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Abstract—We consider the problem of generating aconnected a , c
identifying code for an arbitrary graph. After a brief motivation, (a)

we show that the decision problem regarding the existence of such b '—I—
a code is NP-complete, and we propose a novel polynomial-time J d
approximation ConnectID that transforms any identifying code
into a connected version of at most twice the size, thus leading to e | e |
an asymptotically optimal approximation bound. When the input

identifying code to ConnectID is robust to graph distortions, we
i i
g g

show that the size of the resulting connected code is related
to the best error-correcting code of a given minimum distance,
permitting the use of known coding bounds. In addition, we
show that the size of the input and output codes converge for h h
increasing robustness, meaning that highly robust identifying
codes are almost connected. Finally, we evaluate the performance
of ConnectID on various random graphs. Simulations for Erdds- Fig. 1. (a) An example building floor plan and connectivity giaf sensors
Rényi random graphs show that the connected codes generated'ocate_d at po_sitions marked by circles. The filled circlgs_'reepnt codewords
are actually at most 25% larger than their unconnected coun- of an identifying code for the sensor network connectivitggh. The dashed

- : : - : : P lines show the boundaries of distinguishable regions basetie radio range
terpgrts, while simulations with rqbust input 'd.ef‘“fy'”g codes of the active sensors. (b) Codewords of a connected idémgifyode for the
confirm that robustness often provides connectivity for free. same topology.

Index Terms—Identifying codes, localization, approximation
algorithms, robustness, error correcting codes

identifying code, which we formally define in Section IlI-A.
i o ) This issue is clearly seen in the application of identifytogles

An identifying code3] for any given non-empty, connectedy, Rr.pased localization in harsh environments [4, 15, t6].
graphG = (V. E) is a subsetl C V' of the vertices of the {he method proposed in [4], sensors in a building are mapped
graph (calledcodeword with the property that every vertex, granh vertices, so that a pair of vertices is connectednby a

in the graph is adjacent touniqueand non-empty subset 6f ¢qqe if the two corresponding physical sensors are withih ea
(known as thedentifying sef the vertex) Robust identifying ohers communication range. Only a fraction of all sensors
codeswere introduced in [4] and proposed for applications t&hose corresponding to codewords within the identifyinge
location detection in harsh environments, where the upohgy ¢ e graph) are kept active while the rest can be put in

graph topology may change because of addition or deletigRergy-saving mode. A target is located by the unique patter
of vertices or edges. An-robust identifying code is thus oneys sensors within its radio range.

which remains an identifying code even if one adds or remove
up tor vertices fromeveryidentifying set.
Identifying codes have been linked to a number of deep?f
. . . . . |
researched theoretical foundations, including supeoesed
codes [5], covering codes [3, 6], locating-dominating $&is

I. INTRODUCTION

SAn example of an indoor floor plan and the graph corre-
onding to sensor placement and connectivity is depicted
Figure 1(a). Sensors that are within each other's radio
communication range, like andb, are connected by a graph

and tilings [8-11]. They have also been generalized aggge (we assume connectivity between sensors is symmetri-
. . . ; cal), and filled circles, ¢, d, f, g andh represent codewords
used for detecting faults or failures in multi-processos-sy

s 3, envronmental moniorng 12,13 and roung 1 S50 S0 0 e sense comoctey gebibon
networks [14]. location detecti that th |y tion of a target pl ceﬂTg
any of tese applcaons scualyassume some base o917 SeeCion, so bt e fcation o gt sy,
nectivi ween words implicitly requirin n ) X : )
ectivity between codewords implicitly requiring a conteet mined based on the set of sensors that hear it. For instdiece, t

Preliminary elements of the coding-theoretic aspects of wisk were set{a,c} uniquely identifies the region surrounding position
presented at ITA 2011 [1]. Preliminary applications of thiork were b
presented in WCNC 2011 [2]. ’

