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Abstract—We consider a wireless provider who caters to two
classes of customers, namely primary and secondary users.
Primary users have long term contracts while secondary users
are admitted and priced according to current availability of
excess spectrum. Secondary users accept an advertised price
with a certain probability defined by an underlying demand
function. We analyze the problem of maximizing profit gained by
admission of secondary users. Previous studies in the field usually
assume that the demand function is known and that the call
length distribution is also known and exponentially distributed.
In this paper, we analyze more realistic settings where both of
these quantities are unknown. Our main contribution is to derive
near-optimal pricing strategies under such settings. We focus on
occupancy-based pricing policies, which depend only on the total
number of ongoing calls in the system. We first show that such
policies are insensitive to call length distribution except through
the mean. Next, we introduce a new on-line, occupancy-based
pricing algorithm, called Measurement-based Threshold Pricing
(MTP) that operates by measuring the reaction of secondary
users to a specific price and does not require the demand function
to be known. MTP optimizes a profit function that depends
on price only. We prove that while the profit function can be
multimodal, MTP converges to one of the local optima as fast as if
the function were unimodal. Lastly, we provide numerical studies
demonstrating the near-optimal performance of occupancy-based
policies for diverse sets of call length distributions and demand
functions and the quick convergence of MTP to near-optimal
on-line profit.

I. INTRODUCTION

As a result of continuing efforts to deregulate wireless
spectrum management, policy agencies are granting providers
with the right to lease their spectrum [1]. This policy reform
promises more efficient use of excess spectrum, which other-
wise may be wasted. Implications of this reform can be seen in
the novel services provided by spectrum brokerage companies,
which match potential lessees and spectrum providers (licence
holders). One such service is an on-line spectrum trading and
leasing platform, called SpecEx.com, which was launched by
Spectrum Bridge Inc. in 2008 [2].

Success of the aforementioned spectrum reforms hinges on
the design of efficient pricing strategies, since a spectrum
provider strives to maximize its profit from leasing its excess
spectrum. In this paper, we aim at developing a realistic pricing

This work was supported in part by the US National Science Foundation
under grants CNS-0721860, CCF-0916892 and CNS-0238397

framework to achieve this goal. We consider a wireless spec-
trum provider who caters to two classes of customers namely
primary users (PU) and secondary users (SU). PUs have long
term contracts and are not subjected to on-line pricing. On the
other hand, SUs are admitted and priced according to current
availability of excess spectrum. The fraction of SUs that accept
the currently advertised price by the provider is dictated by
an underlying demand function. The provider must ensure
that admission of SUs does not significantly affect quality of
service of PUs. This is because presence of SUs may increase
blocking of PU calls and hence lead to a punishment in the
form of loss of business due to poor service.

The problem of pricing of shared resources has been widely
studied in the literature [3-5]. Recent works introduced pric-
ing strategies specifically tailored for secondary access of
resources [6-8]. Yet, the overwhelming majority of papers in
this area assume that the demand function of users is known
(see Sec. II for exceptions). Precise knowledge of the demand
function, which may vary over time, is, however, hard to
acquire, and raises the question of how to apply this body
of existing work in practice.

Furthermore, much of the previous work assume (for analyt-
ical tractability) that call lengths are exponentially distributed
(see again Sec. II for exceptions). A recent study based on
measurement of real traces in a cellular networks shows that
this assumption does not hold in practice [9]. In particular, [9]
observes that the variance of call length is significantly higher
than that of the exponential distribution and questions the
validity of previous work (and [6] in particular) based on the
exponential distribution assumption.

In this paper, we develop an on-line, measurement-based
pricing framework for secondary access applicable to settings
where both the demand function and the call length distri-
bution are unknown. We focus on pricing policies, which
we refer to as occupancy-based, that depend only on the
total number of ongoing (SU and PU) calls in the system.
We prove that occupancy-based policies are insensitive to
the call length distribution, except through the mean. The
proof follows through the establishment of a connection with
coordinate convex policies in call admission control that are
known to enjoy product-form equilibrium distributions and to
be insensitive to the call length distribution [10].



Next, we introduce occupancy-based dynamic and threshold
pricing policies. In dynamic pricing, a spectrum provider sets
a different price for each occupancy level. In threshold pricing,
the provider sets a single price and admits an SU only when the
occupancy level is below a certain threshold. For the special
case of exponentially distributed call lengths, these policies
were studied in [6], which shows that optimal threshold pricing
performs very close to optimal dynamic pricing. Moreover, the
profit region of threshold pricing (i.e., the range of PU arrival
rate for which a positive profit can be achieved) is optimal.
Due to the insensitivity of occupancy-based policies to the call
length distribution, these results directly apply to the general
call length distribution case that we study in this paper.

