) size of the proposed
rID − CENTRAL and ID-CODE algorithms for 128 nodes random graphs with
different edge probabilities, in comparison to a lower bound of [9].

32 64 128 256 384
2

3

4

5

6

7

8

9

10

11

Number of nodes (n)

|C
|/l

og
(n

)

Normailized average size of the identifying code (r=0)
for random graphs with edge probability p=0.1.

Moncel et al
Assymptotic bound

Ray et al

Centralized

Karpovsky et al
Lower bound

Fig. 9. Average size of the simple identifying code (r = 0) for random
graphs with edge probability p = 0.1, and various numbers of vertices.

an identifying set for identification purposes permits the use
of this set in a natural way to achieve compact routing.
The usage of the identifying code, rather than a possibly
smaller dominating set, has the advantage of labeling the
nodes in a natural way, requiring only an a priori agreement
on the labels of codewords (rather than all the nodes in the
graph). It also provides a higher robustness in the event of
infrastructure nodes failures. In addition it also permits the
distributed construction of the labeling scheme and routing
tables based on the distributed identifying code algorithms
presented earlier.

VI. SIMULATIONS

We have simulated the centralized (rID− CENTRAL), lo-
calized (rID− LOCAL) and distributed asynchronous and syn-
chronous (rID− ASYNC, rID− SYNC) identifying code algo-
rithms, and applied them to random graphs with different
edge probabilities, and to geometric random graphs with
different nodes densities. We have used the averaged size of
the identifying code as a performance measure.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
8

10

12

14

16

18

20

22

24

26
n=128 random graph

Edge probability

A
ve

ra
ge

 ID
 c

od
e

si
ze

Centralized

Distributed

Localized

L=5

L=10

L=20

Fig. 10. Average simple identifying code (r = 0) size of the proposed
rID− CENTRAL, rID− LOCAL, and rID− SYNCwith different number of
subslots parameter, L, for 128 nodes random graphs with different edge
probabilities.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

n=128 random graph

Edge probability

A
ve

ra
ge

 g
re

ed
y

ID
 c

od
e

si
ze

r=1

r=0

r=2

r=7

Theorem
5

r=2

r=4

r=6

ID-CODE
(Ray et al.)

Fig. 11. Centralized r-robust identifying codes algorithm (solid), ID-CODE
algorithm (dashed), and the asymptotic bound of Theorem 5 (dotted) for 128
nodes random graphs with different edge probabilities.

For the case of r = 0 (i.e., simple identifying code) the
simulation results are compared to ID-CODE, the algorithm
suggested by Ray et. al. in [6]. In addition, our figures mark the
combinatorial lower bound first derived by Karpovsky et. al.
in [9], and the asymptotic result (in n - the size of the graph)
of Moncel et. al. [16], who showed that an arbitrary collection
of an (asymptotically tight) threshold number of codewords is
an identifying code (with high probability).

Figure 8 compares our centralized greedy algorithm to ID-
CODE and the combinatorial lower bound, with our algorithm
demonstrating a significant improvement over ID-CODE. It
should be noted that as n grows, the curves for basically any
algorithm should converge very slowly to Moncel’s asymptotic
result, as illustrated in Figure 9. This apparently slow conver-
gence rate suggests that there is a lot to gain from using the
suggested algorithms, even for reasonably large networks [16].

Figure 10 shows the simulation results for the localized
and distributed algorithms compared to the centralized one.
Recall that the performance of the asynchronous algorithm,
rID− ASYNC, is identical to the localized approximation, and

0 20 40 60 80 100 120

0.2

0.3

0.4

0.5

nodes density

C
od

ew
or

d
de

ns
ity

Distributed
(Synchronized with L=10)

Localized approx.

Fig. 12. Codeword density (the size of the code normalized to a unit area)
for the localized (rID− LOCAL) and distributed (rID − SYNC) algorithms for
GRGs with different nodes densities (nodes per unit area).

the simulation results of the localized algorithm nearly match
the results of the centralized algorithms. Divergence is evident
for low edge probabilities where it is harder to find a domi-
nating set. Recall that there is a tradeoff between performance
and the runtime of the synchronized distributed algorithm,
rID− SYNC. The smaller the number of subslots parameter, L,
the shorter the runtime and the larger the degradation in per-
formance due to unresolved ties. Degradation in performance
is also more evident when ties are more likely to happen, i.e.,
when the edge probability approaches 0.5. The results of the
centralized r-robust identifying code algorithm are shown in
Figure 11 versus the theoretical results of Theorem 5, and
the results of the ID-CODE algorithm [6]. As in the simple
(r = 0) identifying code case, our algorithm outperforms the
ID-CODE algorithm for a small and moderate r.

