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Abstract—We consider a wireless provider who caters to two
classes of customers, namely primary users (PUs) and secondary
users (SUs). PUs have long term contracts while SUs are admitted
and priced according to current availability of excess spectrum.
The average rate at which SUs attempt to access the spectrum
is a function on the currently advertised price, referred to as
the demand function. We analyze the problem of maximizing the
average profit gained by admissions of SUs, when the demand
function is unknown. We introduce a new on-line algorithm,
called Measurement-based Threshold Pricing (MTP), that requires
the optimization of only two parameters, a price and a threshold,
whereby SU calls are admitted and charged a fixed price when
the channel occupancy is lower than the threshold and rejected
otherwise. At each iteration, MTP measures the average arrival
rate of SUs corresponding to a certain test price. We prove that
these measurements of the secondary demand are sufficient for
MTP to converge to a local optimal price and corresponding
optimal threshold, within a number of measurements that is
logarithmic in the total number of possible prices. We further
provide an adaptive version of MTP that adjusts to time-varying
demand and establish its convergence properties. We conduct nu-
merical studies showing the convergence of MTP to near-optimal
online profit and its superior performance over a traditional
reinforcement learning approach.

Index Terms—Management of electromagnetic spectrum, sec-
ondary markets, congestion pricing, real-time algorithms.

I. INTRODUCTION

As a result of continuing efforts to deregulate wireless
spectrum management, policy agencies are granting providers
with the right to lease their spectrum [2]. This policy reform
promises more efficient use of excess spectrum, which other-
wise may be wasted. Implications of this reform can be seen in
the novel services provided by spectrum brokerage companies,
which match potential lessees and spectrum providers (licence
holders). One such service is an on-line spectrum trading and
leasing platform, called SpecEx.com, which was launched by
Spectrum Bridge Inc. in 2008 [3].

The aforementioned spectrum reforms call for the design of
efficient pricing strategies, since a spectrum provider strives to
maximize its profit from leasing its excess spectrum. In this
paper, we aim at developing a realistic pricing framework to
achieve this goal. We consider a set-up consistent with the
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private commons model envisioned by FCC [2, 4], in which a
wireless spectrum provider caters to two classes of customers,
namely primary users (PUs) and secondary users (SUs). PUs
have long term contracts and are not subjected to on-line pric-
ing. On the other hand, SUs are admitted and priced according
to the current availability of excess spectrum. The average
rate at which SUs attempt to access the spectrum depends
on the currently advertised price. The function describing this
dependency is referred to as the demand function. The provider
must ensure that admission of SUs does not significantly affect
quality of service of PUs. This is because presence of SUs may
increase blocking of PU calls, i.e., the rejection of PUs due to
lack of channel availability, and hence lead to a punishment
in the form of loss of business due to poor service.

The problem of pricing of shared resources has been widely
studied in the literature [5–7]. Recent works introduced pric-
ing strategies specifically tailored for secondary access of
resources [8–10]. Yet, the overwhelming majority of papers in
this area assume that the demand function of users is known
and static (see Sec. II for exceptions). Precise knowledge of
the demand function, which may vary over time, is, however,
hard to acquire, and raises the question of how to apply this
body of existing work in practice.

The contributions of this paper are the following. First,
we propose a new on-line algorithm, called Measurement-
based Threshold Pricing (MTP), for efficiently pricing sec-
ondary spectrum access and maximizing average profit when
the demand function is unknown, but satisfies certain mild
assumptions. MTP belongs to the class of occupancy-based
pricing policies that depend only on the total number of
ongoing (SU and PU) calls in the system, and whose perfor-
mances are insensitive to the call length distribution, except
through the mean [11]. While a general occupancy-based
policy (including the optimal one) requires the optimization
of a different price for each channel occupancy level, MTP
requires the optimization of only two parameters, namely, a
threshold and a price. Thus, SU calls are admitted and charged
a fixed price (per unit of time or per call) if the number
of occupied channels upon their arrivals is smaller than the
specified threshold, and rejected otherwise.
MTP is an iterative algorithm that applies Fibonacci search

to optimize an unknown profit function that depends on price
only. At each iteration, MTP measures the average arrival rate
of SUs corresponding to a certain test price and narrows
down the search interval. We show that these price-based
measurements are sufficient to derive both a locally optimal
price and optimal threshold. Though the profit function may
be multimodal, we analytically prove that MTP converges to
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a local optimum as fast as if the function were unimodal
(a function is unimodal over a certain interval, if it has a
single maximum over that interval). Specifically, we show
that the number of iterations (measurements) required by MTP
is logarithmic in the total number of possible prices and
independent of other variables, such as the total number of
channels.

Next, we evaluate through simulations the performance of
MTP with finite measurement windows, which implies that the
estimation of the SUs arrival rate at each iteration is noisy.
Defining the mean call length to be one unit of time and setting
the measurement window length to be one time unit as well,
we show that, on average, MTP converges to a profit within
10% of the optimal occupancy-based policy (which knows the
demand function a-priori) within only 5 time units, assuming
a range of 104 different possible prices. Larger measurement
windows of length 10 and 100 time units, bring the average
profit of MTP within 5% and 2% of the optimal occupancy-
based policy, respectively. We contrast the performance of MTP
to a traditional Q-Learning algorithm, which is shown to only
achieve about one third of the profit of MTP.