We conduct extensive simulations for call lengths with
phase-type distributions exhibiting higher and lower variability
than the exponential distribution and various SU demand func-
tions (convex, concave, linear). Through these simulations,
we show that the average profits obtained by the optimal
occupancy-based dynamic and threshold pricing policies are
close to that obtained by the optimal general pricing policy.
Note that the optimal general policy is assumed to have exact
knowledge of the call length distribution and current phase
of each ongoing call, an information that is very difficult to
obtain in practice.

Next, we propose a new on-line algorithm, called
Measurement-based Threshold Pricing (MTP), for efficiently
pricing secondary spectrum access when the demand func-
tion is unknown, but satisfies certain mild assumptions. This
algorithm requires the optimization of only two parameters
(threshold and price), which makes it highly preferable over
trying to mimic an optimal dynamic policy requiring the
optimization of a different price for each channel occupancy
level.

MTP is an iterative algorithm, based on a variation of
Fibonacci search, that aims to optimize an unknown profit
function which depends on price only. At each iteration, MTP
measures the average arrival rate of SUs corresponding to
a certain fest price. We show that these price-based mea-
surements are sufficient to derive both the optimal price and
the optimal threshold. Though the profit function may be
multimodal, we show that MTP converges to a local optimum
as fast as if the function were unimodal. Specifically, we show
that the number of iterations and measurements required by
MTP are logarithmic in the total number of possible prices and
are independent of other variables, such as the total number
of channels.

Through simulation, we evaluate the performance of MTP
with finite measurement windows, which implies that the
estimation of the SUs arrival rate at each iteration is noisy.
Defining the mean call length to be one unit of time and
setting the measurement window length to be one time unit
as well, we show that, on average, MTP converges to a profit
within 10% of optimal threshold pricing within only 5 time
units, assuming a range of 10* different possible prices. Larger
measurement windows of length 10 and 100 time units, bring
the average profit of MT P within 4% and 2% of the optimal

threshold pricing, respectively.

The rest of this paper is structured as follows. In Section
II, we discuss related work. In Section III, we introduce the
system model and problem formulation. Our contribution on
pricing for generally distributed call lengths is given in Section
IV. In Section V, the MTP algorithm for pricing with unknown
demand function is explained. We provide numerical examples
in Section VI and conclude the paper in section VIL

II. RELATED WORK

The related work can be broken down to four main cat-
egories: congestion-based pricing, secondary access pricing,
unknown demand function and insensitivity to call length
distribution.

We start with the well studied area of congestion-based
pricing. As such, we restrict our literature review to those
papers that are the most relevant. Ref. [3] studies pricing
of network resources when arrival rate of all users can be
regulated with price. They show that static pricing (a single
price is advertised regardless of occupancy level) achieves
good performance and is optimal in some asymptotic regimes.
This result was extended in [4] in the context of large network
asymptotics.

In addition to [6], which we mentioned in the previous sec-
tion, the following papers consider secondary access pricing.
Ref. [7] studies optimal and static pricing policies within the
context of a generic rental management optimization problem
with two types of customers, which are akin to our SUs and
PUs. Ref. [11] provides a game theoretic analysis of revenue
maximization problem for secondary spectrum access. Ref. [§]
studies secondary spectrum access pricing strategies capturing
the effects of network-wide interferences. When applicable,
the previous work mentioned above assume a known demand
function and exponentially distributed call lengths, on the
contrary to the model presented in this paper.

Next, we present related work on less studied field of pricing
with unknown demand function. Ref. [12] introduces an on-
line algorithm for static pricing of calls with exponentially
distributed call lengths. It considers a parametric demand
function while we consider a more general non-parametric
demand function. Ref. [13] studies a different model than
ours where the pricing problem is finite horizon and there is
a single product with a finite inventory. They provide on-line
learning algorithms for parametric and non-parametric demand
functions.

Finally, we provide related work on insensitivity to call
length distribution. Ref. [S] shows that static pricing policy is
insensitive to call length distribution and is still asymptotically
optimal. Ref. [14] also studies static pricing for generally
distributed call lengths and shows that the profit function
of static pricing is unimodal. It assumes that the demand
function is known and that all users are elastic to the price,
contrary to our model. Refs. [10] study optimal call admission
policy for generally distributed call lengths whereas we study
pricing policies. More information on insensitivity to call
length distribution can be found in [15, 16].