Figure 12, 13 show the codeword density for geometric
random graphs using the localized and distributed approaches,
and the fraction of such graphs admitting an identifying code.
It also presents the largest fraction of indistinguishable nodes
obtained in the simulation. As can be seen the localized and
distributed approaches (with L = 10) yield very similar code
sizes. The fraction of graphs admitting identifying codes is
rather small (less than half the graphs) even for high node
densities. However, the monitoring and routing functionality
can still be restored by a special treatment of a small fraction
of indistinguishable nodes.

Finally, Figure 14 presents the ratio of the size of the
full routing table containing all nodes to the random table
containing only codewords for geometric random graphs.
In cases where no identifying code exists, information on
indistinguishable nodes was added to the routing table. The
table size for our identifying code based routing is clearly
much smaller than for the full routing table.

VII. CONCLUSIONS AND FURTHER STUDY

In this paper we have proposed a new polynomial-time
approximation algorithm for the minimum r-robust identifying
code problem with provable performance guarantees. Our
algorithm generates a robust identifying code whose size is
guaranteed to be at most 1 + 2 log(n) times larger than the
optimum, where n is the number of vertices. To the best of our

0 20 40 60 80 100 120
0

0.1

0.2

nodes density

fraction of
 identifying codes

Largest normalized number of
undestinguishable nodes

Fig. 13. Fraction of graphs admitting an identifying code, and maximum
fraction of indistinguishable nodes for GRGs with different node densities
(nodes per unit area).

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

Routing table size gain compared to shortest path scheme
for GRGs with different node density

node density

R
ou

tin
g

ta
bl

e
si

ze
 g

ai
n

Fig. 14. Ratio of the graph size to the size of the routing table using the
identifying code approach. This represents the ratio of the full routing table
containing all nodes to the more compact routing table presented here. Results
are for geometric random graphs with different node densities.

knowledge, this is the first such approximation in the literature.
We have also proposed two distributed implementations of
our algorithm. The first implementation provides a tradeoff
between runtime and performance guarantees, while using a
low communications load and only coarse synchronization;
the second implementation requires no synchronization at the
expense of more communication. Through simulations on
Erdos-Renyi random graphs and geometric random graphs,
we have shown that these algorithms significantly outperform
earlier identifying code algorithms.

Finally, we have demonstrated that the same identifying
code-based monitoring infrastructure can be reused to ef-
ficiently implement routing between any two nodes in the
network. Specifically, we have shown how to use routing tables
of the same size as the network’s identifying code to route
packets between any two nodes within two hops of the shortest
path. The significance of this result is two-fold: (i) we can
perform near-optimal routing while significantly compressing
routing table memory in each sensor; (ii) one algorithm can
be run to simultaneously setup both monitoring and routing

infrastructures, thus reducing the network setup overhead.
r-Robust identifying codes provide means of robustness to

the monitoring infrastructure in a straightforward sense: areas
continue to be monitored even if any subset of r monitors
malfunction. It seems that this robustness property can be
beneficial for the routing infrastructure as well; for example,
it can simplify or completely eliminate the rearrangement of
routing infrastructure during routers failures. Still, such routing
protocols are not trivial and should be carefully studied.

VIII. ACKNOWLEDGEMENTS

This material is based, in part, upon work supported by
the National Science Foundation under Grants 0132802, CCF-
0729158, CCR-0133521 and CNS-0435312.

REFERENCES

[1] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein,
“Energy-efficient computing for wildlife tracking: design tradeoffs and
early experiences with zebranet,” in ASPLOS-X: Proceedings of the
10th international conference on Architectural support for programming
languages and operating systems, 2002, pp. 96–107.

[2] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu,
S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and W. Hong, “A
macroscope in the redwoods,” in SenSys ’05: Proceedings of the 3rd
international conference on Embedded networked sensor systems, 2005,
pp. 51–63.

