
1

Connected Identifying Codes
Niloofar Fazlollahi, David Starobinski and Ari Trachtenberg

Dept. of Electrical and Computer Engineering
Boston University, Boston, MA 02215
Email: {nfazl,staro,trachten}@bu.edu

Abstract—We consider the problem of generating aconnected
identifying code for an arbitrary graph. After a brief motivation,
we show that the decision problem regarding the existence of such
a code is NP-complete, and we propose a novel polynomial-time
approximation ConnectID that transforms any identifying code
into a connected version of at most twice the size, thus leading to
an asymptotically optimal approximation bound. When the input
identifying code to ConnectID is robust to graph distortions, we
show that the size of the resulting connected code is related
to the best error-correcting code of a given minimum distance,
permitting the use of known coding bounds. In addition, we
show that the size of the input and output codes converge for
increasing robustness, meaning that highly robust identifying
codes are almost connected. Finally, we evaluate the performance
of ConnectID on various random graphs. Simulations for Erdős-
Rényi random graphs show that the connected codes generated
are actually at most 25% larger than their unconnected coun-
terparts, while simulations with robust input identifying codes
confirm that robustness often provides connectivity for free.

Index Terms—Identifying codes, localization, approximation
algorithms, robustness, error correcting codes

I. I NTRODUCTION

An identifying code[3] for any given non-empty, connected
graphG = (V,E) is a subsetI ⊆ V of the vertices of the
graph (calledcodewords) with the property that every vertex
in the graph is adjacent to auniqueand non-empty subset ofI
(known as theidentifying setof the vertex).Robust identifying
codeswere introduced in [4] and proposed for applications to
location detection in harsh environments, where the underlying
graph topology may change because of addition or deletion
of vertices or edges. Anr-robust identifying code is thus one
which remains an identifying code even if one adds or removes
up to r vertices fromevery identifying set.

Identifying codes have been linked to a number of deeply
researched theoretical foundations, including super-imposed
codes [5], covering codes [3, 6], locating-dominating sets[7],
and tilings [8–11]. They have also been generalized and
used for detecting faults or failures in multi-processor sys-
tems [3], environmental monitoring [12, 13] and routing in
networks [14].

Many of these applications actually assume some base con-
nectivity between codewords implicitly requiring a connected

Preliminary elements of the coding-theoretic aspects of thiswork were
presented at ITA 2011 [1]. Preliminary applications of this work were
presented in WCNC 2011 [2].
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Fig. 1. (a) An example building floor plan and connectivity graph of sensors
located at positions marked by circles. The filled circles represent codewords
of an identifying code for the sensor network connectivity graph. The dashed
lines show the boundaries of distinguishable regions basedon the radio range
of the active sensors. (b) Codewords of a connected identifying code for the
same topology.

identifying code, which we formally define in Section III-A.
This issue is clearly seen in the application of identifyingcodes
to RF-based localization in harsh environments [4, 15, 16].In
the method proposed in [4], sensors in a building are mapped
to graph vertices, so that a pair of vertices is connected by an
edge if the two corresponding physical sensors are within each
other’s communication range. Only a fraction of all sensors
(those corresponding to codewords within the identifying code
of the graph) are kept active while the rest can be put in
energy-saving mode. A target is located by the unique pattern
of sensors within its radio range.

An example of an indoor floor plan and the graph corre-
sponding to sensor placement and connectivity is depicted
in Figure 1(a). Sensors that are within each other’s radio
communication range, likea andb, are connected by a graph
edge (we assume connectivity between sensors is symmetri-
cal), and filled circlesa, c, d, f, g andh represent codewords
of an identifying code for the sensor connectivity graph. Only
the mentioned sensors actively monitor their surrounding for
location detection, so that the location of a target placed at any
of the regions marked by dashed lines can be uniquely deter-
mined based on the set of sensors that hear it. For instance, the
set {a, c} uniquely identifies the region surrounding position
b.

In order to route data over a sensor network and transfer
sensor data to a processor for location detection processing,
one needs the network of active sensors to beconnected,
as shown in Figure 1(b). Yet, if one only activates sensors
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that correspond to codewords of an identifying code and
deactivates the rest, there is no guarantee that one produces
a connected network of active sensors. In fact, although
there exist various algorithms in the literature for creating
an identifying code for an arbitrary graph [4, 14, 17], none of
these algorithms guarantee that the produced identifying code
is connected.