Last, we consider the case when the arrival rate of PUs and
the demand function of SUs are time-varying. We introduce
an extended version of MTP, called Adaptive Measurement-
based Threshold Policy (AMTP), for this purpose. AMTP uses
a hill climbing method to determine an interval that contains
a local optimum of the profit function. We prove that AMTP
converges to this local optimum by following similar steps to
MTP. We simulate AMTP for scenarios where the arrival rate
of PUs and the demand function of SUs change throughout
the course of a day. These simulations show that compared
to the optimal policy (for which the demand function of SUs
and arrival rate of PUs are known), AMTP loses only a small
portion of the total profit gained during the course of a day.

The rest of this paper is organized as follows. In Section II,
we discuss related work. In Section III, we introduce the
system model and problem formulation. In Section IV, the
MTP algorithm for pricing with unknown demand function is
introduced and analyzed. In Section V, we propose the AMTP
algorithm for pricing spectrum with time-varying user demand.
We provide numerical examples in Section VI and conclude
the paper in Section VII.

II. RELATED WORK

Our work is related to the problem of congestion-based
pricing, that is, pricing that depends on the current level
of resource usage in the system. Ref. [5] studies pricing of
network resources when the arrival rate of all users can be
regulated with price. It shows that static pricing (a single price
is advertised regardless of occupancy level) achieves good
performance and is optimal in some asymptotic regimes. This
result was extended in [6] in the context of large network
asymptotics.

Ref. [8] analyzes spectrum pricing with two different types
of users: elastic and non-elastic. This paper shows that static
pricing does not perform well with both elastic and non-elastic
users, but threshold pricing performs close to optimal. In

particular, the profit region of threshold pricing (i.e., the range
of PU arrival rates for which positive profit can be achieved)
is proven to be optimal.

Ref. [9] studies optimal and static pricing policies within the
context of a generic rental management optimization problem
with two types of customers, which are akin to our SUs
and PUs. Ref. [12] provides a game theoretic analysis of
revenue maximization problem for secondary spectrum access.
Ref. [10] studies secondary spectrum access pricing strategies
capturing the effects of network-wide interferences. All the
previous work mentioned above assume a known demand
function, in contrast to the model presented in this paper.

Next, we present related work on the less studied field of
pricing with unknown demand function. Ref. [13] introduces
an on-line algorithm for static pricing of calls. It considers
a parametric demand function (meaning that the demand
function depends on a fixed number of unknown parameters),
while we consider a more general non-parametric demand
function. Ref. [14] considers the problem of a seller holding
an initial inventory of a single class of products which must be
sold over a finite time period. The goal is to dynamically adjust
prices in order to maximize the average profit. In contrast,
our paper considers the temporal allocation of resources (i.e.,
channels) by a provider to primary and secondary users. The
total amount of resources is fixed, and the goal of the provider
is to maximize average profit over an infinite time horizon
from the allocation of resources to the users. Ref. [15] estab-
lishes a critical price value above which secondary access is
profitable for a provider if there exists any secondary demand.
While [15] assumes the demand function to be unknown, its
focus is on profitability (i.e., ensuring profit) rather than profit-
maximization as considered in our paper.

A possible approach to deal with unknown demand func-
tions is to apply one of the well-known reinforcement learning
algorithms, such as Q-Learning [16, 17]. Yet, because these
algorithms are generic, they have the disadvantage of not
exploiting the specific structure of the problem at hand. In
particular, these algorithms generally do not scale well with
large state-space or action-space because they need to find the
optimal action for each state. On the other hand, the new MTP
and AMTP algorithms presented in this paper only need to learn
two parameters (threshold and price) to achieve near-optimal
performance.

III. MODEL AND PROBLEM FORMULATION

In this section, we introduce our model and objective. We
consider a single-cell wireless network which provides access
to C channels. Calls from PUs arrive according to a Poisson
process with fixed rate �p > 0. A punishment in the amount of
K monetary units is imposed on the provider if all the channels
are busy and a PU call is blocked. SU call arrivals also form
a Poisson process with rate �SU > 0 that is independent of
the PUs. We note that the measurement study in [18] justifies
the use of the Poisson process to model call arrival rates.
When an SU call arrives, it accepts with probability p(u) the
price u advertised by the provider and attempts to join the
network. Therefore, the rate at which SUs attempt to access



3

the spectrum is �s(u) = �SUp(u). We refer to �s(u) as the
demand function. This function is unknown a-priori.

Some of the results in this paper assume one or both
of the following assumptions on the demand function. We
specifically state whenever these assumptions are required.

Assumption 3.1: There exists a maximum price umax for
which �s(umax) = 0. Moreover, �s(u) is a strictly decreasing,
differentiable function in u over the interval [0, umax].
The second assumption enables development of our efficient
on-line optimization procedure presented in Section IV.

Assumption 3.2: Let u(�s) be the inverse of �s(u) on the
interval 0 ≤ u ≤ umax. Then �su(�s) is concave with respect
to �s.
Assumption 3.2 implies that the marginal instantaneous profit
is decreasing with respect to user demand, and ensures a “well-
behaved” revenue function (that is, the function �su(�s) is
either monotone or unimodal in �s [19]). This assumption is
widely made in the literature [5, 14, 19] and is satisfied by va-
riety of demand functions such as functions with exponential,
linear and polynomial decay.