Copyright (c) 2011 IEEE. Personal use of this material is peeahi In order to route data over a sensor network and transfer
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that correspond to codewords of an identifying code ard changes in the underlying graph,(&! > 0)-identifying
deactivates the rest, there is no guarantee that one pduzme [5, 20] uniquely identifies any subset of at mostrtices,
a connected network of active sensors. In fact, althougtp-radius identifying code [3] uniquely identifies every \ext
there exist various algorithms in the literature for cnegti using the set of all codewords within distanee®r less from
an identifying code for an arbitrary graph [4, 14, 17], notfie dhe vertex, and a dynamic identifying code [6] is a walk whose
these algorithms guarantee that the produced identifyarte ¢ vertices form an identifying code.
is connected. Identifying codes are also linked to superimposed codes [3,
Our approach focuses on building a connected (robust)20-22], dominating sets [23], locating dominating s&fs [
identifying code out of an arbitrary given (robust) idewif the set cover [13,17] and the test cover problem [13,17] and
ing code, with the goal of adding a minimum number of-robust identifying codes are linked to error correctingles
codewords to the original input identifying code and thgrebwith minimum Hamming distancér + 1 [4] and the setr-
keeping as many sensors as possible in energy-saving madelti-cover problem [17].
We begin by proving that finding a connected identifying code Of these, the locating dominating sets are closest in flavor t
is NP-complete, and by presenting a novel, efficient algorit identifying codes, and indeed Suomela [23] links identiyi
(called ConnectID) that produces a connected code of ajodes and locating dominating sets to dominating sets and
most twice the cardinality of the arbitrary identifying @dn shows that it is possible to approximate both problems withi
which it is based. This translates to an asymptoticallyrogli a logarithmic factor, and that sub-logarithmic approxioat
O(log(|V|)) approximation bound for our approach, when theatios are intractable.
original code is produced using the polynomial-tim&  There is also considerable work regarding generation of
algorithm proposed in [14]. dominating sets and connected dominating sets [24, 25], but
When the input toConnectID is r > 0-robust, we show these results do not apply directly to connected identifyin
that the size of the resulting (connected) identifying codgydes, since not every dominating set is an identifying cbe
is upper bounded by the largest error-correcting codes ofgther words, the optimal identifying code generally hagéar
given minimum Hamming distance. Moreover, the sizes @grdinality than that of the optimal dominating set.
the input and output codes differ by a multiplicative facodr Finally, identifying codes are also proposed for various
roughly 1 + 5, meaning that they are asymptotically equayppiications. The authors in [4] suggest application ohtifg-
as robustness increases. In other words, highly robust code@lg code theory for indoor location detection. They introelu
are almost connected, and this is confirmed by simulations gihst identifying codes and also present a heuristic which
Erdos-Renyi random graphs. o _ creates robust identifying codes for an arbitrary graphe Th
_Th|s paper is org_amzed as foIIov_vs. We beg|n_W|th a disCugyork in [14] uses the same technique for indoor location
sion of the related literature in Section Il. In Section |k wro- detection, although the authors introduce a more efficient
vide some background, including formal definitions of idenalgorithm for generation of robust identifying codes. They
tifying codes in Sectio_n IHI-A apd_a brief re\{iew of _existinga|so suggest an additional application of identifying cotte
algorithms for generating identifying codes in SectiorBIl efficient sensor labeling for data routing in the underlying
We then prove that the connected identifying code problegansor network. Both references implicitly assume that a
is NP-complete in Section IV. Section V presents our magnsor network can route location detection data towandka si
algorithmConnect1D, starting with some models and notationyhich is not satisfied in those sensor networks where only
in Section V-A, the core of our algorithm in Section V-B, SomMgertices corresponding to codewords are active. Since We wi
perforrqance results in Sect_ion V-C, ?mplemenftation detay,se the algorithms in [4, 14] for generating an identifyingle,
in Section V-D and complexity analysis in Section V-E. Wgye will review their techniques in more detail in Section®!
present our numerical simulations in Section VI and corelud Tne work in [12] studies the problem of sensor placement
the paper in Section VII. in a network which may be a water supply network or an air
ventilation system with potential contamination soure(sch

) _”' RELAT_ED WORK ) o that the contamination source is identified under eithehef t
There is extensive theoretical work on identifying codes ifgllowing constraints:

the literature.

In [18, 19] identifying codes are proved to be NP-complete
by reduction from the 3-satisfiability problem. KarpovsKy e
al. [3] provide information theoretic lower bounds on theesi
of identifying codes over generic graphs and some specific
graph topologies like meshes. The works in [5,20-22] derie latter version of this problem is shown to be a variant of
upper/lower bounds on size of the minimum identifying codet1e identifying code problem [13].
with some providing graph constructions based on relating
identifying codes to superimposed codes. The work in [22]
focuses on random graphs, providing probabilistic coodgi
for existence together with bounds. We begin with a formal description of identifying codes in

Many variants of identifying codes are defined and studietkction IlI-A, followed in Section 11I-B with a review of two
in the literature: arobust identifying code [4, 6] is resilient existing algorithms for generating them.

o sensor-constrained versiomhere the number of sensors
is fixed and the identification time has to be minimized,

o time-constrained versiowhere the identification time is
limited and the number of sensors has to be minimized.

IIl. BACKGROUND ON IDENTIFYING CODES



A. Definitions a b d

Consider a graph with vertex skt # () and edge seb #

() (we shall make this non-empty assumption throughout the C
text). We categorize every vertex In as either a:odewordor
anon-codewordwith the set of codewords denotéd- V. For
every vertexy in V, theidentifying seis the set of vertices i

that are adjacent to (including v itself, if it is a codeword),
and it is denoted byS;(v). If the identifying set for every
vertex is unique and non-empty, then we dakn identifying
code Note that every superset éfis an identifying code for
the same graph [4]. As a simple example, the identifying sets
for verticesa, b, and f in Figure 1(a) are, respectivelya},
{a,c}, and{f, g}, all of which are different.

An identifying codel over a given grapl is said to be
connected if there exists a simple pathGrnbetween any two Fig- 2. GraphG' with four vertices on top and constructed gragh with
vertices of, wherein all the vertices on the path belong/to tvee”rt;‘;f;‘f,?;X?;E?’g,fggilﬁ‘;iJgggggwt;ycegggf t,{;;ﬂﬁ%ﬁgﬁ dzr;?]ed_
The code is--robustif it remains an identifying code after we
arbitrarily add or remove up to vertices inV to (or from)
every identifying set, i.e.S;(u)AVy # S;(v)AV; for every
Vi,Va C V such that|V;],|V2| < r. The operatorA is the
symmetric difference operator, meaning th&f\B includes  Next we prove that deciding whether a connected identify-
all elements that are either only in sdtor only in setB jng code with a certain number of codewords exists for any
for any given pair of setsl and B. The minimum symmetric given graph is NP-complete.

differenceof an identifying code/, dmin (1), is defined 10 Theorem 4.1:Given any non-empty grap and an integer
be the minimum Hamming distance between every pair @f {he decision problem of the existence of a connected

identifying sets, i.e.dmin(/) = miny, yevuzo [S1(1)AS1(V)]-  jdentifying code with cardinality at mosk in G is NP-
It is shown in [4] that an identifying codé is r-robust if and complete.

only if dmin(I) > 2r+1, and that every superset of asrobust
identifying code! is also anr-robust identifying code.