Our approach focuses on building a connected (robust)
identifying code out of an arbitrary given (robust) identify-
ing code, with the goal of adding a minimum number of
codewords to the original input identifying code and thereby
keeping as many sensors as possible in energy-saving mode.
We begin by proving that finding a connected identifying code
is NP-complete, and by presenting a novel, efficient algorithm
(called ConnectID) that produces a connected code of at
most twice the cardinality of the arbitrary identifying code on
which it is based. This translates to an asymptotically optimal
O(log(|V |)) approximation bound for our approach, when the
original code is produced using the polynomial-timerID
algorithm proposed in [14].

When the input toConnectID is r > 0-robust, we show
that the size of the resulting (connected) identifying code
is upper bounded by the largest error-correcting codes of a
given minimum Hamming distance. Moreover, the sizes of
the input and output codes differ by a multiplicative factorof
roughly 1 + 1

2r , meaning that they are asymptotically equal
as robustnessr increases. In other words, highly robust codes
are almost connected, and this is confirmed by simulations on
Erdős-Ŕenyi random graphs.

This paper is organized as follows. We begin with a discus-
sion of the related literature in Section II. In Section III we pro-
vide some background, including formal definitions of iden-
tifying codes in Section III-A and a brief review of existing
algorithms for generating identifying codes in Section III-B.
We then prove that the connected identifying code problem
is NP-complete in Section IV. Section V presents our main
algorithmConnectID, starting with some models and notation
in Section V-A, the core of our algorithm in Section V-B, some
performance results in Section V-C, implementation details
in Section V-D and complexity analysis in Section V-E. We
present our numerical simulations in Section VI and conclude
the paper in Section VII.

II. RELATED WORK

There is extensive theoretical work on identifying codes in
the literature.

In [18, 19] identifying codes are proved to be NP-complete
by reduction from the 3-satisfiability problem. Karpovsky et.
al. [3] provide information theoretic lower bounds on the size
of identifying codes over generic graphs and some specific
graph topologies like meshes. The works in [5, 20–22] derive
upper/lower bounds on size of the minimum identifying codes,
with some providing graph constructions based on relating
identifying codes to superimposed codes. The work in [22]
focuses on random graphs, providing probabilistic conditions
for existence together with bounds.

Many variants of identifying codes are defined and studied
in the literature: arobust identifying code [4, 6] is resilient

to changes in the underlying graph, a(1, l ≥ 0)-identifying
code [5, 20] uniquely identifies any subset of at mostl vertices,
a ρ-radius identifying code [3] uniquely identifies every vertex
using the set of all codewords within distanceρ or less from
the vertex, and a dynamic identifying code [6] is a walk whose
vertices form an identifying code.

Identifying codes are also linked to superimposed codes [3,
5, 20–22], dominating sets [23], locating dominating sets [7],
the set cover [13, 17] and the test cover problem [13, 17] and
r-robust identifying codes are linked to error correcting codes
with minimum Hamming distance2r + 1 [4] and the setr-
multi-cover problem [17].

Of these, the locating dominating sets are closest in flavor to
identifying codes, and indeed Suomela [23] links identifying
codes and locating dominating sets to dominating sets and
shows that it is possible to approximate both problems within
a logarithmic factor, and that sub-logarithmic approximation
ratios are intractable.

There is also considerable work regarding generation of
dominating sets and connected dominating sets [24, 25], but
these results do not apply directly to connected identifying
codes, since not every dominating set is an identifying code. In
other words, the optimal identifying code generally has larger
cardinality than that of the optimal dominating set.

Finally, identifying codes are also proposed for various
applications. The authors in [4] suggest application of identify-
ing code theory for indoor location detection. They introduce
robust identifying codes and also present a heuristic which
creates robust identifying codes for an arbitrary graph. The
work in [14] uses the same technique for indoor location
detection, although the authors introduce a more efficient
algorithm for generation of robust identifying codes. They
also suggest an additional application of identifying codes for
efficient sensor labeling for data routing in the underlying
sensor network. Both references implicitly assume that a
sensor network can route location detection data toward a sink,
which is not satisfied in those sensor networks where only
vertices corresponding to codewords are active. Since we will
use the algorithms in [4, 14] for generating an identifying code,
we will review their techniques in more detail in Section III-B.

The work in [12] studies the problem of sensor placement
in a network which may be a water supply network or an air
ventilation system with potential contamination source(s) such
that the contamination source is identified under either of the
following constraints:

• sensor-constrained versionwhere the number of sensors
is fixed and the identification time has to be minimized,

• time-constrained versionwhere the identification time is
limited and the number of sensors has to be minimized.

The latter version of this problem is shown to be a variant of
the identifying code problem [13].