In the model under consideration, once an SU is admitted, it
occupies the channel throughout the entire length of its call. A
service level agreement for PUs can be achieved by choosing
an appropriate punishment K for blocked PU calls (higher K
means lower PU blocking probability).

We assume that PU and SU call lengths have a common
general distribution with mean 1/�. Therefore, once accepted,
PU and SU calls are statistically indistinguishable. This as-
sumption is valid for scenarios where PUs and SUs utilize
similar applications. The call length distribution is unknown,
except for its mean. Without loss of generality, we assume
that � = 1, i.e., the mean call length time is one unit of time.
Note that while many earlier papers in the literature assume
(for analytical tractability) that call lengths are exponentially
distributed, a recent study based on measurement of real traces
in a cellular network shows that this assumption does not hold
in practice [18].

In this paper, we restrict our attention to pricing policies that
are based solely on the total number (PU and SU) of ongoing
calls in the system. We refer to these policies as occupancy-
based policies. Note that the total occupancy is not Markovian
unless call lengths are exponentially distributed; hence an
optimal policy would typically entail further information such
as the amount of time each call has already been in the system.
An occupancy-based pricing policy sets an advertised SU price
un when there are n < C ongoing calls in the system. This
price can either be applied on a per call basis or it can be based
on the length of a call. In this latter case, un corresponds to
the price charged per unit of time. Since � = 1, un represents
in that case the average revenue per call, where the average is
taken over all of the calls joining the system in the presence
of n ongoing calls upon their arrivals.

Therefore, a pricing policy can be defined as a vector u =
(u0, u1, u2, ..., uC−1). We are interested in finding the vector
u which maximizes the average profit per unit of time gained
from accepting SUs. Prices for u are selected from a discrete
set U, taking values between 0 and umax. The price granularity
is Δu, i.e., any two consecutive prices are Δu monetary units

apart. Thus, from now and on, the interval notation [ua, ub]
represents the discrete set of prices {ua, ua + Δu, . . . , ub}.

Due to practical concerns, we limit the search for an optimal
pricing policy to occupancy-based policies; the specific form
of the call length distribution is often unavailable or cannot be
properly formalized. Even in such cases where the distribution
is known, it is hard to price optimally due to uncertainty
in the future length of ongoing calls. On the other hand,
occupancy-based policies are provably insensitive to the call
length distribution, except through the mean, that is, they
induce the same equilibrium occupancy distribution for all call
length distributions with the same mean [1, Theorem 4.2][11,
Theorem 3.2.2]. Extensive numerical studies conducted in [1,
11] for call lengths with various phase-type distributions (i.e.,
hyper-exponential, hypo-exponential, and Coxian) indicate that
the optimal occupancy-based policy performs very close to
the optimal general pricing policy (the maximum observed
difference in the profit is about 1%). Note that if the call length
distribution is exponential, then the optimal occupancy-based
policy is the same as the optimal general pricing policy due
to the memoryless property of the exponential distribution.

A. Optimal occupancy-based dynamic and threshold pricing
policies

The results in this section require Assumption 3.1 on the
demand function. Based on our model, the average profit
function for a given dynamic occupancy-based pricing policy
with price vector u is given by:

R =
∑C−1
n=0 �n�s(un)un − �C�pK + E(�p, C)�pK, (1)

where �n is the steady-state probability of finding n users
(PUs and SUs) in the system, with 0 ≤ n ≤ C, and where
E(�p, C) is the blocking probability of PUs in the absence
of SU arrivals. This quantity corresponds to the well-known
Erlang-B formula

E(�p, C) =

�C
p

C!∑C
n=0

�n
p

n!

. (2)

The first term in Eq. (1) represents the sum of the average
revenues collected from SUs in each state. Specifically, for
each state 0 ≤ n ≤ C − 1, we multiply the average rate
of SU calls joining the system �s(un) with the (average)
revenue gained per call un. Then, the resulting term is scaled
with the probability that an SU call arrival finds n users in
the system. Due to the PASTA (Poisson Arrival See Time
Averages) property, this probability is the same as the steady-
state probability �n. The second term in Eq. (1) is the average
revenue loss due to rejected PUs. This quantity corresponds
to the probability �C that a PU call arrival finds the system
full multiplied with the average rate of PU call arrivals �p and
the punishment K incurred for each blocked PU call. The last
term in Eq. (1) acts as a “normalization” term to ensure that
the profit is zero when all SUs are rejected. Thus, R represents
the difference in the profit with respect to the case where no
SU is admitted. Note that E(�p, C) is nothing but �C in the
absence of SUs.
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The steady-state probabilities �n are unknown a-priori, as
their computations require knowledge of the arrival rates of
SUs [8]. These rates are estimated using the MTP algorithm
described in the sequel.

The average profit function in Eq. (1) and the optimal
occupancy-based policy that maximizes it do not depend on
the call length distribution, except through the mean. Thus,
the optimal occupancy-based policy can be as well calculated
by assuming that the call lengths are exponentially distributed.
Under this assumption, occupancy-based pricing can be mod-
eled as an average reward dynamic programming problem
with C states, and the optimal prices can be calculated using
standard techniques such as value iteration, policy iteration, or
linear programming [11].