III. MODEL AND PROBLEM FORMULATION

In this section, we introduce our model and objective. We
consider a single-cell wireless network which provides access
to C' channels. Calls from PUs arrive according to a Poisson
process with fixed rate A, > 0. A punishment in the amount
of K monetary units is imposed if all the channels are busy
and a PU call is blocked. SU call arrivals also form a Poisson
process with rate Agy > 0 that is independent of the PUs. We
note that the measurement study in [9] justifies the use of the
Poisson process to model call arrival rates. When an SU call
arrives, it accepts with probability p(u) the price u advertised
by the provider and attempts to join the network. Therefore,
the rate at which SUs attempt to access the spectrum is
As(u) = Asup(u). We refer to A\s(u) as the demand function.

Some of the results in this paper assume one or both
of the following assumptions on the demand function. We
specifically state whenever these assumptions are required.

Assumption 3.1: There exists a maximum price upyax for
which Ag(tmax) = 0. Moreover, Ag(u) is a strictly decreasing,
differentiable function in u over the interval [0, tmax]-

The second assumption enables development of our efficient
on-line optimization procedure presented in Section V.

Assumption 3.2: Let u()4) be the inverse of A;(u) on the

interval 0 < u < Umax. Then Asu(Xs) is concave with respect
to As.
Assumption 3.2 implies that the marginal instantaneous profit
is decreasing with respect to user demand. It ensures a well-
behaved demand function [17]. This assumption is widely
made in the literature [3, 13, 17] and is satisfied by variety of
demand functions such as functions with exponential, linear
and polynomial decay.

We assume that PU and SU call lengths have a common
general distribution with mean 1/u. Therefore, once accepted
PU and SU calls are statistically indistinguishable. The call
length distribution, except its mean, is unknown. Without loss
of generality, we assume that ; = 1, i.e., the mean call length
time is one unit of time.

In this paper, we restrict our attention to pricing policies
that are based solely on the total number (SU and PU) of
ongoing calls in the system. We refer to these policies as
occupancy-based policies. Note that the total occupancy is not
Markovian unless call lengths are exponentially distributed;
hence an optimal policy would typically entail further in-
formation such as the amount of time each call has already
been in the system. An occupancy-based pricing policy sets a
advertised SU price u,, when there are n < C' ongoing calls
in the system. Therefore, a policy can be defined as a vector
u = (ug,ui,us,...,uc—1). We are interested in finding the
vector u which maximizes the average profit per unit of time
gained from accepting SUs. Prices for u is selected from a
discrete set U taking values in the interval [0, %qz)-

We limit optimal pricing policy search to occupancy-based
policies for practical concerns; the specific form of the call
length distribution is often unavailable or cannot be properly
formalized. Even in such cases where the distribution is

known, it is hard to price optimally due to uncertainty in the
future length of ongoing calls. On the other hand, we show
that occupancy-based policies are insensitive to call length
distribution. In Section VI, we provide numerical examples
showing that the optimal occupancy-based policy performs
very close to the optimal general policy.

IV. PRICING WITH GENERAL CALL LENGTH DISTRIBUTION

In this section, we show that occupancy-based pricing poli-
cies are insensitive to call length distribution except through
the mean. We prove this property by showing the insensitivity
of the equilibrium probability distribution of occupancy.

A. Insensitivity property

First, we make a connection between our pricing problem
and the following general resource sharing problem. Assume
there are .J classes of calls and C' available channels. The state
of the system, n = (ny,ns,...,ny) where E;.Izlnj < C, is
defined in terms of the number of ongoing class j calls n;.
When the system is in state n, calls of class j arrive according
to a Poisson process with rate A;(n). Note that the arrival rate
is state dependent. Call lengths follow a general distribution
with mean 1/p;. A resource sharing policy is a set of rules
which dictates whether or not to accept an incoming call of
class j when the system in state n.

We are specifically interested in coordinate convex policies,
defined below, which have the useful property of a product
form equilibrium probability distribution that is insensitive to
the call length distribution [10].

Definition 4.1: Let € be the set of all possible states n. A
policy is coordinate convex if there exist a subset w C €2 such
that 1) n € w and n; > 0 imply (n1,...,n; —1,...,n7) € w,
2) it accepts a call of class j when in state n if (nq,...,n; +
1,.uny) €wforj=1,2,..J.

Next, we state our main result in this section which is proven
by establishing a connection between occupancy-based pricing
policies and coordinate convex polices.