III. B ACKGROUND ON IDENTIFYING CODES

We begin with a formal description of identifying codes in
Section III-A, followed in Section III-B with a review of two
existing algorithms for generating them.
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A. Definitions

Consider a graph with vertex setV 6= ∅ and edge setE 6=
∅ (we shall make this non-empty assumption throughout the
text). We categorize every vertex inV as either acodewordor
anon-codeword, with the set of codewords denotedI ⊆ V . For
every vertexv in V , theidentifying setis the set of vertices inI
that are adjacent tov (including v itself, if it is a codeword),
and it is denoted bySI(v). If the identifying set for every
vertex is unique and non-empty, then we callI an identifying
code. Note that every superset ofI is an identifying code for
the same graph [4]. As a simple example, the identifying sets
for verticesa, b, andf in Figure 1(a) are, respectively,{a},
{a, c}, and{f, g}, all of which are different.

An identifying codeI over a given graphG is said to be
connected if there exists a simple path inG between any two
vertices ofI, wherein all the vertices on the path belong toI.
The code isr-robust if it remains an identifying code after we
arbitrarily add or remove up tor vertices inV to (or from)
every identifying set, i.e.,SI(u)△V1 6= SI(v)△V2 for every
V1, V2 ⊂ V such that|V1|, |V2| ≤ r. The operator△ is the
symmetric difference operator, meaning thatA△B includes
all elements that are either only in setA or only in setB
for any given pair of setsA andB. The minimum symmetric
differenceof an identifying codeI, dmin(I), is defined to
be the minimum Hamming distance between every pair of
identifying sets, i.e.,dmin(I) = minu,v∈V,u6=v |SI(u)△SI(v)|.
It is shown in [4] that an identifying codeI is r-robust if and
only if dmin(I) ≥ 2r+1, and that every superset of anr-robust
identifying codeI is also anr-robust identifying code.

B. Existing algorithms

Next, we briefly review two existing polynomial-time algo-
rithms that generate an identifying code (if one exists) foran
arbitrary graph. We refer the reader to the cited references[4,
14] for further details.

Algorithm ID-CODE introduced in [4] initially selects all
verticesV in the input graph to be codewords, and then checks,
one by one, whether each vertex can be removed from the code
without losing the identifying property. This greedy algorithm
produces anirreducible code, meaning that no codeword can
be removed from it while still keeping it an identifying code,
and it can be modified to yieldr-robust codes by changing
the greedy criterion accordingly.

Algorithm rID presented in [14] initially calculates the
identifying set of every vertex, assuming that all verticesare
codewords. Then it associates with every vertexv in V the set
of vertex pairs which distinguishv, i.e., one vertex in the pair
is adjacent tov and the other is not. The algorithm iteratively
forms an identifying code by selecting the vertex that distin-
guishes the most pairs to be a codeword. Using a similar ap-
proximation to theset coverproblem [26], the authors in [14,
17] prove thatrID achieves a logarithmic approximation ratio
upper bounded byc1 ln |V | and lower bounded byc2 ln |V | for
some constantsc1 > c2 > 0. They also show that this bound
is tight unless NP⊂ DTIME

(
|V |O(log log |V |)

)
[27]. A robust

version ofrID is also presented in [14] using a reduction to
the set multi-cover problem [26].
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Fig. 2. GraphG with four vertices on top and constructed graphG∗ with
ten vertices. Vertexs connects verticesa′, b′, c′ andd′ in subgraphG′ and
verticesa′′, b′′, c′′ andd′′ in subgraphG′′ by edges that are shown dashed.

IV. NP-COMPLETENESS

Next we prove that deciding whether a connected identify-
ing code with a certain number of codewords exists for any
given graph is NP-complete.

Theorem 4.1:Given any non-empty graphG and an integer
k, the decision problem of the existence of a connected
identifying code with cardinality at mostk in G is NP-
complete.
Proof: We will prove the above statement with a polynomial-
time reduction from the identifying code problem which is
known to be NP-complete [18, 19, 28]. Specifically, we show
that an identifying code with cardinality at mostk exists inG
if and only if there exists a connected identifying code with
cardinality at most2k+1 in a specially generated graphG∗. In
order to complete the proof, we need to show that any instance
of a connected identifying code can be verified in polynomial
time, a rather straightforward exercise that we omit.