IV. NP-COMPLETENESS

Proof: We will prove the above statement with a polynomial-
time reduction from the identifying code problem which is
known to be NP-complete [18, 19, 28]. Specifically, we show
B. Existing algorithms that an identifying code with cardinality at mdstexists inG

Next, we briefly review two existing polynomial-time algo—if an_d o_nly if there exis_ts a Connected identifying code with
rithms that generate an identifying code (if one exists)dor cardinality at mosek+-1in a specially generated gragh. In
arbitrary graph. We refer the reader to the cited referefies Order to complete the proof, we need to show that any instance
14] for further details. qf a connected |dgnt|fy|ng code can be verified in polynomlal

Algorithm ID-CODE introduced in [4] initially selects all M€, & rather straightforward exercise that we omit.
verticesV in the input graph to be codewords, and then checks,Next, we explain our polynomial-time construction of
one by one, whether each vertex can be removed from the cé graphG*(V*, £E*) from any non-empty graple(V, E).
without losing the identifying property. This greedy algom \We begin by constructing two copies’(V’, £') and
produces arirreducible code, meaning that no codeword ca§”” (V”, E”), of G. The vertices of these graphs are con-
be removed from it while still keeping it an identifying codenected through the isomorphic bijectiops: V' — V' and
and it can be modified to yield-robust codes by changings” : V — V", having the property thdt:, v) € £ implies that
the greedy criterion accordingly. (9'(u),9'(v)) € E"and(g" (u), g"(v)) € E”. We combineG’

Algorithm rID presented in [14] initially calculates the@ndG” with two new verticess andt, the former connecting
identifying set of every vertex, assuming that all vertiees to all verticesV’ and V", and the latter connecting only to
codewords. Then it associates with every vertér V' the set s In other words, this new graph will b& (V*, E*) with
of vertex pairs which distinguish, i.e., one vertex in the pair V" =V’ UV” U {s,t} and
is adjacent taw qu the other is not. The algorithm iterati\'/eliy E* = E UE"U{esolv € VUV U {es, ),
forms an identifying code by selecting the vertex that disti ’ ’
guishes the most pairs to be a codeword. Using a similar apith e; ; denoting an edge between verticesd;. Clearly the
proximation to theset coverproblem [26], the authors in [14, transformation fronG to G* is polynomial and take® (|V|+
17] prove thatrID achieves a logarithmic approximation ratig Z|) time since|V*| = 2|V| + 2 and |E*| = 2|E| 4+ 2|V| + 1.
upper bounded by; In |V'| and lower bounded by, In [V | for  Figure 2 demonstrates our construction for a sample instanc
some constants, > ¢, > 0. They also show that this boundof G.
is tight unless NR- DTIME (|V|©(celee VD) [27]. Arobust ~ We next show that there exists an identifying code with
version ofrID is also presented in [14] using a reduction teardinality < & in G if and only if there exists a connected
the set multi-cover problem [26]. identifying code with cardinality at mofk + 1 in G*.



—. Assume we have an identifying codewith cardinality components”; andC,. On the other handa, j, f,e,d} is not
at mostk over graphG. DefineI’ C V' to be the image of a plain path between; andC3 because is a codeword.
under the mapping’, i.e.,I’ = {¢'(v)| Vv € I}, and similarly The distance between a given pair of components, say
I" = {¢"(v)| Yv € I}. ThenI* = I"UI" U{s} is clearly C, and C,, is denoteddist(C4,C>) and is defined to be
connected becauseis connected to all vertices. Moreoverthe number of edges on the shortest plain path between
since’ is an identifying code folZ’, every vertex inV’ has and C,. If there is no plain path betweefi; and C5, then
a unique identifying set, and similarly far’; these sets are dist(C;,C2) = oo. In Figure 1(a),dist(Cy,Cs) = 2,
all different becaus&”’ andV”” have no common vertices anddist(C;,C3) = 3 anddist(Cy, Cy) = 2.

empty identifying sets are not allowed. Altogether théhis

a connected identifying code with cardinality at mast+ 1. B. Algorithm description

<. Assume that we have a connected identifying code with e present algorithrionnect ID in the format of a function
cardinality at mosRk + 1 over graphG*. This identifying \hich receives the set of codewords of an identifying céde
code must contain the vertex otherwise, either the code isgy, 4 given graphG and returns the set of codewordisof a

disconnected oty or " have no codewords, meaning that,nnected identifying code. For sake of clarity, we firsspre
there is an empty identifying set. Removal oill result in algorithm ConnectID informally.

k codewords in each of” and " or < k codewords within | the injtialization phase, functioBonnectID(G, I) parti-

one of G' or G (WLOG, assume it is withinG’). Sinces  (ions the identifying codé into a set of\' distinct components
is connected to all vertices 6™, no pair of vertices can be ¢ connectivity {Cy, Cs, ..., Cx'} wherel < N < |I]. Note
identified usings. Therefore, the resulting codewords withinp, 4t every pair of components is connected by some path in
G' will necessarily correspond to an identifying code @ ¢ pecause of the connectivity af. Define C' to be a set
unless it contains an empty identifying set. that stores the growing connected identifying code, aabiyr

The vertext serves to ensure that every vertex@hhas jpjtialized to the set of codewords in one of the components,
a non-empty identifying set. If is not a codeword, then no g,y . In addition, C is the set that stores all components

other vertex inG’ can have the same identifying set. Thus, \yhose codewords are not yet includeddn Therefore,C is
every vertex inG' must have a codeword neighbor that is NQhitialized to {Cy, ..., O ).

s. If t is a codeword, then there must be less thaodewords At every iteration, the algorithm first updates the dis-
in G’. In this case, there may be a single vertein G’ with  5nce dist(C,C;) betweenC and every component’; in
identifying set{s}, but addingv to the codewords o&’ will & (section V-E will describe how to do this efficiently).
produce a non-empty identifying code of size not larger th3p ihen extracts fromé the componenC* with minimum

k for G. u dist(C,C*) (breaking ties arbitrarily). The algorithm selects
as codewords all vertices on the shortest plain path coimgect
V. ALGORITHM ConnectID C and C*, denotedpath*(C, C*), and unites the codewords
We next present and analyze our polynomial-time approxit C' and C* and path*(C,C*) into C. After this step, the
mation algorithm for connected identifying codes. algorithm examines whether there are any other components

in C" which become connected 10 via the newly selected
codewords orpath*(C,C*). We definel’ C C' to be the set