Theorem 4.2: For any occupancy-based pricing policy u,
the equilibrium probability distribution of occupancy is insen-
sitive to call length distribution except through its mean and
has the following product form:
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where A(n) = Ap + As(uy,) and n is the number of ongoing
calls in the system.

Proof: Suppose J = 1, i.e., there is a single class of
calls. Consider a policy which always accepts a call unless
the system is full. This policy satisfies both conditions in
Definition 4.1 because both n + 1 and n — 1 are allowable
states whenever n +1 < C and n — 1 > 0. In our model,
PU and SU have the same call length distribution and thus are
indistinguishable once in the system. Therefore, SU and PU
calls can be viewed as belonging to the same class of calls with
arrival rate A(n) = A, + As(un) at state n. Then, any fixed
policy u always accepts these single class calls. Therefore, it



has a product form equilibrium probability distribution which
is insensitive to the call length distribution. |

B. Optimal occupancy-based dynamic and threshold pricing
policies

From Theorem 4.2, we deduce that an occupancy-based
pricing policy induces the same equilibrium occupancy for
all call length distributions with mean 1. Hence one may
as well study the equilibrium under exponential call length
distribution. Based on the work in [6] with exponentially
distributed call lengths, we next summarize the main properties
of the optimal occupancy-based dynamic and threshold pricing
policies that are necessary to follow the rest of this paper. The
results in this section require Assumption 3.1 on the demand
function.

First, we provide the average profit function for a given
occupancy-based pricing policy with price vector u:

R =0 e (un)un — 1A K + E(\p, O)N K, (2)

where E(Ap,C) is the blocking probability of PUs in the
absence of SU arrivals. This quantity corresponds to the well-
known Erlang-B formula

E(\,,C) = —C . 3)

The first term in Eq. (2) represents the sum of the average
revenues collected from SUs in each state. The second term
is the average punishment due to rejected PUs. The last term
E(Ap, C)\pK acts as the normalization term to ensure that
the profit is zero when all SUs are rejected.

Note that the average profit function in Eq. (2) as well
as the optimal occupancy-based policy that maximizes it do
not depend on the call length distribution except through
the mean. Thus, the optimal occupancy-based policy can be
calculated by assuming that the call lengths are exponentially
distributed. Under this assumption, occupancy-based pricing
can be modeled as an average reward dynamic programming
problem with C' states, and the optimal prices can be calculated
by using policy iteration [6]. Since the optimal occupancy-
based policy is insensitive to the call length distribution, it is
valid for any distribution.

In a threshold pricing policy, SU calls are admitted and
charged a price © when the channel occupancy is smaller than
some threshold 7" and rejected otherwise. This is equivalent
to having the following price vector

u= (u7u7 coeny Uy Umazy Umazx '~'7umaz)~
———

T c-T

Consequently, the total arrival rate until the occupancy level
reaches T' channels is A\, + A\;(u) and A, afterwards.

Assuming the above price vector, the average profit function
of threshold pricing policy is

Ry(u) = Y 20 mads(w)u — medp K + B\, C)\ K. (4)

The optimization of threshold pricing policy involves find-
ing the optimal values for the price u and threshold 7. Since

the profit function of threshold pricing policy is insensitive
to the call length distribution, it retains properties that are
introduced in [6]. In the next section, we will exploit these
properties to maximize Rr(u) when the demand function is
unknown.

V. SPECTRUM PRICING WITH UNKNOWN DEMAND
FUNCTION

Typically, the SU demand function Ag(w) is unknown. In
this section, we introduce an algorithm called Measurement-
based Threshold Pricing (MTP) algorithm to calculate the
threshold pricing policy under this condition.

When A;(u) is unknown, a formula for the threshold pricing
profit function Rr(u) is unavailable. However, we can mea-
sure the arrival rate of SUs for a specific price u and threshold
T and calculate the average profit R (u) for that price and
threshold. Measurements are conducted by observing, for a
sufficiently long period of time, the rate of SUs who accept the
advertised price. In this section, we assume that measurements
are exact. In Section 6, we numerically study the robustness
of MTP to noise due to finite measurement windows. The
threshold 7" used during the measurement is irrelevant due
to the following property of Ry (u).

Lemma 5.1: For a given price u, Ry(u) can be calculated
for any threshold 1 < 7' < C' with a single measurement.
This lemma is direct consequence of Eq. (4), which can
be calculated for any threshold and a given price once the
corresponding A, (u) is acquired as a result of a measurement.