Next, we explain our polynomial-time construction of
the graphG∗(V ∗, E∗) from any non-empty graphG(V,E).
We begin by constructing two copies,G′(V ′, E′) and
G′′(V ′′, E′′), of G. The vertices of these graphs are con-
nected through the isomorphic bijectionsg′ : V → V ′ and
g′′ : V → V ′′, having the property that(u, v) ∈ E implies that
(g′(u), g′(v)) ∈ E′ and(g′′(u), g′′(v)) ∈ E′′. We combineG′

andG′′ with two new verticess andt, the former connecting
to all verticesV ′ and V ′′, and the latter connecting only to
s. In other words, this new graph will beG∗(V ∗, E∗) with
V ∗ = V ′ ∪ V ′′ ∪ {s, t} and

E∗ = E′ ∪ E′′ ∪ {es,v|v ∈ V ′ ∪ V ′′} ∪ {es,t},

with ei,j denoting an edge between verticesi andj. Clearly the
transformation fromG to G∗ is polynomial and takesΘ(|V |+
|E|) time since|V ∗| = 2|V |+2 and |E∗| = 2|E|+2|V |+1.
Figure 2 demonstrates our construction for a sample instance
of G.

We next show that there exists an identifying code with
cardinality≤ k in G if and only if there exists a connected
identifying code with cardinality at most2k + 1 in G∗.
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=⇒. Assume we have an identifying codeI with cardinality
at mostk over graphG. DefineI ′ ⊆ V ′ to be the image ofI
under the mappingg′, i.e.,I ′ = {g′(v)| ∀v ∈ I}, and similarly
I ′′ = {g′′(v)| ∀v ∈ I}. Then I∗ = I ′ ∪ I ′′ ∪ {s} is clearly
connected becauses is connected to all vertices. Moreover,
sinceI ′ is an identifying code forG′, every vertex inV ′ has
a unique identifying set, and similarly forI ′′; these sets are
all different becauseV ′ andV ′′ have no common vertices and
empty identifying sets are not allowed. Altogether then,I∗ is
a connected identifying code with cardinality at most2k + 1.
⇐=. Assume that we have a connected identifying code with
cardinality at most2k + 1 over graphG∗. This identifying
code must contain the vertexs; otherwise, either the code is
disconnected orG′ or G′′ have no codewords, meaning that
there is an empty identifying set. Removal ofs will result in
k codewords in each ofG′ andG′′ or < k codewords within
one of G′ or G′′ (WLOG, assume it is withinG′). Since s
is connected to all vertices inG∗, no pair of vertices can be
identified usings. Therefore, the resulting codewords within
G′ will necessarily correspond to an identifying code forG,
unless it contains an empty identifying set.

The vertext serves to ensure that every vertex inG has
a non-empty identifying set. Ift is not a codeword, then no
other vertex inG′ can have the same identifying set{s}. Thus,
every vertex inG′ must have a codeword neighbor that is not
s. If t is a codeword, then there must be less thank codewords
in G′. In this case, there may be a single vertexv in G′ with
identifying set{s}, but addingv to the codewords ofG′ will
produce a non-empty identifying code of size not larger than
k for G.

V. A LGORITHM ConnectID

We next present and analyze our polynomial-time approxi-
mation algorithm for connected identifying codes.

A. Model and notations

We assume an undirected, connected graphG(V,E) (or G
in short) whereV is the set of vertices andE is the set of
edges between the vertices. We considerI ∈ V to be the set of
codewords of an identifying code inG and a supersetIc ⊇ I
to be the set of codewords of a derived connected identifying
code inG. The redundancy ratioR = |Ic|/|I| ≥ 1 relates the
two quantities.

We define acomponent of connectivity(or a component)
C of I in graph G to be a maximal subset ofI such
that the subgraph ofG induced by this subset is connected,
i.e., the graphG′(C,E ∩ (C × C)) is connected and any
codeword added toC renders it unconnected. For the example
of Figure 1(a), we haveI = {a, c, d, f, g, h} with components
of connectivity C1 = {a}, C2 = {c}, C3 = {d} and
C4 = {f, g, h}.

A plain pathbetween componentsC1 andC2 is an ordered
subset of vertices inV that forms a path inG connecting a
vertex x1 ∈ C1 to a vertexx2 ∈ C2, with x1 and x2 being
the only codewords in the path. By distinction, apath may
include any number of codewords or non-codewords. In Figure
1(a),{a, b, e, f} and{a, j, f} are the only plain paths between

componentsC1 andC4. On the other hand,{a, j, f, e, d} is not
a plain path betweenC1 andC3 becausef is a codeword.