) of such components. [ is non-empty,C' is united with the

~ We assume an undirected, connected gréipii, ) (or &' comnonents i and the members in sétare removed from
in short) wherel” is the set of vertices and' is the set of o The jteration above is repeated uritilbecomes empty.
edges between the vertices. We consitierV' to be the set of ¢ termination, the algorithm returns the connected/set
codewords of an identifying code i and a supersél. 2 I \which, as a superset &f is necessarily an identifying code.
to be the set of codewords of a derived connected |dent|fy|ngBe|0W1 is a more formal presentation of algorithm
code inG. Theredundancy ratioR = |I.|/|I| > 1 relates the ConnectID(G, I):

two quant_ltles' o Algorithm ConnectID(G, I):

We define acomponent of connectivitfor a component) |nitialization:

C of I in graph G to be a maximal subset of such
that the subgraph off induced by this subset is connected,
i.e., the graphG’(C,E n (C x C)) is connected and any
codeword added t@’ renders it unconnected. For the example
of Figure 1(a), we havé = {a,c,d, f, g, h} with components Ite?e)ltiir?'tc “ o

of connectivity C; = {a}, Co = {c}, C3 = {d} and oA

Cy = {f,g h}. 7) While C' is not empty,

A plain pathbetween components; andCs is an ordered ~ 8)  Updatedist(C,C;) andpath(C, C;) for every
subset of vertices iV that forms a path inG connecting a Cj € C and setC” + argming g dist(C, Cj).
vertex x; € C; to a vertexxzy € Co, With 2y and x5 being 9) Extract component™* from C.
the only codewords in the path. By distinctionpath may  10)  SetC «- C'UC* Upath*(C,C*).
include any number of codewords or non-codewords. In Figurél)  Find the set” C C of components that are connected
1(a),{a,b,e,f} and{a,j,{} are the only plain paths between to C.

A. Model and notations

1) Partition! into a unique set of components of connec-
tivity {C1,Cy,...,Cn} wherel < N <|I].
2) SetC + {Cs,...,Cn}.



Algorithm ConnectID resembles Prim’s algorithm for con-
structing the minimum spanning tree of a graph [29], but
exhibits some fundamental differences. For example, Brim’
algorithm selects an edge with minimal weight at every
iteration and finally spans every vertex in the graph. Howeve
ConnectID selects a path with the shortest length at every
iteration and finally spans all components, which may not
include all vertices in the graph.

C. Performance results

In this section, we first prove two properties of any iden-
tifying code I. These properties are invariably true at every
iteration of ConnectID. Based on this, we prove our main
result, that is, that algorithonnectID produces a connected
identifying code whose size is tightly bounded with resgect
the input identifying code. Finally, we provide a performan
analysis for the connected robust identifying code acluidwe
ConnectID when the input identifying code is robust.

Lemma 5.1:Consider any identifying codé that is par-
titioned into a set of components of connectivify =
{C1,...,Cp|} over graphG. If |P| > 1, then every com-
ponentC; in P is at most three hops away from some other
component’; in P wherej # i.

Fig. 3. Progress afonnectID(G, I). The filled circles represent codewordsPrOOf By the definition presented in Section lll-A for an

of an identifying codef for the illustrated grapi. Initially, 7 is partitioned identifying code, every non-codeword vertexGhis adjacent
to components”; = {a}, Co = {c}, C5 = {d} andC4 = {f,g,h}. to at least one codeword ih Since the graph is connected,

We then set (a)” = {a} and C' = {C2,C3,Cu}, (b) C = {a,b,c} and  every pair of components i should be connected by at least

= {C3,Ca}, and ©C = {a,b,c,d,e,f,g,h} andC = {}. one path. Consider the shortest path connecting component
C; in P to componentCy in P wherek # i. The second
node on this path (the node at the first hop) is obviously not
a codeword because otherwise it would be included”jn

12) If T is not empty,

ii; Folrzz\r/ae(r:)tl C? O?Oprzngr(fj el The third node on this path (the node at the second hop) is
J : either a codeword belonging to a componéfjtin P or is
15) SetC + CUC;. ging ponen

a non-codeword adjacent to some comporE&ntComponent
16) Returnl. « C. C; should be different front; because otherwise the selected
Example. Figure 3 shows the progress@nnectID(G,I) path fromC; to C;, will not be the shortest. ™
after every iteration for the same graph and the same inpui_emma 5.2:Every vertex in graphG that is adjacent to a
identifying code as shown in Figure 1(a). The vertices irthla component’; with cardinality one inP is adjacent to at least
are codewords. Assume that at initialization we haVe:= gne other componertt; in P wherej # i.
{a}, Cy = {c}, C3 = {d} andC, = {f,g,h}. In Figure 3(a) Proof: This property follows from the uniqueness of the
we setC = C andC = {Cy, C3, Cy}. At first iteration, after identifying sets. The identifying set of the single codesvor
we calculate the distance betweéhand all components in pelonging to componert; is itself. If any non-codeword that
C at line 8, we havedist(C,Cy) = 2, dist(C,C3) = 3, is adjacent ta; is not adjacent to at least one other component
dist(C,C4) = 2. At line 9, we extract one component withC; wherej # i, then it will have the same identifying set as
minimumdist from C, which may beC; or C'y. Assume that the single codeword i; which contradicts the definition of
we selectC,. Then, we uniteC' and C, and vertexb at line  an identifying code. ]
10. Hence,C' = {a,b,c} as illustrated in Figure 3(b). There Corollary 5.3: Consider any identifying code that is
are no components i@ that are connected 0 at this stage, partitioned into a set of components of connectivity =
i.e.,I' = {}, and we return back to line 7. We update distanceg’,, ..., C|p| } over graphG. If |P| > 1, then every component
and paths againist(C, Cs) = 2 anddist(C,Cy) = 2. We C; in P with cardinality one is at most two hops away from
extract the component with minimudist, which may beC;  some other componeid; in P wherej # i.
or Cy. Assume that we extracts at line 9. Hence, we unite Lemmas 5.1 and 5.2 hold for every identifying cotlever
C and C3 and vertexe and obtainC = {a, b, c,d,e}. Then, graphG. Therefore, they are true right after the initialization
we examine the only component remainingGnwhich isC, of algorithmConnectID. Since at every iteration, we add one
to see if it is now connected t6. We getl’ = C; and we or more codewords and do not remove any codeword, the set
unite C' and Cy at line 15. Finally, in Figure 3(c) we haveof codewords inC' and in every component af’ forms an
C ={a,b,c,d, e, f,g h} which is the connected identifying identifying code. Hence, Lemmas 5.1 and 5.2 invariably hold
code . output by the algorithm. after every iteration.