In practice, required measurements have to be performed
while the system is in operation. These measurements are often
done with non-optimal parameters which causes profit loss.
Therefore, our main goal is to calculate the optimal threshold
pricing policy with as few measurements as possible.

A. Properties of threshold pricing profit function

The properties we introduce in this section require both
Assumption 3.1 and Assumption 3.2 on the demand function.
These assumptions ensure that, for a fixed threshold, the profit
function Rr(u) is unimodal with respect to price in [0, U qz]
[6]. A function is unimodal over a certain interval, if it has
a single maximum over that interval. This property enables
efficient calculation of the optimal price for a given threshold.
However, finding the optimal threshold requires a search over
all possible threshold values. We circumvent this problem by
introducing an auxiliary profit function which depends on price
only:

Rppae(u) = maxi<p<c(Rr(u)) )

For a given price u, this function can be calculated with a
single measurement thanks to Lemma 5.1.

During our numerical studies, we observed that, for certain
range of system parameters, R,,..(u) possesses the following
property.

Claim 5.2: Ryq.(u) can be multimodal in u for certain
system parameters and demand functions.
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Fig. 1.
maximums occur. System parameters are C' = 20, As(u) =
12.5 and K = 120.

Multimodal Ropaz(u) and Ry (u) for T'= 12 and T' = 13 on which
(10—u)+, Ap =

Proof: Consider a 20 channel system with linear demand
function As(u) = (10 —u)+. The PU arrival rate is A, = 12.5
and the penalty for blocking a PU user is K = 120. The
function R, (u), for this set up, is plotted in Figure 1. This
specific function has two maximum points at ©v = 7.91 and
at v = 8.21. The corresponding maximizing thresholds are
T =12 and T = 13, respectively. |

Claim 5.2 is a rather undesirable property from an optimiza-
tion point of view. Nevertheless, in the next section, we show
that a local optimal price and threshold can be calculated as
efficiently as if R,,q.(u) were unimodal.

B. Measurement-based Threshold Pricing (MTP)

In this section, we describe the MTP algorithm and prove
that it converges to a local maximum of Ry,q.(u). As ex-
pected, when the function is unimodal it converges to the
global maximum. During our numerical studies, we observed
that when R, (u) is multimodal, the average profits of local
maximums are very close to each other, as observed in Fig.
1. Therefore, we do not expect significant profit loss when
the algorithm converges to a local maximum rather than the
global one.

While one can calculate the value of R, (u) for a given
price with a single measurement, same is not true for its deriva-
tive which can be undefined at certain points (transition points
from one Rp(u) to another). Therefore, we base the MTP
algorithm on the derivative-free Fibonacci search which was
first introduced by Kiefer [18]. Fibonacci search is a sequential
line search algorithm which maximizes a unimodal function.
In every iteration, it makes a function evaluation. Together
with the information from earlier evaluations, it reduces the
minimum interval where the optimal point is known to lie.
This interval is referred to as interval of uncertainty. Under
the following criteria of optimality, Fibonacci search is optimal
for searching the maximum of a unimodal function. If the

number of function evaluations is fixed in advance, Fibonacci
search finishes with the largest ratio of initial size of interval
of uncertainty to its final size [18].

In our case, function evaluations, i.e., measurements are
conducted for discrete values of price. Therefore, we utilize
a discrete version of Fibonacci search (also known as lattice
search)[19]. While Fibonacci search might fail to converge
when the function is multimodal, MTP converges to a local
maximum of R,,,. (u). We manage this by taking advantage of
the fact that R,,,,(u) is the maximum of unimodal functions
Ry (u) for 1 < T < C. Algorithm 1 provides a pseudo-code
for MTP which we next explain.

In the it > 0 iteration, MTP attempts to maximize the
unimodal function Rr-(u) the same way as Fibonacci search
would do. Here, T represents the active threshold in iteration
i which we calculate in the following manner. Let .S be the
set of prices for which measurements have been obtained so
far, i.e., if u € S, then we know the corresponding arrival rate
As(u). For u € S, we can then calculate Ry (u) for all values
of T and deduce the value of R;,q.(u) as well. Let

uf = arg maXyes(Rimaz(u)) (6)

be the price which yields the maximum profit observed so far.
Then,

Tr = arg maXlSTSC(RT(U;‘k)) 0

is the optimal threshold for the price u; and Rrx(uj) =
Rpnaz(uf) is the maximum profit calculated so far. In every
iteration, MTP makes a measurement for a new test price.
At the end of every iteration, the active threshold is updated
according to this new measurement.