In a threshold pricing policy, SU calls are admitted and
charged a price u when the channel occupancy is smaller than
some threshold T and rejected otherwise. This is equivalent
to having the price vector

u = (u, u, ...., u︸ ︷︷ ︸
T

, umax, umax, ..., umax︸ ︷︷ ︸
C−T

).

Consequently, the total arrival rate until the occupancy level
reaches T channels is �p + �s(u) and �p afterwards.

Assuming the above price vector, the average profit of a
threshold pricing policy is

RT (u) =
∑T−1
n=0 �n�s(u)u− �C�pK + E(�p, C)�pK. (3)

The optimization of the threshold pricing policy involves
finding the optimal values for the price u and threshold T .

IV. SPECTRUM PRICING WITH UNKNOWN DEMAND
FUNCTION

Typically, the SU demand function �s(u) is unknown. In
this section, we introduce an algorithm, called Measurement-
based Threshold Pricing (MTP), to calculate the threshold
pricing policy under this condition.

When �s(u) is unknown, a formula for the threshold pricing
profit function RT (u) is unavailable. However, we can mea-
sure the arrival rate of SUs for a specific price u and threshold
T and calculate the average profit RT (u) for that price and
threshold. Measurements are conducted by observing the rate
of SUs who accept the advertised price for a sufficiently long
period of time. In this section, we assume that measurements
are exact. In Section VI, we numerically study the robustness
of MTP to noise due to finite measurement windows. The
threshold T used during the measurement is irrelevant due
to the following property of RT (u).

Lemma 4.1: For a given price u, RT (u) can be calculated
for any threshold 1 ≤ T ≤ C using a single measurement
window.
This lemma is a direct consequence of Eq. (3), which can
be calculated for any threshold and a given price once the
corresponding �s(u), which is independent of the current
threshold, is acquired as a result of measurements.

In practice, measurements have to be performed while
the system is in operation. These measurements are often
done with non-optimal parameters which causes profit loss.
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Fig. 1. Multimodal Rmax(u) and RT (u) for T = 12 and T = 13 on
which two maxima occur. System parameters are C = 20, �s(u) = (10 −
u)+, �p = 12.5 and K = 120.

Therefore, our main goal is to calculate the optimal threshold
pricing policy with as few measurements as possible.

A. Properties of the threshold pricing profit function
The properties we introduce in this section require both

Assumption 3.1 and Assumption 3.2 on the demand function.
These assumptions ensure that, for a fixed threshold, the
profit function RT (u) is unimodal with respect to price in
[0, umax] [8, Theorem 5.5]. This property enables efficient
calculation of the optimal price for a given threshold. However,
finding the optimal threshold requires a search over all possible
threshold values. We circumvent this problem by introducing
an auxiliary profit function which depends on price only:

Rmax(u) = max1≤T≤C(RT (u)) (4)

For a given price u, this function can be calculated with a
single measurement window thanks to Lemma 4.1.

During our numerical studies, we observed that, for certain
range of system parameters, Rmax(u) possesses the following
property.

Claim 4.2: Rmax(u) can be multimodal in u for certain
system parameters and demand functions.

Proof: Consider a 20 channel system with linear demand
function �s(u) = (10 − u)+, where (. . .)+ ≜ max(. . . , 0).
The PU arrival rate is �p = 12.5 and the penalty for blocking
a PU user is K = 120. The function Rmax(u), for this set up,
is plotted in Figure 1. This specific function has two maximum
points at u = 7.91 and at u = 8.21. The corresponding
maximizing thresholds are T = 12 and T = 13, respectively.

Claim 4.2 is a rather undesirable property from an optimiza-
tion point of view. Nevertheless, in the next section, we show
that a local optimal price and threshold can be calculated as
efficiently as if Rmax(u) were unimodal.

B. Measurement-based Threshold Pricing (MTP)
In this section, we describe the MTP algorithm and prove

that it converges to a local maximum of Rmax(u). As ex-
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pected, when the function is unimodal it converges to the
global maximum. During our numerical studies, we observed
that when Rmax(u) is multimodal, the average profits of local
maximums are very close to each other, as observed in Fig.
1. Therefore, we do not expect significant profit loss when
the algorithm converges to a local maximum rather than the
global one.

While one can calculate the value of Rmax(u) for a given
price with a single measurement window, the same is not true
for its derivative which can be undefined at certain points
(transition points from one RT (u) to another). Therefore,
we base the MTP algorithm on the derivative-free Fibonacci
search which was first introduced by Kiefer [20]. Fibonacci
search is a sequential line search algorithm which maximizes
a unimodal function. In every iteration, it makes a function
evaluation. Together with the information from earlier eval-
uations, it reduces the minimum interval where the optimal
point is known to lie. This interval is referred to as interval
of uncertainty. Under the following criteria of optimality,
Fibonacci search is optimal for searching the maximum of
a unimodal function. If the number of function evaluations is
fixed in advance, Fibonacci search finishes with the largest
ratio of initial size of interval of uncertainty to its final
size [20].

In our case, function evaluations, i.e., measurements are
conducted for discrete values of price. Therefore, we utilize
a discrete version of Fibonacci search (also known as lattice
search)[21]. While Fibonacci search might fail to converge
when the function is multimodal, MTP converges to a local
maximum of Rmax(u). We manage this by taking advantage of
the fact that Rmax(u) is the maximum of unimodal functions
RT (u) for 1 ≤ T ≤ C. Algorithm 1 provides a pseudo-code
for MTP which we next explain.