The distance between a given pair of components, say
C1 and C2, is denoteddist(C1, C2) and is defined to be
the number of edges on the shortest plain path betweenC1

and C2. If there is no plain path betweenC1 and C2, then
dist(C1, C2) = ∞. In Figure 1(a),dist(C1, C2) = 2,
dist(C1, C3) = 3 anddist(C1, C4) = 2.

B. Algorithm description

We present algorithmConnectID in the format of a function
which receives the set of codewords of an identifying codeI
for a given graphG and returns the set of codewordsIc of a
connected identifying code. For sake of clarity, we first present
algorithmConnectID informally.

In the initialization phase, functionConnectID(G, I) parti-
tions the identifying codeI into a set ofN distinct components
of connectivity{C1, C2, ..., CN} where1 ≤ N ≤ |I|. Note
that every pair of components is connected by some path in
G because of the connectivity ofG. Define C to be a set
that stores the growing connected identifying code, arbitrarily
initialized to the set of codewords in one of the components,
say C1. In addition, Ĉ is the set that stores all components
whose codewords are not yet included inC. Therefore,Ĉ is
initialized to {C2, ..., CN}.

At every iteration, the algorithm first updates the dis-
tancedist(C,Cj) betweenC and every componentCj in
Ĉ (Section V-E will describe how to do this efficiently).
It then extracts fromĈ the componentC∗ with minimum
dist(C,C∗) (breaking ties arbitrarily). The algorithm selects
as codewords all vertices on the shortest plain path connecting
C andC∗, denotedpath∗(C,C∗), and unites the codewords
in C andC∗ and path∗(C,C∗) into C. After this step, the
algorithm examines whether there are any other components
in Ĉ which become connected toC via the newly selected
codewords onpath∗(C,C∗). We defineΓ ⊆ Ĉ to be the set
of such components. IfΓ is non-empty,C is united with the
components inΓ and the members in setΓ are removed from
setĈ. The iteration above is repeated untilĈ becomes empty.

At termination, the algorithm returns the connected setIc =
C, which, as a superset ofI, is necessarily an identifying code.

Below, is a more formal presentation of algorithm
ConnectID(G, I):
Algorithm ConnectID(G, I):
Initialization:

1) PartitionI into a unique set of components of connec-
tivity {C1, C2, ..., CN} where1 ≤ N ≤ |I|.

2) SetĈ ← {C2, ..., CN}.
3) SetC ← C1.

Iteration:
7) While Ĉ is not empty,
8) Updatedist(C,Cj) andpath(C,Cj) for every

Cj ∈ Ĉ and setC∗ ← argmin
Cj∈Ĉ

dist(C,Cj).

9) Extract componentC∗ from Ĉ.
10) SetC ← C ∪ C∗ ∪ path∗(C,C∗).
11) Find the setΓ ⊆ Ĉ of components that are connected

to C.
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Fig. 3. Progress ofConnectID(G, I). The filled circles represent codewords
of an identifying codeI for the illustrated graphG. Initially, I is partitioned
to componentsC1 = {a}, C2 = {c}, C3 = {d} and C4 = {f, g, h}.
We then set (a)C = {a} and Ĉ = {C2, C3, C4}, (b) C = {a, b, c} and
Ĉ = {C3, C4}, and (c)C = {a, b, c, d, e, f, g, h} and Ĉ = {}.

12) If Γ is not empty,
13) For every componentCj ∈ Γ,
14) ExtractCj from Ĉ.
15) SetC ← C ∪ Cj .
16) ReturnIc ← C.

Example.Figure 3 shows the progress ofConnectID(G, I)
after every iteration for the same graph and the same input
identifying code as shown in Figure 1(a). The vertices in black
are codewords. Assume that at initialization we have:C1 =
{a}, C2 = {c}, C3 = {d} andC4 = {f, g, h}. In Figure 3(a)
we setC = C1 andĈ = {C2, C3, C4}. At first iteration, after
we calculate the distance betweenC and all components in
Ĉ at line 8, we have:dist(C,C2) = 2, dist(C,C3) = 3,
dist(C,C4) = 2. At line 9, we extract one component with
minimumdist from Ĉ, which may beC2 or C4. Assume that
we selectC2. Then, we uniteC andC2 and vertexb at line
10. Hence,C = {a, b, c} as illustrated in Figure 3(b). There
are no components in̂C that are connected toC at this stage,
i.e.,Γ = {}, and we return back to line 7. We update distances
and paths again:dist(C,C3) = 2 anddist(C,C4) = 2. We
extract the component with minimumdist, which may beC3

or C4. Assume that we extractC3 at line 9. Hence, we unite
C andC3 and vertexe and obtainC = {a, b, c, d, e}. Then,
we examine the only component remaining inĈ which isC4

to see if it is now connected toC. We getΓ = C4 and we
unite C and C4 at line 15. Finally, in Figure 3(c) we have
C = {a, b, c, d, e, f, g, h} which is the connected identifying
codeIc output by the algorithm.