MTP chooses the new test price according to Fibonacci
numbers. Fibonacci numbers are defined such that

Fp=Fy 1+ Fp o

where Fy = 0 and F; = 1. Let, U’ be the interval of
uncertainty in the %" iteration. MTP requires that the initial
interval of uncertainty 10 contains exactly £, 41 prices where
m is the smallest integer which satisfies |U| < F},, + 1. Recall
that U is the set of all possible prices. In order to comply with
this condition, we insert F,, + 1 — |U]| fictitious prices to the
end of the price series. We assume that the fictitious prices
are all equal to Upqq-

Let u’ represent the j* > 0 price in U, Then, U° =
(ug, uf, ud, .., ud, ) which naturally contains all local optima
of Ryax(u). In every iteration, the size of the interval of
uncertainty is reduced such that |U’| = F},,_; + 1 i..,

U = (up, ul, ul, ...

7u727‘7n_7;) = [u67 uiF‘m_,;}'

MTP reduces U? by comparing Rr»(u) for two internal test
prices, uf, ~ anduf, . For the sake of simpler notation,
we denote these prices as u and u}, respectively.

The algorithm starts with an initialization step in which m
is calculated and U° is constructed. Then, measurements for



Algorithm 1 Measurement-based Threshold Pricing (MTP)

Calculate m and construct @0
Make measurements for ul and u)
uy = arg maxye s (Rmaz (1))
T5 = argmaxi <r<c (Rr(ug))
for i =0tom—4do
if RTi* (’U;Z) > RT,L-* (Ué) then
071 = uh uj ,
Make measurement for u’!

Yl [0 0
U - [uzv uFm,i] )
Make measurement for uf‘l
end if
ujyy = arg maxyes( Rz (1))
T7 = argmaxi<r<c(Rr(uji,))
end for
* *
return u;,_s and T}, 4

u? and u) are obtained. The initialization step ends with the
calculation of uj and T§.

Each iteration starts by comparing the value of Rr- (ul)
and Ry« (up). If Ry« (ul) > Rp:(uf), then we have

Rry (uy) > Ry (uy) > Rrs (uf, ).

Since Rr:(u) is a unimodal function, the optimal price for
Ry (u) can not be in (uy,uy _]. Therefore, the interval
of uncertainty is reduced to U = [uf, uj]. For the next
iteration we need u/"' € S and upt™ € S. 1t can be verified
that ué"’l = uy, and thus we only need to make a measurement
for uttt,

If Ry« (u},) < Rr»(uj), we have

Rr-(uf) < Rr-(ul) < Re-(up).

Due to similar arguments to those in the previous case, the
interval of uncertainty is reduced to Ui*! = [uf,uf ] In
this case u’™ = u} and we make a measurement for uffl.

At the end of each iteration, u;,; and T}, | are updated for
the use of next iteration. The algorithm terminates after m — 3
iterations (when ¢ = m — 4), and returns u,, 5 and T}, _s,
which are local optimal price and threshold of R,,q.(u), as
proven next.

We start with the following lemma.

Lemma 5.3: When the active threshold is changed to 77" #
T}y, the optimal price for Ry (u) is in U?,

Proof: Assume that the active threshold is changed to T}
due to the measurement for price u’. This means, R (ub)
is the maximum profit calculated so far, i.e., Rp«(ul) >
Rrx(uf) and Rps(ul) > Rps(uf, ) Since uf < uj, <
uf, and R+ (u) is unimodal, the optimal price for R+ (u)
must be in U?. Same arguments are true if the measurement
had been conducted for u}. [ ]
Next, we present the convergence theorem.

Theorem 5.4: MTP converges to a local optimal of R, 4. (u)
in m — 3 iterations and requires m — 1 measurements, where

m= mkin{k (U < Fy + 1}

Proof: We first prove the first part of the theorem. In
the last iteration ¢ = m — 4, the interval of uncertainty is
reduced to U3 which contains [0 3| = 4 different prices,
and a measurement is conducted for the only price in gm-3
which has not been yet tested (either u™~2 or ubm_g). Finally,
uy, _5 and T}y, are calculated. Even though T7¥, _5 could be
different from 7, _, (the last active threshold), u,_ 5 is the

optimal price of Rrs  (u) due to Lemma 5.3 and the fact

that u*, _, is the best performing price in U3, u%,_, is a

local optimal of R,,..(u) because it is the optimal price of
Rr- (u) and T}, _5 is the optimal threshold for uy, 5.