Next, we provide the overall analysis of our algorithm which Before presenting our analysis, we present our notations.
is based on Lemmas 5.1 and 5.2. Recall our notation that an-robust identifying codel over
Theorem 5.4:Assuming! is an identifying code for graph graph G can be partitioned into connected componeRts-
G and I. is the identifying code created by algorithm{C,,...C|p }. We defineSy,(I) (or just Sni, in short) to be

ConnectID(G, I), we have: the minimum non-unitary cardinality of a component ity
i) I. is a connected identifying code. i.e.,
i) The total number of codewordsl.| generated by algo- Stin = min |C5].

rithm ConnectID(G, I) is at mos®|I|—1. Furthermore, i s:t.c,ep andic;|>1
this bound is tight. Our upper bound on the cardinality éf depends orb .,

PrSO(fZ:Iearl C remains a component of connectivity throu hfor which we shall provide lower bounds later in this section
Y, P y 9" | emma 5.7:Given anr > 1-robust identifying codd with

out. The while loop starting at line 7 necessarily termipate =
when C' is empty. Since every component extracted frém connected component8 = {Ci, ..., C|p(}, there may be at

unites withC' at line 10 or line 15, at termination of the WhiIeg]r(();tf_or::/eco:g\plgrlﬁfigvrgrngagdIggl:gag?gi'on Suppose there
loop I C C, implying that/, = C' is an identifying code. ) P y - =upp

ii) At every iteration of ConnectID, we unite C' with at are at least two components with cardinality one. Then, the

least one component denotétt in O and add at most two Hamming distance between the identifying sets of the single

codewords according to Lemma 5.1. If the newly mergec deword in the two components is two. This contradicts our

componentC* has cardinality one, then eithéf* is two hops assumpt[on 'thaf IS r-robust forr > 1 since the minimum
away fromC' or according to Lemma 5.2, the non—codeworaymmeJ[rIC difference of, dmin(7), should be at leastr + 1.
onpath*(C, C*) that is adjacent to a codeword @1, is also "
adjacent to at least one other compon€hpin C. In the latter
case, after the union at line 10; becomes connected 1@
and unites withC' at line 15. Thus, we are adding at mos
two codewords orpath*(C,C*). Overall, we select at most
one new vertex as codeword for every codeword! i C; 1< (1 2 7l 2
where\ denotes the usual set difference operator. Thus, the el = |1+ Sinin 1] Sonin
cardinality of the resulting identifying codg.| is at most

< — ) .
] + [T\ 1| < 21| — 1 codewords wheitonnectID(G, 1) erwise, I consists of at least two components. Therefare,
terminates. ; L
andC' in ConnectID are initially not empty. Based on Lemma

This bound is tight. Consider a ring topology widk ver- : . s
tices ¢ being a positive integer). The optimal identifying codgj there is at most one component with cardinality one. &hre

. . L S : : Scenarios are possible:
(i.e., that with minimum cardinality) consists éfinterleaved . L .
vertices, whereas the connected identifying code for tragly () ComponentC' is initialized to the only component with

and the mentioned input identifying code must necessarﬁz:g:?gl';y ;tnlzz;gsthlsafmzsfﬁeree\/ix? Icorquggg\tvo%shits)t
contain all but one vertex, i.ell.| = 2k — 1. y at min ¢Il -

Corollary 5.5: The redundancy ratidR = |I.|/|I| of the in C'. Hence,C' contains at mos{|I| — 1)/Smin components

connected identifying codé, achieved byConnectID(, I) |n|t|a|:1IIy. Uswggla similar reazc(;mng as in Theorzm 5.A(fj based
is at most two for any given grapf. on Lemma 5.1ConnectID adds at most two codewords per

If the input identifying codel to ConnectID(G,I) is an every component that is initially ir". Therefore, we have
identifying code achieved by the algorithm in [14], then wélc|,_§ 7] + 2(,|I‘ = 1)/Swin- ) o ~
have|l| < ¢ |I*|In|V| wherec > 0 is a constant/* is the '(.u).Th'ere is a gomponent with cardinality one @i at
identifying code with minimum cardinality for grapf and [nitialization. In this case, there are at MO$E| — Swin
V| is the number of vertices in grapii. We definel* to be codewords not ir initially. We add at most one codeword for

the connected identifying code with minimum cardinality if"€ cOmponent with cardinality one @i based on Lemma 5.2.

graphG. Since|I*| > |I*|, we have the following corollary. 1here aré at mosZ| —Suin —1)/Swin Other components in
Corollary 5.6: If the input identifying code I to C initially. Therefore, we add at mog(|/| — Swin —1)/Smin

ConnectID(G,I) is an identifying code achieved bycpdeyvords plus one codeword for _the_ component with car-

the algorithm in [14], then the cardinality of the connecteflinality one to|I]. The overall cardinality off. is at most

identifying code I. achieved by ConnectID is at most |I|ff_2(|f| *_1)/Smin*1 n th|s_case. o _