Algorithm ConnectID resembles Prim’s algorithm for con-
structing the minimum spanning tree of a graph [29], but
exhibits some fundamental differences. For example, Prim’s
algorithm selects an edge with minimal weight at every
iteration and finally spans every vertex in the graph. However,
ConnectID selects a path with the shortest length at every
iteration and finally spans all components, which may not
include all vertices in the graph.

C. Performance results

In this section, we first prove two properties of any iden-
tifying code I. These properties are invariably true at every
iteration of ConnectID. Based on this, we prove our main
result, that is, that algorithmConnectID produces a connected
identifying code whose size is tightly bounded with respectto
the input identifying code. Finally, we provide a performance
analysis for the connected robust identifying code achieved by
ConnectID when the input identifying code is robust.

Lemma 5.1:Consider any identifying codeI that is par-
titioned into a set of components of connectivityP =
{C1, ..., C|P |} over graphG. If |P | > 1, then every com-
ponentCi in P is at most three hops away from some other
componentCj in P wherej 6= i.
Proof: By the definition presented in Section III-A for an
identifying code, every non-codeword vertex inG is adjacent
to at least one codeword inI. Since the graph is connected,
every pair of components inP should be connected by at least
one path. Consider the shortest path connecting component
Ci in P to componentCk in P where k 6= i. The second
node on this path (the node at the first hop) is obviously not
a codeword because otherwise it would be included inCi.
The third node on this path (the node at the second hop) is
either a codeword belonging to a componentCj in P or is
a non-codeword adjacent to some componentCj . Component
Cj should be different fromCi because otherwise the selected
path fromCi to Ck will not be the shortest.

Lemma 5.2:Every vertex in graphG that is adjacent to a
componentCi with cardinality one inP is adjacent to at least
one other componentCj in P wherej 6= i.
Proof: This property follows from the uniqueness of the
identifying sets. The identifying set of the single codeword
belonging to componentCi is itself. If any non-codeword that
is adjacent toCi is not adjacent to at least one other component
Cj wherej 6= i, then it will have the same identifying set as
the single codeword inCi which contradicts the definition of
an identifying code.

Corollary 5.3: Consider any identifying codeI that is
partitioned into a set of components of connectivityP =
{C1, ..., C|P |} over graphG. If |P | > 1, then every component
Ci in P with cardinality one is at most two hops away from
some other componentCj in P wherej 6= i.

Lemmas 5.1 and 5.2 hold for every identifying codeI over
graphG. Therefore, they are true right after the initialization
of algorithmConnectID. Since at every iteration, we add one
or more codewords and do not remove any codeword, the set
of codewords inC and in every component of̂C forms an
identifying code. Hence, Lemmas 5.1 and 5.2 invariably hold
after every iteration.
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Next, we provide the overall analysis of our algorithm which
is based on Lemmas 5.1 and 5.2.

Theorem 5.4:AssumingI is an identifying code for graph
G and Ic is the identifying code created by algorithm
ConnectID(G, I), we have:

i) Ic is a connected identifying code.
ii) The total number of codewords,|Ic| generated by algo-

rithm ConnectID(G, I) is at most2|I|−1. Furthermore,
this bound is tight.

Proof:
i) Clearly,C remains a component of connectivity through-

out. The while loop starting at line 7 necessarily terminates
when Ĉ is empty. Since every component extracted from̂C
unites withC at line 10 or line 15, at termination of the while
loop I ⊆ C, implying thatIc = C is an identifying code.

ii) At every iteration of ConnectID, we uniteC with at
least one component denotedC∗ in Ĉ and add at most two
codewords according to Lemma 5.1. If the newly merged
componentC∗ has cardinality one, then eitherC∗ is two hops
away fromC or according to Lemma 5.2, the non-codeword
on path∗(C,C∗) that is adjacent to a codeword inC∗, is also
adjacent to at least one other componentCi in Ĉ. In the latter
case, after the union at line 10,Ci becomes connected toC
and unites withC at line 15. Thus, we are adding at most
two codewords onpath∗(C,C∗). Overall, we select at most
one new vertex as codeword for every codeword inI \ C1

where\ denotes the usual set difference operator. Thus, the
cardinality of the resulting identifying code|Ic| is at most
|I| + |I \ C1| ≤ 2|I| − 1 codewords whenConnectID(G, I)
terminates.