In the itℎ iteration, where i ≥ 0, MTP attempts to maximize
the unimodal function RT∗

i
(u) the same way as Fibonacci

search would do. Here, T ∗i represents the active threshold
in iteration i which we calculate in the following manner.
Let S be the set of prices for which measurements have
been obtained so far, i.e., if u ∈ S, then we know the
corresponding arrival rate �s(u). For u ∈ S, we can then
calculate RT (u) for all values of T and deduce the value of
Rmax(u) as well. Let u∗i = arg maxu∈S(Rmax(u)) be the
price which yields the maximum profit observed so far. Then,
T ∗i = arg max1≤T≤C(RT (u∗i )) is the optimal threshold for
the price u∗i and RT∗

i
(u∗i ) = Rmax(u∗i ) is the maximum profit

calculated so far. In every iteration, MTP makes measurements
for a new test price. At the end of every iteration, the active
threshold is updated according to these new measurements.
MTP chooses the new test price according to Fibonacci

numbers. Fibonacci numbers are defined such that Fk =
Fk−1+Fk−2 where F0 = 0 and F1 = 1. Let, Ûi be the interval
of uncertainty in the itℎ iteration. MTP requires that the initial
interval of uncertainty Û0 contains exactly Fm+1 prices where
m is the smallest integer which satisfies ∣U∣ ≤ Fm+1. Recall
that U is the set of all possible prices. In order to comply with
this condition, we insert Fm + 1− ∣U∣ fictitious prices to the
end of the price series. We assume that the fictitious prices
are all equal to umax.

Algorithm 1 Measurement-based Threshold Pricing (MTP)

Calculate m and construct Û0

u0a ← u0Fm−2

u0b ← u0Fm−1

Make measurements for u0a and u0b
u∗0 = arg maxu∈S(Rmax(u))
T ∗0 = arg max1≤T≤C(RT (u∗0))
for i = 0 to m− 4 do

if RT∗
i

(uia) ≥ RT∗
i

(uib) then
Ûi+1 = [ui0, u

i
b]

Make measurements for ui+1
a

else
Ûi+1 = [uia, u

i
Fm−i

]

Make measurements for ui+1
b

end if
u∗i+1 = arg maxu∈S(Rmax(u))
T ∗i+1 = arg max1≤T≤C(RT (u∗i+1))

end for
return u∗m−3 and T ∗m−3

Let uij represent the jtℎ price in Ûi, where j ≥ 0. Then,
Û0 = {u00, u01, u02, .., u0Fm

} which naturally contains all local
optima of Rmax(u). In every iteration, the size of the interval
of uncertainty is reduced such that ∣Ûi∣ = Fm−i + 1 i.e.,
Ûi = {ui0, ui1, ui2, ..., uiFm−i

} = [ui0, u
i
Fm−i

]. MTP reduces Ûi
by comparing RT∗

i
(u) for two internal test prices, uiFm−i−2

and uiFm−i−1
. For the sake of simpler notation, we denote

these prices as uia and uib, respectively.
The algorithm starts with an initialization step in which m

is calculated and Û0 is constructed. Then, measurements for
u0a and u0b are obtained. The initialization step ends with the
calculation of u∗0 and T ∗0 .

Each iteration starts by comparing the value of RT∗
i

(uia) and
RT∗

i
(uib). If RT∗

i
(uia) ≥ RT∗

i
(uib), then we have RT∗

i
(uia) ≥

RT∗
i

(uib) ≥ RT∗
i

(uiFm−i
). Since RT∗

i
(u) is a unimodal func-

tion, the optimal price for RT∗
i

(u) can not be in [uib+1, u
i
Fm−i

].
Therefore, the interval of uncertainty is reduced to Ûi+1 =
[ui0, u

i
b]. For the next iteration we need ui+1

a ∈ S and
ui+1
b ∈ S. Since ui+1

b = uia (i.e., ui+1
Fm−i−1

= uiFm−i−2
), we

only need to make measurements for ui+1
a .

If RT∗
i

(uia) < RT∗
i

(uib), we have RT∗
i

(ui0) ≤ RT∗
i

(uia) <
RT∗

i
(uib). Due to similar arguments to those in the previ-

ous case, the interval of uncertainty is reduced to Ûi+1 =
[uia, u

i
Fm−i

]. In this case ui+1
a = uib and we make a measure-

ments for ui+1
b .

At the end of each iteration, u∗i+1 and T ∗i+1 are updated for
the use of next iteration. The algorithm terminates after m−3
iterations (when i = m − 4), and returns u∗m−3 and T ∗m−3,
which are local optimal price and threshold of Rmax(u), as
proven next.

We start with the following lemma.
Lemma 4.3: When the active threshold is changed to T ∗i ∕=

T ∗i−1, the optimal price for RT∗
i

(u) is in Ûi.
Proof: Assume that the active threshold is changed to T ∗i

due to the measurements for price uia. This means, RT∗
i

(uia)
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] to [uia, u
i
Fm−i

]

is the maximum profit calculated so far, i.e., RT∗
i

(uia) >
RT∗

i
(ui0) and RT∗

i
(uia) > RT∗

i
(uiFm−i

) Since ui0 < uia <

uiFm−i
and RT∗

i
(u) is unimodal, the optimal price for RT∗

i
(u)

must be in Ûi. Same arguments are true if the measurements
had been conducted for uib.