[3] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad, R. Govin-
dan, and D. Estrin, “A wireless sensor network for structural monitor-
ing,” in SenSys ’04: Proceedings of the 2nd international conference on
Embedded networked sensor systems, 2004.

[4] “Pump monitoring at a nuclear generating sta-
tion,” 2005, sensicast Systems, Inc. [Online]. Available:
http://www.sensicast.com/solutions/casestudys.php

[5] S. Ray, R. Ungrangsi, F. D. Pellegrinin, A. Trachtenberg, and
D. Starobinski, “Robust location detection in emergency sensor net-
works,” Proceedings INFOCOM, p. 10441053, April 2003.

[6] S. Ray, D. Starobinski, A. Trachtenberg, and R. Ungrangsi, “Robust
location detection with sensor networks,” IEEE Journal on Selected
Areas in Communications (Special Issue on Fundamental Performance
Limits of Wireless Sensor Networks), vol. 22, no. 6, August 2004.

[7] T. Berger-Wolf, W. Hart, and J. Saia, “Discrete sensor placement
problems in distribution networks,” SIAM Conference on Mathematics
for Industry, October 2003.

[8] ——, “Discrete sensor placement problems in distribution networks,”
Journal of Mathematical and Computer Modelling, vol. 42, no. 13, 2005.

[9] M. G. Karpovsky, K. Chakrabarty, and L. B. Levitin, “A new class of
codes for identification of vertices in graphs,” IEEE Transactions on
Information Theory, vol. 44, no. 2, pp. 599–611, March 1998.

[10] I. Charon, O. Hudry, and A. Lobstein, “Minimizing the size of an iden-
tifying or locating-dominating code in a graph is NP-hard,” Theoretical
Computer Science, vol. 290, no. 3, pp. 2109–2120, 2003.

[11] ——, “Identifying and locating-dominating codes: NP-completeness
results for directed graphs,” IEEE Transactions on Information Theory,
vol. 48, no. 8, pp. 2192–2200, August 2002.

[12] J. Moncel, “On graphs of n vertices having an identifying code of
cardinality �log2(n + 1)�,” Discrete Applied Mathematics, vol. 154,
no. 14, pp. 2032–2039, 2006.

[13] M. Laifenfeld, “Localization and identification in networks using robust
identifying codes,” Information Theory and Application Workshop, 2008.

[14] M. Laifenfeld and A. Trachtenberg, “Identifying codes and covering
problems,” To appear in IEEE Transaction on Information Theory, Sept.
2008.

[15] M. Laifenfeld, A. Trachtenberg, R. Cohen, and D. Starobinski, “Joint
monitoring and routing in wireless sensor networks using robust identi-
fying codes,” IEEE Broadnets 2007, pp. 197 – 206, September 2007.

[16] J. Moncel, A. Frieze, R. Martin, M. Ruszink, and C. Smyth, “Identi-
fying codes in random networks,” IEEE International Symposium on
Information Theory, Adelaide, 4-9 Sept., 2005.

[17] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms. MIT Press, 2001.

[18] D. S. Johnson, “Approximation algorithms for combinatorial problems,”
Journal of Computer and System Sciences, vol. 9, pp. 256–278, 1974.

[19] U. Feige, “A threshold of ln n for approximating set cover,” Journal of
the ACM, vol. 45, no. 4, pp. 634–652, 1998.

[20] V. Vazirani, Approximation Algorithms. Springer-Verlag, July 2001.
[21] M. Laifenfeld and A. Trachtenberg, “Disjoint identifying codes for

arbitrary graphs,” IEEE International Symposium on Information Theory,
Adelaide, Australia, 4-9 Sept 2005.

[22] S. Rajagopalan and V. Vazirani, “Primal-dual RNC approximation
algorithms for set cover and covering integer programs,” SIAM Journal
on Computing, vol. 28, pp. 525–540, 1998.