As for the second part of the theorem, MTP makes a new
measurement in every iteration. Together with the initial two,
the algorithm requires m — 1 measurements. |

In conclusion to this section, we note that the number of
measurements required by MTP is the same as in the Fibonacci
search which is log,, (|U|)+O(1) where ¢ = (1++/5)/2 is the
golden ratio [20]. MTP can easily be adapted to converge to the
global maximum of R, (u). To do so, the threshold should
be kept fixed throughout the MTP algorithm. This should be
repeated for all possible thresholds 1 < 7' < C'. However, in
this case the algorithm would require C(log,(|U]) 4+ O(1))
measurements instead.

VI. NUMERICAL RESULTS

A. Comparison between the optimal occupancy-based and the
optimal general policies

In this section, we compare the optimal occupancy-based,
the optimal threshold and the optimal general pricing policies.
We demonstrate near-optimal performances of occupancy-
based policies for diverse set of call length distributions and
demand functions.

We consider phase-type call length distributions with two
phases, namely, hyper-exponential and hypo-exponential dis-
tributions. These distributions provide valuable insight on the
performance of occupancy-based policies for broad range of
call length variances. For exponentially distributed call lengths,
for which the optimal occupancy-based policy is also the
optimal general policy, the coefficient of variation ¢, (ratio of
standard deviation to mean) is 1. These distributions represent
divergence from exponential distribution in both directions.
For hyper-exponential ¢, > 1 and for hypo-exponential ¢, < 1
[21].

If a call length has a two-phase hyper-exponential distri-
bution then with probability p it is exponentially distributed
with mean 1/p; and with probability 1 — p it is exponentially
distributed with mean 1/p5. In the hypo-exponential case (also
known as generalized Erlang distribution), a call starts the
first phase which is exponentially distributed with mean 1/,
and then continues to the second phase which is exponentially
distributed with mean 1/ 5.



TABLE I
PHASE-TYPE DISTRIBUTIONS

Distribution 1 2 p Mean | Variance
Hyper-1 3 173 | 3/4 1 11/3
Hyper-2 2 2/3 | 172 1 3/2
Hypo-1 2 2 n/a 1 172
Hypo-2 10/9 10 | n/a 1 41/50

In Table I, we present parameters of the specific phase-
type distributions that we consider. We calculate the optimal
general policy for these distributions by assuming that we
have exact knowledge of the distribution as well the phase
of each ongoing call, an information which is hard to obtain
in practice. With this information, we model the system as an
average reward dynamic programming problem where states
are defined as the total number ongoing calls in each phase.
It can be shown that there are (C' + 1)(C + 2)/2 states and
C(C + 1)/2 prices to optimize, substantially larger than the
C states and C — 1 prices that the occupancy-based model
requires.

To demonstrate performances of the pricing policies for SU
demand functions with different characteristics, we use the
following function which can take various shapes depending
on the parameter [3:

Umaz — U\ B

As(u) = a(i) ,

u'rnaw

u € [0, Umaz]- ®)

For § =1 it is linear, for 8 < 1 it is convex and for 5 > 1
it is concave. This demand function is also used in [7] and
satisfies Assumptions 3.1 and 3.2. We study different shapes
of this demand function for o« = 10 and 4, = 10.

In Fig. 2, we compare the performances of the optimal
occupancy-based, the optimal threshold and the optimal gen-
eral policy for a linear demand function (10 — u)4 and call
lengths with phase-type distributions shown in Table I. Fig.
2 shows the average profit generated for different values of
Ap. It is clear that in all the cases, the curves are very close.
The greatest difference between the optimal occupancy-based
policy and the optimal general policy is observed for the case
of Hyper-1, which has the highest variance. To quantify the
difference, we compute, for each policy, the average profit
taken over all PU arrival rates A, for which a strictly positive
profit is obtained. In other words, we compute the integral
of each function divided by the support of the function (this
support happens to be the same for all policies). For the Hyper-
1 case, this quantity turns out to be 13.977 (monetary units) for
the optimal general policy, 13.836 for the optimal occupancy-
based policy, and 13.672 for the optimal threshold policy, i.e.,
a revenue loss of only about 1% and 2.2% for the latter two
policies, respectively.

In [9], Willkomm et. al. conclude that the call length
distribution can not be properly modeled by using exponential
or Erlang distributions (a special case of hypo-exponential
distributions with p©; = po). Moreover, they observed that
the variance is more that three times the mean. Therefore, the

Hyper-1 model which has variance 3.67 times the mean is
consistent with these observations.