This bound is tight. Consider a ring topology with2k ver-
tices (k being a positive integer). The optimal identifying code
(i.e., that with minimum cardinality) consists ofk interleaved
vertices, whereas the connected identifying code for this graph
and the mentioned input identifying code must necessarily
contain all but one vertex, i.e.,|Ic| = 2k − 1.

Corollary 5.5: The redundancy ratioR = |Ic|/|I| of the
connected identifying codeIc achieved byConnectID(G, I)
is at most two for any given graphG.

If the input identifying codeI to ConnectID(G, I) is an
identifying code achieved by the algorithm in [14], then we
have |I| ≤ c |I∗| ln |V | wherec > 0 is a constant,I∗ is the
identifying code with minimum cardinality for graphG and
|V | is the number of vertices in graphG. We defineI∗c to be
the connected identifying code with minimum cardinality in
graphG. Since|I∗c | ≥ |I

∗|, we have the following corollary.
Corollary 5.6: If the input identifying code I to

ConnectID(G, I) is an identifying code achieved by
the algorithm in [14], then the cardinality of the connected
identifying code Ic achieved by ConnectID is at most
c′ |I∗c | ln |V | wherec′ > 0 is a constant.
Robustness analysis.The properties ofConnectID ensure
that it produces a connectedrobustcode if it is given a robust
code as an input. Next, we combine the results of the algorithm
with well-known coding theoretic bounds to derive bounds
on the cardinality of connected robust identifying codes. We
show that as robustness increases, the resulting codes are
increasingly connected.

Before presenting our analysis, we present our notations.
Recall our notation that anr-robust identifying codeI over
graphG can be partitioned into connected componentsP =
{C1, ...C|P |}. We defineSmin(I) (or justSmin in short) to be
the minimum non-unitary cardinality of a component inP ,
i.e.,

Smin = min
j s.t. Cj∈P and |Cj |>1

|Cj |.

Our upper bound on the cardinality ofIc depends onSmin,
for which we shall provide lower bounds later in this section.

Lemma 5.7:Given anr ≥ 1-robust identifying codeI with
connected componentsP = {C1, ..., C|P |}, there may be at
most one componentCi with cardinality one.
Proof: We prove the Lemma by contradiction. Suppose there
are at least two components with cardinality one. Then, the
Hamming distance between the identifying sets of the single
codeword in the two components is two. This contradicts our
assumption thatI is r-robust for r ≥ 1 since the minimum
symmetric difference ofI, dmin(I), should be at least2r+1.

The following theorem is based on Lemma 5.7.
Theorem 5.8:The connected identifying codeIc produced

by ConnectID(G, I) from anr-robust identifying codeI over
graphG satisfies

|Ic| ≤

(
1 +

2

Smin

)
|I| −

2

Smin
.

Proof: If I is connected, the bound follows trivially. Oth-
erwise,I consists of at least two components. Therefore,Ĉ
andC in ConnectID are initially not empty. Based on Lemma
5.7 there is at most one component with cardinality one. Three
scenarios are possible:

(i) ComponentC is initialized to the only component with
cardinality one. In this case, every component in̂C has
cardinality at leastSmin and there are|I| − 1 codewords not
in C. Hence,Ĉ contains at most(|I| − 1)/Smin components
initially. Using a similar reasoning as in Theorem 5.4 based
on Lemma 5.1,ConnectID adds at most two codewords per
every component that is initially in̂C. Therefore, we have
|Ic| ≤ |I|+ 2(|I| − 1)/Smin.

(ii) There is a component with cardinality one in̂C at
initialization. In this case, there are at most|I| − Smin

codewords not inC initially. We add at most one codeword for
the component with cardinality one in̂C based on Lemma 5.2.
There are at most(|I| −Smin− 1)/Smin other components in
Ĉ initially. Therefore, we add at most2(|I|−Smin−1)/Smin

codewords plus one codeword for the component with car-
dinality one to |I|. The overall cardinality ofIc is at most
|I|+ 2(|I| − 1)/Smin − 1 in this case.

(iii) There is no component with cardinality one.In this case,
there are at most(|I|−Smin)/Smin components in̂C initially
and we add at most two codewords per every component in
Ĉ. Therefore, we have|Ic| ≤ |I|+ 2|I|/Smin − 2.

Case (i) leads to the largest upper bound on|Ic| among the
three cases.