[23] Y. Bartal, J. W. Byers, and D. Raz, “Global optimization using local
information with applications to flow control,” in IEEE Symposium
on Foundations of Computer Science, October 1997, pp. 303–312.
[Online]. Available: citeseer.ist.psu.edu/bartal97global.html

[24] F. Kuhn and R. Wattenhofer, “Constant-time distributed dominating
set approximation,” Proceedings of the 22nd ACM Symposium on
Principles of Distributed Computing (PODC’03), pp. 25–32, July 2003.
[Online]. Available: citeseer.ist.psu.edu/kuhn03constanttime.html

[25] T. Müller and J.-S. Sereni, “Identifying and locating-dominating codes
in (random) geometric networks,” 2007, submitted to Combinatorics,
Probability and Computing. ITI Series 2006-323 and KAM-DIMATIA
Series 2006-797.

[26] D. Peleg and E. Upfal, “A tradeoff between space and efficiency for
routing tables,” J. ACM, vol. 36, pp. 510–530, 1989.

[27] M. Thorup and U. Zwick, “Compact routing schemes,” in Proceedings
of the thirteenth annual ACM symposium on Parallel algorithms and
architectures. ACM Press, 2001, pp. 1–10.

[28] L. Cowen, “Compact routing with minimum stretch,” Journal of Algo-
rithms, vol. 38, no. 1, pp. 170–183, 2001.

[29] C. Gavoille, “A survey on interval routing schemes,” Theoret. Comput.
Sci., vol. 249, pp. 217–253, 1999.

[30] A. T. Jeremy Blum, Min Ding and X. Cheng, in Handbook of Combina-
torial Optimization, D.-Z. Du and P. Pardalos, Eds. Kluwer Academic
Publishers, 2004, ch. Connected Dominating Set in Sensor Networks
and MANETs.

[31] J. Wu and H. Li, “A dominating-set-based routing scheme in ad hoc
wireless networks,” Telecommunication Systems, vol. 18, pp. 13–36,
2001.

[32] J. Wu, in Handbook of Wireless Networks and Mobile Computing,
I. Stojmenovic, Ed. Wiley, 2002, ch. Dominating-Set-Based Routing
in Ad Hoc Wireless Networks.

[33] Y. Chen, A. Liestman, and J. Liu, “Clustering algorithms for ad hoc
wireless networks,” In Ad Hoc and Sensor Networks, 2004. [Online].
Available: citeseer.ist.psu.edu/chen04clustering.html

[34] J. Yu and P. Chong, “A survey of clustering schemes for mobile ad hoc
networks,” IEEE Communications Surveys and Tutorials, vol. 7, pp. 32–
48, 2005.

[35] I. Honkala, M. Karpovsky, and L. Levitin, “On robust and dynamic
identifying codes,” IEEE Transactions on Information Theory, vol. 52,
no. 2, pp. 599–612, February 2006.

[36] I. Abraham and D. Malkhi, “Compact routing on euclidean metrics,” in
23rd ACM Symposium on Principles of Distributed Computing (PODC
2004). ACM Press, 2004.

IX. APPENDIX

We provide here the proof of Theorem 5. Recall that
G(n, p) = (V, E) is a random graph of n vertices where the
existence of an edge between any pair of distinct vertices is
determined independently and in random with probability p.

Proof of Theorem 5: The proof is based on developing the
probability that a subset of size c is not a robust identifying
code and showing that this probability goes to zero asymptot-
ically in n. But first we show that the expression for c can

always be made feasible under the settings of the theorem,
namely that c ≤ n.

Observe that log 1/q = log(1 + (1/q − 1)) ≥ (1/q − 1) −
1
2 (1/q−1)2 = (1/q−1)[1− 1

2 (1/q−1)] ≥ 1
2 (1/q−1), where

the last inequality follows from the fact that 0.5 ≤ q ≤ 1.
If r ≤ O(log log log n) then the bound on c can be upper
bounded by

2 log n + 2r log log n

log 1/q
≤ 4q (log n + r log log n)

1 − q

≤ 4q (log n + O(log log log n) log log n)

1 − q

≤ O(log n)

1 − q

Since 1− q ≥ Ω
(

log n
n

)
, it follows that there exist constants

K > K0 > 0 such that for large enough n, 1− q ≥ K0 log n
n ,

and for large enough K our assertion that c ≤ n can be made
true.