Theorem 4.4: MTP converges to a local optimum of
Rmax(u) in m−3 iterations and requires m−1 measurement
windows, where m = mink{k : ∣U∣ ≤ Fk + 1}.

Proof: We first prove the first part of the theorem. In
the last iteration i = m − 4, the interval of uncertainty is
reduced to Ûm−3 which contains ∣Ûm−3∣ = 4 different prices,
and measurements are conducted for the only price in Ûm−3
which has not been yet tested (either um−3a or um−3b ). Finally,
u∗m−3 and T ∗m−3 are calculated. Even though T ∗m−3 could be
different from T ∗m−4 (the last active threshold), u∗m−3 is the
optimal price of RT∗

m−3
(u) due to Lemma 4.3 and the fact

that u∗m−3 is the best performing price in Ûm−3. u∗m−3 is a
local optimum of Rmax(u) because it is the optimal price of
RT∗

m−3
(u) and T ∗m−3 is the optimal threshold for u∗m−3.

As for the second part of the theorem, MTP makes new
measurements in every iteration. Together with the initial two,
the algorithm requires m− 1 measurement windows.

In Fig. 2, we give a graphical representation of a sample
MTP iteration. In this example, the initial active threshold is
T ∗i , the interval of uncertainty is Ûi = [ui0, u

i
Fm−i

] and mea-
surements are made for uib. As a result of these measurements,
the active threshold will be changed to T ∗i+1 ( T ∗i ∕= T ∗i+1)
because RT∗

i+1
(uib) is the maximum profit calculated so far.

Therefore, the interval of uncertainty is reduced according to
RT∗

i+1
(u) to Ûi+1 = [uia, u

i
Fm−i

].
In conclusion to this section, we note that the number

of measurement windows required by MTP is the same as
in the Fibonacci search which is log�(∣U∣) + O(1) where
� = (1 +

√
5)/2 is the golden ratio [22]. MTP can easily

be adapted to converge to the global maximum of Rmax(u).
To do so, the threshold should be fixed throughout the MTP

Algorithm 2 Adaptive Measurement-Based Threshold Policy
(AMTP)

1: ũ← u∗ − Δu
2: Make measurements for ũ
3: if Rmax(ũ) > Rmax(u∗) then
4: Set direction of exploration d = −1
5: else
6: ũ← u∗ + Δu
7: Make measurements for ũ
8: Set direction of exploration d = 1
9: end if

10: while Rmax(ũ− dΔ) ≤ Rmax(ũ) do
11: ũ← ũ+ dΔu
12: Make measurements for ũ
13: end while
14: Apply MTP on the interval [min(ũ, ũ −

2dΔu),max(ũ, ũ− 2dΔu)]
15: return u∗ and T ∗

algorithm. This should be repeated for all possible thresholds
1 ≤ T ≤ C. However, in this case, the algorithm would
require C(log�(∣U∣) +O(1)) measurement windows instead.

V. ADAPTIVE MEASUREMENT-BASED THRESHOLD
POLICY (AMTP)

In this section, we demonstrate that the MTP algorithm can
be used to adapt the operating price and threshold when the
arrival rate of PUs and the demand function of SUs change
over time. We refer to the extended algorithm as Adaptive
Measurement-based Threshold Policy (AMTP). This algorithm
is invoked periodically or when a significant change in PU or
SU arrival rate is detected. As in Section IV, in order to prove
convergence, we assume that measurements of the arrival rates
are exact.

One straightforward way to adapt MTP is to restart it on the
entire interval of prices [0, umax] whenever needed. However,
the profit loss due to testing prices that are far away from the
optimal one is highly undesirable. We address this issue by
combining hill climbing [23] and MTP. By using hill climbing,
AMTP first searches for an interval (typically much smaller
than [0, umax]) that contains a local maximum of Rmax(u).
Then, it runs MTP on this interval in order to converge to
the local maximum. Algorithm 2 provides a pseudo-code of
AMTP.

Let u∗ be the operating price before AMTP starts and ũ be
the price that AMTP is exploring in order to find an interval of
prices that contains a local maximum of Rmax(u). Recall that
Δu is the price granularity. AMTP starts by making exploratory
measurements for ũ = u∗ − Δu where  ∈ ℤ+. The value
of  determines how aggressively the algorithm explores new
prices. Large  means more exploration while small  means
more exploitation since the operating price stays around u∗.

If Rmax(u∗ − Δu) > Rmax(u∗) then AMTP sets the
direction of exploration to d = −1 i.e., exploration is per-
formed by decreasing the operating price in increments of
Δu. If Rmax(u∗ − Δu) ≤ Rmax(u∗) then the direction
of exploration is set to d = 1 i.e., exploration is performed
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by increasing the operating price in increments of Δu.
The exploration phase ends when the new operating price
ũ does not provide further improvement over the previous
price ũ − dΔu (i.e., Rmax(ũ − dΔu) > Rmax(ũ)). When
the exploration phase ends, MTP is applied on the interval
[min(ũ, ũ − 2dΔu),max(ũ, ũ − 2dΔu)], and it returns
updated values for u∗ and T ∗, which are local optimal price
and threshold of Rmax(u).