¢ |I*|1In|V| whered > 0 is a constant. (iif) There is no component with cardinality ori_e.Athls_ case,

Robustness analysisThe properties ofConnectID ensure there are at most/|— Swin)/Smin COMponents irC' initially

that it produces a connecteobustcode if it is given a robust @hd we add at most two codewords per every component in

code as an input. Next, we combine the results of the algorit”- Therefore, we havel.| < [I| + 2|I|/Smin — 2.

with well-known coding theoretic bounds to derive bounds Case (i) leads to the largest upper bound Lnamong the

on the cardinality of connected robust identifying codeg Whree cases. u

show that as robustness increases, the resulting codes arghe following lemma relatesS,;, to the » > 1-robust
increasingly connected. identifying code of minimum possible size.

The following theorem is based on Lemma 5.7.

Theorem 5.8:The connected identifying codg produced
by ConnectID(G, I) from anr-robust identifying codd over
graphG satisfies

Proof: If I is connected, the bound follows trivially. Oth-



Lemma 5.9:The value ofS,,;, is lower bounded by the inequality to be greater or equal tg it must be that:

minimum size of an- > 1-robust identifying code with more d+1

_ > 2
than one codeword. dti-n = "
Proof: We are given anr-robust identifying code that is n®—(2d+1)n+2d+2 > 0.

partitioned to a set of components For every component; o ,

in P, the identifying set for every codeword @; consists of FOr2 <7 < 2d —1 and oddd > 3, this inequality has no

a unique subset of codewordsdh. The minimum symmetric feasible solution. , u
difference between the identifying sets of the codewords;in The following lemma follows directly from Lemma 5.11.
must be at leastr + 1, i.e., dumin(C;) > 2r + 1. Therefore, ~Lemma 5.12:For oddd > 3, Spin > 2d.

the codewords ir€’; form anr-robust identifying code for the ~ Combining Theorem 5.8 with Lemma 5.12 we have the
subgraph induced bg; in G. Hence, the size of’; has to be following simple bounql on the size of a connected code
at least as large as the size of the minimum possibiebust 9enerated by our algorithm.

identifying code. Since,,:, is greater than one by definition, Corollary 5.13:1f the input identifying code I to
the lemma follows. m ConnectID(G,I) is anr-robust identifying code for graph

. G, wherer > 1, we have,
Based on Lemma 5.9, we next relaig;, to the size of a

minimum error-correcting code. Recall that the charastieri 1. < (1 n 1 > - 1 '
vector of a set is the binary vector whos¢h bit is 1 if and - 2r+1 2r+1

only if the i-th element of a given universe (in this case, \We observe that with increase of S, increases and
the set of vertices in the graph) is in the set. Note that thge upper bound oNl.| gets closer tqI|. This implies that
characteristic vectors of the identifying sets of amobust for |arger robustness, I tends to be more connected and
identifying code/ form a binaryr-error correcting code of e usually require fewer additional codewords to make it
length [Z]. The reverse does not necessarily hold because @fnnected. Furthermore, according to Corollary 5.13 fayda
the limitations imposed on identifying codes by the grapfiajues of robustness, |I.| tends to|I|. Note, on the other
structure. hand, that connectivity does not necessarily imply robessn

We can now form a relationship betweeh,;, and the as one can observe from Figure 1(b).
coding-theoretic functiom(n,d) denoting the maximal size
of a (binary) code of lengt gnq minimum - distancel. Implementation
This leads us to our theorem linking bounds on connected ) ] )
identifying codes and error-correcting codes, and alldes t Our implementation relies on well-known data structures

application of coding-theoretic upper bounds to connect@fd algorithms, as may be found in a standard text [29].
identifying codes. Its main data structure is théisjoint-set which is used to

dl i o maintain components of connectivity. For our purpose, \ever
5 -robust identifying code, gsjoint set will store a connected component of codewords
) as a linked list, with all the codewords of a component
Smin = s<nsAma maintaining a link to a common representative.

T Populating these data structures requires the use of a con-
Proof: For any givenr > 0-robust identifying codel with nected components algorithm, such as that of Hopcroft and
n codewords over an arbitrary gragh, we know from [4] Tarjan based on the BFS or DFS [31] requiring an overall
that duin(I) > 2r 4+ 1, meaning that am-robust identifying O(]V] + |E|) time. We next describe how to use this data
code withn codewords over any given gragh existsonly structure to calculate the distangest(C, C;) and the shortest
if an r-error correcting code exists with length and size plain path path(C,C;) between component’ and every
A(n,d=2r+1) > n. component’; in C as needed in line 8 afonnectID.

Let nym = argmin,o,(n < A(n,d). If nmm = 2, S_ta_rting at any codeword of_ compone6t, we run an _
then Suin > 7 trivially since Sy, is an integer strictly optimized two—stgge Breadth F|r§t Search (BFS). To pegln,
larger than one. Otherwise fofi, > 2, it must be that W€ select an farbltrary codeyvord @ to be th_e_source.(\_/wth
n' > A(n',d) for everyn’ such thatl < n' < nu. This distance mgtrlc 0). In the fII‘S.t stage, We.VISIt and _flnlsh all
implies thatS,uin > 7w, proving the theorem. - code_words in component’ Wlthou_t_updatmg_ our dlstanc_e

} ] metric. In the second stage, we visit and finish other vestice

Thus, Syin is bounded by the smallest for which 4t iy as we increment the distances. The motivation behind

A(n,d) > n. We can sharpen this result with the Plotkin, yo-stage BFS is to finish all codewords at distance zero

Theorem 5.10:Given anr =
it holds that

bound [30] and the following lemma. from the source, i.e., codewords ifi, before the rest of
Lemma 5.11:For all2 < n < 2d — 1 and oddd > 3, the vertices. In order to engineer the BFS in two stages, we
use two BFS queues. The first queue stores the visited but
A(n,d) < n.