We have also conducted numerical analysis for call lengths
having two-phase hyper-exponential distribution with higher
variances. We observed that, for these higher variances, the
performance of the optimal occupancy-based policy remains
similar to that in Fig. 2.

In Fig. 3, we compare the performances of the aforemen-
tioned policies for concave (As(u) = 10(¥%5%)?) and convex
(As(u) = 10(2%5%)'/2) demand functions, using Hyper-1 as
the call length distribution. For this setting, we observe that
the optimal occupancy-based policy as well as the optimal
threshold policy again perform close to optimal general policy,
the concave case being the worse among the two. In that
case, the average profit taken over profit-yielding values of
Ap is 8.163 for optimal general policy, while that of optimal
occupancy-based policy is 8.071 (about 1.1% smaller) and that
of the optimal threshold policy is 7.970 (2.3% smaller).

B. Pricing with unknown demand function

In this section we evaluate the performance of MTP with
finite measurement windows. We consider the interval U =
[0,10] as the set of available prices where discrete prices are
Ay =103 monetary units apart. Therefore, the total number
of possible prices is [U| = 10001. It can be verified that, in
this case, m = 21 because Fy; = 10946. It means that MTP
terminates in m — 3 = 18 iterations and makes m — 1 = 20
measurements.

In Figures 4 and 5, we show the average profit (Rr(u))
corresponding to the current test price and the current active
threshold 77;". We run the algorithm 100 times and take sample
average of the average profits. We also display 95% confidence
interval for these samples for each measurement window.
Recall that, we define the mean call length to be one time
unit, which is typically in the order of a few minutes [9].

In Fig. 4, we assume that SUs request access to the spectrum
with a rate of A,(u) = 10(25%)Y/? calls per time unit,
which is unknown to MTP. PUs arrive with a known constant
rate of A\, = 8 calls per time unit. We use a 10 time units
measurement window. The figure shows that MTP converges
within 4% of the optimal threshold policy and within 5% of
the optimal occupancy-based policy in 5 iterations. Note that,
at some iterations, MTP selects test prices such that the average
profit drops, as seen in the fourth iteration of Fig. 4.

In Fig. 5, we run MTP for the linear demand function
As(u) = (10 — u); and different measurement windows
(note the logarithmic scale of the x-axis). We observe that
for 1 time unit measurement window, MTP comes within 10%
neighborhood of optimal pricing in just 5 time units. Naturally,
the longer the measurement window, the closer MTP comes to
the optimal threshold policy.

VII. CONCLUSION

In this paper, we investigated pricing of secondary spec-
trum access with unknown demand function and generally
distributed call lengths. First, we introduced occupancy-based
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pricing policies which price SUs based solely on the total
number of ongoing calls. We showed that these policies are
insensitive to the call length distribution except through the
mean. This property makes occupancy-based policies the so-
lution of choice because the call length distribution is usually
unknown or difficult to precisely characterize. We provided

10

numerical comparisons of the optimal occupancy-based, the
optimal threshold and the optimal general policy when call
lengths have hyper-exponential and hypo-exponential distri-
butions. For these phase-type distributions, we calculated the
optimal general policy assuming that we know the exact
phase of each ongoing call. We observed that for the optimal
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occupancy-based policy, the average profit over the profit
region is within 1% of the optimal general policy, while for
the optimal occupancy-based threshold policy it is within 2%.

Second, we devised a new on-line algorithm MTP which
converges to a local maximum of R,,..(u), the threshold
policy profit function which depends on price only. In our
numerical studies, we observed that R,,.,(u) is generally
unimodal and whenever it is multimodal, the local maximum
profits are very close to each other. Under mild assumptions
on the the demand function, we proved that despite multi-
modality of Ry,q.(u), MTP converges with the same number
of measurements as if R,,q.(u) were unimodal which is
log,(|U[) + O(1). For example, when [U| = 10001, MTP

requires only 20 measurements. However, in our numerical
studies, we observed that in just 5 measurements MTP comes
very close to its final convergence point. The performance
of MTP depends on the length of the measurement window.
In our numerical result, we observed that with 10 time units
measurement windows, in just 5 measurements, MTP comes
within 4% of the average profit of the optimal threshold policy
which knows the demand function.

In summary, this work provides a novel robustness per-
spective for practical methods to manage secondary spectrum
access. Demonstrated performance of these methods under
minimal assumptions on the underlying environment facilitates
spectrum reforms in achieving their full potential.
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