In the next lemma, we prove the convergence of AMTP.
Lemma 5.1: AMTP converges to a local maximum of

Rmax(u).
Proof: When the exploration phase ends, the prices

ũ − 2dΔu, ũ − dΔu and ũ form a three point pat-
tern i.e., Rmax(ũ) ≤ Rmax(ũ − dΔu) and Rmax(ũ −
2dΔu) < Rmax(ũ − dΔu). Therefore, there must be
at least one local maximum of Rmax(u) in the interval
[min(ũ, ũ − 2dΔu),max(ũ, ũ − 2dΔu)]. When we apply
MTP on this interval, it returns a local maximum of Rmax(u)
from Theorem 4.4.

Next, we provide two heuristic methods to improve the
performance of AMTP. Even though these practices are not
required for the convergence of AMTP, they significantly
increase the average online profit during the exploration phase
of AMTP. First, we numerically observed that prices which are
close to each other tend to have the same optimal threshold.
Thus, when conducting measurements with AMTP, we set the
current threshold to the optimal threshold of the previously
explored price. Second, when we encounter negative profit
at the end of a measurement window, we stop admitting
SUs while keep observing their arrival rate according to the
operating price set by AMTP. We start re-admitting SUs once
we detect PU and SU arrival rates for which positive profit is
possible. This method prevents the system to be stuck in long
negative profit streaks, and thus increases the overall profit.

VI. NUMERICAL RESULTS

A. Pricing with unknown demand function
In this section, we evaluate the performance of MTP with

finite measurement windows. The arrival rate of SUs �s(u) is
estimated by dividing the total number of SU arrivals within a
measurement window by the length (in time) of that window.
Then, the value of Rmax(u) is computed using Eqs. (3)
and (4).

We consider the interval U = [0, 10] as the set of available
prices where discrete prices are Δu = 10−3 monetary units
apart. Therefore, the total number of possible prices is ∣U∣ =
10001. It can be verified that, in this case, m = 21 because
F21 = 10946. It means that MTP terminates in m − 3 = 18
iterations and uses m− 1 = 20 measurement windows.

In Figures 3 and 4, we show the average profit (RT (u))
corresponding to the current test price and the current active
threshold T ∗i . We run the algorithm 100 times and take sample
average of the average profits. We also display 95% confidence
interval for these samples for each measurement window.
Recall that we define the mean call length to be one time
unit, which is typically in the order of a few minutes [18].

In Fig. 3, we assume that SUs request access to the spectrum
with a rate of �s(u) = 10(10−u

10 )1/2 calls per time unit,

Fig. 3. Performance comparison of MTP and Q-Learning with a measurement
window of 10 time units, �s(u) = 10(

(10−u)+
10

)1/2, �p = 8 calls per
time unit, K = 100, and C = 20. Average of 100 runs with 95%
confidence interval. Δu = 10−3, U = [0, 10] and ∣U∣ = 10001. As a
reference, the figure also shows the average profit achieved with the optimal
occupancy-based policy and the optimal threshold policy, both of which
require knowledge of the demand function.

which is unknown to MTP. PUs arrive with a known constant
rate of �p = 8 calls per time unit. We use a 10 time units
measurement window. The figure shows that MTP converges
within 4% of the optimal threshold policy and within 5% of
the optimal occupancy-based policy after 5 iterations. Note
that, at some iterations, MTP selects test prices such that the
average profit drops, as seen in the fourth iteration of Fig. 3.

In Fig. 4, we run MTP for the linear demand function
�s(u) = (10 − u)+ and different measurement windows
(note the logarithmic scale of the time axis). We observe that
for 1 time unit measurement window, MTP comes within 10%
neighborhood of optimal pricing in just 5 time units. Naturally,
the longer the measurement window, the closer MTP comes to
the optimal threshold policy.

B. Comparison between MTP and Q-Learning

In this section, we compare the performance of MTP to
that of Q-Learning. Q-Learning is a powerful tool to compute
the optimal policy of a Markov decision process without
knowing its transition probabilities. Through measurements,
Q-Learning aims to find the optimal action for each state. In
our case, a state corresponds to a channel occupancy level and
an action corresponds to a price.

We implement an average reward Q-Learning algorithm
using value iteration, following the procedure described in [17,
Section 3.2]. Each possible state-price pair has a corresponding
Q-value. All the Q-values are initialized to zero and prices are
chosen uniformly at random at the beginning. The algorithm
is run for 9500 iterations, where an iteration is defined as
a state transition. When the algorithm terminates after the
maximum number of iterations, the collection of prices that
yield the maximum Q-value at each state is considered to be
the desired price vector. The rate of convergence is mainly
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Fig. 5. Time of day change.

Optimal TP
AMTP

(a) PU and SU arrival rates vary similarly.

Optimal TP
AMTP

(b) PU and SU arrival rates vary differently.

Fig. 6. Average profit per minute of AMTP (re-started every hour). 100 runs with 95% confidence interval. System parameters: Measurement window is 5
mins,  = 10, C = 20, K = 100, �p = 8, �s(u) = (10− u)+, Δu = 10−2,U = [0, 10] and ∣U∣ = 1001.

related to the step-size used in the algorithm. According to
[24], the step-size rule �k = a

b+k gives the best convergence
rate among numerous candidates. Here, �k represents the step-
size in iteration k of the algorithm. In our simulations, we set
a = 5000 and b = 10000.