unfinished codewords in'. The second queue stores the rest
. . of the vertices that are visited but unfinished.
Proof: The Plotkin bound states thal(n, d) < 2 {mJ In the first stage of BFS, when we visit a non-codeword

for odd d > ’”;1. In order for the right-hand side of theadjacent to a codeword ifl, we insert it into the second queue,




[y
@

and we do not extract any vertex from the second queue until
we finish all codewords i in the first stage, i.e., we empty
the first queue. In the second stage, the BFS continues the
search starting from the non-codewords in the second queue.
All codewords outside” are considered leaf vertices, i.e., we
do not visit their adjacent vertices. This is because we are
only interested in plain paths. While running the BFS, we
maintain an estimate of the distanéest(C, C;) betweenC

and every component’; in C, initialized to infinity. Every
time BFS visits a codeword, it finds the component to which
it belongs using thefind — set primitive (of the disjoint- ‘ ‘ ‘ ‘ ‘ ‘
set data structure) and updates the estimataiet(C, C;) 2 4 6 8 10 12 14 16
accordingly (i.e., keeping the smaller value seen so fagisb average node degree

stores the codeword that achieved the smaller distance SiRg 4. Average number of components of connectivity for thentidying
this will be used to find the shortest plain pathath(C,C;) codes produced byd-CODE [4] and byrID [14] over 100-node Erds-Renyi
upon termination. We also maintain the componétitwith ~"andom graphs and varying average node degree.

minimum dist(C, C*) during the BFS process. In this way,

there will be no additional processing to find the component ) L ) .
with minimum distance fronC. environments for which applications of identifying codesé

Computation of the distances and the shortest plain pafffi€" Proposed [4], and we have thus not included them.
betweenC' and the components i6' described above is no "de€d, geometric random graphs generally do not possess
more than that of the standard BFS upon which it is basdfl€ntifying codes [14], although there are ways to get adoun
ie., O(|V| + |E|), since we exercise a constant overhead pg}ls problem by removing a few indistinguishable vertices

node during the traversal. from the graph. S _
In order to generate an identifying code for a given graph

. . instance, we use the two existing algorithmeD [14] and

E. Complexity analysis ID-CODE [4] that we briefly reviewed in Section IlI-B. As we
We next consider the worst case running time afill see, the identifying codes generated 1§D and ID-CODE

ConnectID. The initialization phase take®(|E|) time: we are often disconnected.

remove all non-codewords and incident edges from the graphour metrics are the following: the number of components of

run connected-components to partition the result, and $eén connectivity for each of the identifying codes, the cartitga

up C' (as a linked list) and”'. The iteration part of algorithm of the identifying codes generated by algorittim+CODE and

ConnectID can run inO(N|E]) time as follows. algorithm r1ID, the cardinality of the connected identifying
The while loop (starting at line 7) iterates at maswhich  codes generated tfjonnectID for each of the two identifying

is O(|E])) times, and at least one component is extracte@des and the corresponding redundancy ratios. We have mea-

from C per iteration. Within the loop, each iteration requiregyred the mentioned metrics over at lesz graph instances

the calculation ofdist(C,C};) and path*(C,C};) at line 8 and plotted the empirical means adiEl% confidence intervals.
requiresO(|V|+|E|) time as described in Section V-D. Line 9

takes theO(1) needed to delete from a linked list, since we

have already identified the componefit. Lines 10 and 15 A. Erdos-Renyi random graphs

requireO(|V’|) time, since Lemma 5.1 assures only a constant\ye consider two scenarios, either we fix the number of
number of calls to the disjoint-setnionprimitive. Line 11 yertices in the graph and change the average node degree, or
requires the algorithm to rufiind — set (i.e., constant-time) e fix the average node degree and change the graph size (i.e.,

on all neighbors of vertices opath*(C,C™), of which there he number of graph vertices). We finally present results for
are O(|E|). For each of the components found,uaion G gnnected robust identifying codes.

operation is used, giving a net total 6f(|V]) unions over
the life of the iteration loop. Altogether, the computatbn
complexity of ConnectID is O(N|E|), which is O(|V||E])
sinceN < |V|.

=
[<2]
T

—#—D-CODE [2]
—£— 11D [10]

=
N
T

2 e
o N
T :

average number of components
[es]

Figures 4, 5 and 6 correspond to random graphs Wih
nodes and average node degree ranging fdcim 15.

Figure 4 shows the average number of components of the
identifying codes produced p-CODE and byrID. We expect
lower redundancy with fewer components. If there is a single

VI. NUMERICAL RESULTS component, the identifying code is connected. We observe

In this section, we evaluate the performance&eafinectID that algorithmrID produces fewer components of connectivity
on two types of random graphs: ExstRenyi random graphs than algorithmID-CODE on average. We also observe that the
and regular random graphs, i.e., graphs with random arranggerage number of components decreases as the average node
ment of edges such that every node will have a fixed degrelegree increases and equals about 2 when the average node
It should be noted that even though geometric random grapgteggree equald5. This is reasonable since the connectivity
are appropriate for modeling the outdoor communicatiogeanbetween vertices (and codewords) increases with the averag
of wireless sensors, they are less practical for indoor osthanode degree.
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Fig. 5.  Average redundancy ratio of the connected idemifycodes Fig. 7.  Average redundancy ratio of the connected idemiifycodes
generated byonnectID for input identifying codes froniD-CODE [4] and ~ generated byConnectID for Erdds-Renyi random graphs of increasing size
from rID [14] over100-node Erds-Renyi random graphs and varying averageand the input identifying codes frortd-CODE [4] and from rID [14]. The

node degree. average degree of the graphs is kept fixed to four.
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Fig. 8. Average redundancy ratio of the connected idemifycodes
Fig. 6. Average cardinality of the input identifying codesrf ID-CODE [4]  generated byonnectID for input identifying codes fronID-CODE [4] and
and fromrID [14] and average cardinality of the connected identifyindes from rID [14] with various degrees of robustness ranging from 0 toltge T
generated byConnectID in both cases forl00-node Erds-Renyi random underlying graphs aré00-node Erds-Renyi random graphs. All curves with
graphs and varying average node degree. diamond markers are almost overlapping.