We next show that any subset of size c is almost surely
an r-robust identifying code. Fix C to be a code of size c
and let q = p2 + (1− p)2 be the probability that a codeword
in C does not distinguish between a pair of vertices in V ,
namely the probability that the codeword doesn’t appear in
the pair’s difference set. In the rest of the proof we develop
an upper bound on the probability that C is not an r-robust
identifying code and show that for a certain size c it goes to
zero asymptotically in n.

By Lemma 1 if C is not r-robust then there must be a pair
of distinct vertices u, v ∈ V , for which the difference set under
C has at most 2r elements. The probability of such an event,
Pe(u, v), depends whether either u or v, or both are in C:

1) Both u, v are in C. There are two possibilities here
that need to be addressed separately; either there is an
edge between u and v, and hence there can be at most
2r distinguishing codewords from the remaining c − 2
codewords, namely Pe(u, v|u, v ∈ C, (u, v) ∈ E) =
p
∑2r

i=0

(
c−2

i

)
(1−q)iqc−2−i, or there is no edge between

u and v, implying that both u and v are already in the
distinguishing set; therefore there can be at most 2r− 2
additional distinguishing codewords from the remaining
c − 2 codewords, namely Pe(u, v|u, v ∈ C, (u, v) �∈
E) = (1− p)

∑2r−2
i=0

(
c−2

i

)
(1 − q)iqc−2−i.

In total we have:

Pe(u, v|u, v ∈ C) =
∑2r−2

i=0

(
c−2

i

)
(1 − q)iqc−2−i

+p
∑2r

i=2r+1

(
c−2

i

)
(1 − q)iqc−2−i.

2) Exactly one of u, v is in C. Similarly to the previous
case there are two possibilities here depending whether
an edge between the two vertices exists. In total the
probability Pe is given by

Pe(u, v||{u, v} ∩ C| = 1) =
∑2r−1

i=0

(
c−1

i

)
(1 − q)iqc−1−i

+p
(

c−1
2r

)
(1 − q)2rqc−1−2r.

3) Neither u nor v are in C. Here there are at most 2r
distinguishing codewords in C.

Pe(u, v|u, v /∈ C) =
2r∑

i=0

(
c

i

)
(1 − q)iqc−i.

We use the union bound to set an upper bound on the
probability that C is not an r-robust identifying code:

P (C is not r-robust) ≤
(

c

2

)
Pe(u, v|u, v ∈ C) +

(n − c)cPe(u, v||{u, v} ∩ C| = 1) +(
n − c

2

)
Pe(u, v|u, v /∈ C)

≤ 3n2qc−2
2r∑

i=0

(
c

i

)(
1 − q

q

)i

≤ 3n2qc−2

(
c(1−q)

q

)2r

− 1

c(1−q)
q

− 1

≤ 3n2qc−2

(
c(1−q)

q

)2r

c(1−q)
q

− 1
.

Next consider a code C of size c = 2 log n+(2r−1+ε) log log n
log 1/q

for arbitrary small ε > 0, and r = O(log log log n).
Under this selection of parameters we show that the follow-

ing equations holds:

qc = n−2(log n)−2r+1−ε (3)

c2r ≤ O

((
2

log(1/q)

)2r

(log n)2r

)
(4)

1− q

log 1/q
= Θ(1) (5)

c(1 − q) ≥ Ω(log n). (6)

Equation (3) is straightforward.
To see why Equation (4) is true observe that

c2r =
(

2
log(1/q)

)2r

(log n)2r

(
1 + O

(
log log n

log n

))2r

≤
(

2
log(1/q)

)2r

(log n)2reO(1).

Equation (5) follows form the fact that 0.5 ≤ q ≤ 1 and
hence 0.5

log 2 ≤ 1−q
log 1/q = 1−q∑

i=1
(1−q)i

i

= 1

1+
∑

i=1
(1−q)i

i+1

≤ 1.

Finally Equation (6) follows from a directs substitution of
c in Equation (5).

We can use these equations to complete the proof by further
bounding the probability that C is not an r-robust identifying
code:

P (C is not r-robust) ≤ O

⎛
⎜⎝(log n)1−ε

(
2(1−q)

q log(1/q)

)2r

cq(1− q)− q2

⎞
⎟⎠

≤ (log n)1−ε (O(1))2r

Ω(log n)

≤ O

(
log log n

(log n)ε

)
= o(1).