Simulations are run for different number of channels C.
For small values of C, e.g., one or two channels, Q-Learning
achieves an average profit that is close to the profit of the
optimal occupancy-based policy. However, as C increases, the
performance of Q-Learning degrades due to its slow conver-
gence speed. Thus, for C = 20 channels, Fig. 3 illustrates
that the pricing policy obtained using Q-Learning loses about
65% of the profit achievable with the optimal occupancy-
based policy. For the same system parameters and the same
simulation time interval, MTP achieves much higher profit than
Q-Learning.

C. Pricing with time-varying user demand

In this section, we simulate AMTP over the course of a day.
We assume that one time unit (i.e., the average call length) is
2.5 minutes, which is compatible with the observations of [18].
We use 5 minutes measurement windows. Possible discrete
prices are Δu = 10−2 monetary units apart in the interval
[0, 10]. The exploration parameter of AMTP is  = 10.

We consider PU and SU arrival rates which scale with time
dependent scaling factors APU (t) and ASU (t), respectively.
The resulting arrival rates are APU (t)�p and ASU (t)�s(u).
We consider two scenarios: In the first scenario, SU and
PU arrival rates change similarly (i.e., APU (t) = ASU (t)),
peaking between 10AM and 8PM, as seen in Figure 5(a).
At this time of the day, the trend is a piecewise linear
representation of the real data traces observed in [18]. Second,
we consider a hypothetical scenario, shown in Figure 5(b), that
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Fig. 4. Performance of MTP with measurement windows 1,10 and 100 time
units, �s(u) = (10 − u)+, �p = 8, K = 100, and C = 20. Average
of 100 runs with 95% confidence interval. Δu = 10−3 , U = [0, 10] and
∣U∣ = 10001.

may be more desirable from the point of view of secondary
spectrum access; PU and SU arrival rates have opposite trends.
In this scenario, PUs could represent business applications
that peak during the business hours and SUs could represent
personal applications that peak during the evening hours.

In Figure 6 we compare the performance of AMTP to that
of the optimal threshold policy (which knows the demand
function in advance), assuming a linear demand function. In
these examples, we assume that, at the beginning (midnight),
the system is calibrated such that the operating price and
threshold are optimal. This is a reasonable assumption since
[18] observes that the nighttime arrival rates are relatively
stable and does not change significantly between the days
of the week. This makes predicting the arrival rates and
calibrating AMTP relatively easy. We periodically restart AMTP
every hour. In the figures, we take a snapshot of the system
every 5 minutes and look at the current operating price and
threshold of the optimal threshold policy and AMTP. The
dotted line shows the average profit of the optimal threshold
policy according to current PU and SU arrival rates. The solid
line shows the average profit of the AMTP with the same arrival
rates.

To give a perspective on how much profit might be lost due
to adaptation, we consider the example in Figure 6(a). In this
example, the optimal threshold policy obtains 2504 monetary
units in a day, while AMTP obtains 2227 monetary units. For
the example in Figure 6(b), these values are 9096 and 8722,
respectively (AMTP loses only 4% of the total profit in that
case).

VII. CONCLUSION

In this paper, we investigated pricing of secondary spectrum
access with unknown demand function. We proposed a new
on-line algorithm, called Measurement-based Threshold Pric-
ing (MTP). We proved that MTP provably converges to a local

maximum of Rmax(u), the threshold policy profit function
which depends on the price only. In addition, MTP returns the
corresponding optimal threshold.

In our numerical studies, we observed that Rmax(u) is
generally unimodal and whenever it is multimodal, the local
maximum profits are very close to each other. Under mild
assumptions on the demand function, we proved that despite
the possible multimodality of Rmax(u), MTP converges to a
local optimum with the same number of measurements as
if Rmax(u) were unimodal, which is log�(∣U∣) + O(1). For
example, with ∣U∣ = 10001 different prices, MTP requires only
20 measurement windows.

The performance of MTP depends on the length of the
measurement window. In our numerical result, we observed
that with measurement windows of 10 time units, where one
time unit corresponds to the average call length, MTP comes in
only 5 iterations within 4% of the average profit of the optimal
threshold policy, which knows the demand function. We also
showed that MTP achieves much better performance than Q-
Learning.This result is non-obvious since Q-Learning aims to
mimic the optimal occupancy-based pricing policy, while MTP
aims to mimic the optimal threshold pricing policy, which
has slightly inferior performance. However, MTP needs to
optimize only two parameters, compared to C parameters (i.e.,
a different price for each occupancy level) for Q-Learning.

Finally, we introduced an adaptive version of MTP, called
AMTP. We provided numerical simulations of AMTP for realis-
tic time-of-the-day arrival rate trends. The simulations showed
that AMTP closely tracks the time-varying optimal price and
threshold.

Future work could focus on the development of alternative
methods for mimicking the optimal threshold policy. Such
methods could accommodate statistical fluctuations due to
finite measurement windows as an intrinsic part of their design.
Similarly, future work could explore scenarios where the
quality of different channels may vary and, as a result, the
willingness of SUs to join them may differ.

In summary, this work provides robust and practical meth-
ods to manage secondary spectrum access. The demonstrated
performance of these methods, under minimal assumptions
on the underlying environment, shows promise to facilitate
spectrum reforms in achieving their full potential.
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