Figure 5 shows the average redundancy ratiocahect ID, Figure 7 depicts the average redundancy ratio for graphs

when the input identifying codes are generated IbyCODE yvith average node degree Qf 4 and number of vertices rang-
and by rID. As one can expect, based on the results 819 from 20 to 150. According to the figure, forID, the
Figure 4,r1D leads to a smaller redundancy ratio than that 4fdundancy ratio of the connected identifying code deeas
ID-CODE. In both cases, the average redundancy ratio decreaig€ast initially) with the size of the graph. The reduncan

as the average node degree increases and approaches a (,g“?edoes not ghange significantly me'_CODE' )
quite close to 1 for an average node degre¢ofThe average Figure 8 depicts the redundancy ratios for connected iden-

- : . . . tifying codes fromConnectID when the input identifying
redundancy ratio achieves its highest value (i.e., skgdblove 4 4
1.25) for ID-CODE and an average node degree3of code is O-robust, 1-robust, 2-robust or 3-robust. The geigdh

. S . is fixed to 100 vertices and the average node degree varies.
Figure 6 compares the cardinality of the connected 'deEkce t for the case of O-robust input, we obtain redundanc
tifying codes generated bgonnectID with the cardinality P Put, Y

of identifying codes generated t§D-CODE and by rID. As ratios of about one. This implies t_hat robust identifyingles

. g inalif"® often connected for Eid-Renyi random graphs.
previously shown in Figure 5, we observe that the cardipali
of the connected identifying code is far smaller than twice
that of the input identifying code. We also observe thd3- Regular random graphs
the cardinality of all four identifying codes decreaseshwit Next, we evaluate the performance ObnnectID over
the average node degree. We conclude that folb&kRenyi regular random graphs with 100 nodes and changing node
random graphs, algorithmID not only generates a smallerdegrees. Figure 9 depicts the redundancy ratios for coadect
identifying code compared toD-CODE to begin with, but also identifying codes fronConnectID when the input identifying
its resulting connected identifying code is significantiyadler code is 0-robust, 1-robust, 2-robust or 3-robust. As ford&rd
for all examined average node degrees. Rényi random graphs, we observe that robust identifying sode
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135 —+—ID-CODE [2], r=0 | constructing an identifying code and then connecting iteon
—#—riD [10], r=0 could try to build connected identifying codes from scratch
g jfgﬁ(g}'?ﬂzl‘ = Also, rather than bounding the redundancy ratio as doneisn th
51-25’ ——ID-CODE [2], 1=2 | ] paper, one could devise algorithms that provide performanc
§ 12} ilf'DD_lclg]b:Zz Ll guarantees on the minimum number of redundant vertices
E 118l D r:[3]' = (codewords) needed, e.g., using Steiner tree heuristicS§3.
g ' « That said, the results of our paper show that one cannot expec
o Lir much gain if the input identifying code is robust. Finally,
g 1.05} one could investigate extensions of our work to the problem
1 —6—0—0—0—0—0—0—0—0—0—0—6—0—0—0 of constructing connected identifying codes with robussne
05 not only in identification but also in connectivity, i.e.,eth

5 10 15 20 generated identifying code remains connected in the evient o

node degree

Fig. 9. Average redundancy ratio of the connected idemifycodes
generated byonnectID for input identifying codes fronID-CODE [4] and
from rID [14] with various degrees of robustness ranging from 0 to 3.
The underlying graphs ar)0-node regular random graphs. All curves with
diamond markers are almost overlapping.

failure of a bounded number of graph vertices.
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VII. CONCLUSION AND FUTURE WORK

In this work, we addressed the problem of guaranteeing the
connectivity of identifying codes, a problem relevant tinjo [1]
monitoring and routing in sensor networks. We showed, by
reduction from the identifying code problem, that the diecis
problem regarding the existence of a connected identifying
code is NP-complete. We introduced algoritf@onnectID
that produces a connected identifying code by adding code-
words to any given identifying code for an arbitrary graph/[4]
The cardinality of the resulting connected identifying edd
upper bounded bg|7| — 1 where|I| is the cardinality of the
input identifying code. We proved that the mentioned bownd i[5]
tight and proposed an efficient implementationfonnectID 6]
with polynomial time complexity that grows as the product of
the number of edges in the graph and the number of vertices
in the graph. [7]

Motivated by the application of robust identifying codes in
monitoring harsh environments where sensors may fail ang
the connectivity is unreliable [4], we extended our analysi
to the case where the input identifying code GennectID
is r-robust which leads to a connecteerobust identifying
code. By applying the theory of-error correcting codes,
we derived upper bounds on the cardinality of the resultir{bo]
connected identifying code that depend on the robustnass
the cardinality of the input identifying codeg|. Our results [11]
prove that as- becomes large, the redundancy ratio tends to
one, meaning that robustness implies connectivity. [12]

We numerically evaluated the redundancy ratio of
ConnectID. Our simulation results for Efis-Renyi random 13
graphs and regular random graphs showed that this quanw
is generally far below the theoretical bound of two. When the
input identifying code is robust, the redundancy ratio ssel [14]
to one (i.e., the input identifying code is connected or aitmo
connected).

This paper opens several directions for further researjh.
For instance, one could explore different approaches far c
structing a connected identifying code. Thus, instead ef fir

9]

and suggesting Lemma 5.12 based on the Plotkin bound.
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