The following lemma relatesSmin to the r ≥ 1-robust
identifying code of minimum possible size.
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Lemma 5.9:The value ofSmin is lower bounded by the
minimum size of anr ≥ 1-robust identifying code with more
than one codeword.

Proof: We are given anr-robust identifying code that is
partitioned to a set of componentsP . For every componentCj

in P , the identifying set for every codeword inCj consists of
a unique subset of codewords inCj . The minimum symmetric
difference between the identifying sets of the codewords inCj

must be at least2r + 1, i.e., dmin(Cj) ≥ 2r + 1. Therefore,
the codewords inCj form anr-robust identifying code for the
subgraph induced byCj in G. Hence, the size ofCj has to be
at least as large as the size of the minimum possibler-robust
identifying code. SinceSmin is greater than one by definition,
the lemma follows.

Based on Lemma 5.9, we next relateSmin to the size of a
minimum error-correcting code. Recall that the characteristic
vector of a set is the binary vector whosei-th bit is 1 if and
only if the i-th element of a given universe (in this case,
the set of vertices in the graph) is in the set. Note that the
characteristic vectors of the identifying sets of anr-robust
identifying codeI form a binaryr-error correcting code of
length |I|. The reverse does not necessarily hold because of
the limitations imposed on identifying codes by the graph
structure.

We can now form a relationship betweenSmin and the
coding-theoretic functionA(n, d) denoting the maximal size
of a (binary) code of lengthn and minimum distanced.
This leads us to our theorem linking bounds on connected
identifying codes and error-correcting codes, and allows the
application of coding-theoretic upper bounds to connected
identifying codes.

Theorem 5.10:Given anr = d−1
2 -robust identifying code,

it holds that
Smin ≥ min

2≤n≤A(n,d)
n.

Proof: For any givenr ≥ 0-robust identifying codeI with
n codewords over an arbitrary graphG, we know from [4]
that dmin(I) ≥ 2r + 1, meaning that anr-robust identifying
code withn codewords over any given graphG exists only
if an r-error correcting code exists with lengthn and size
A(n, d = 2r + 1) ≥ n.

Let nmin = argminn≥2(n ≤ A(n, d)). If nmin = 2,
then Smin ≥ nmin trivially since Smin is an integer strictly
larger than one. Otherwise fornmin > 2, it must be that
n′ > A(n′, d) for every n′ such that1 < n′ < nmin. This
implies thatSmin ≥ nmin, proving the theorem.

Thus, Smin is bounded by the smallestn for which
A(n, d) ≥ n. We can sharpen this result with the Plotkin
bound [30] and the following lemma.

Lemma 5.11:For all 2 ≤ n ≤ 2d− 1 and oddd ≥ 3,

A(n, d) < n.

Proof: The Plotkin bound states thatA(n, d) ≤ 2
⌊

d+1
2d+1−n

⌋

for odd d > n−1
2 . In order for the right-hand side of the

inequality to be greater or equal ton, it must be that:

d+ 1

2d+ 1− n
≥ n/2

n2 − (2d+ 1)n+ 2d+ 2 ≥ 0.

For 2 ≤ n ≤ 2d − 1 and oddd ≥ 3, this inequality has no
feasible solution.

The following lemma follows directly from Lemma 5.11.
Lemma 5.12:For oddd ≥ 3, Smin ≥ 2d.
Combining Theorem 5.8 with Lemma 5.12 we have the

following simple bound on the size of a connected code
generated by our algorithm.

Corollary 5.13: If the input identifying code I to
ConnectID(G, I) is an r-robust identifying code for graph
G, wherer ≥ 1, we have,

|Ic| ≤

(
1 +

1

2r + 1

)
|I| −

1

2r + 1
.

We observe that with increase ofr, Smin increases and
the upper bound on|Ic| gets closer to|I|. This implies that
for larger robustnessr, I tends to be more connected and
we usually require fewer additional codewords to make it
connected. Furthermore, according to Corollary 5.13 for large
values of robustnessr, |Ic| tends to|I|. Note, on the other
hand, that connectivity does not necessarily imply robustness,
as one can observe from Figure 1(b).

D. Implementation

Our implementation relies on well-known data structures
and algorithms, as may be found in a standard text [29].
Its main data structure is thedisjoint-set, which is used to
maintain components of connectivity. For our purpose, every
disjoint set will store a connected component of codewords
as a linked list, with all the codewords of a component
maintaining a link to a common representative.

Populating these data structures requires the use of a con-
nected components algorithm, such as that of Hopcroft and
Tarjan based on the BFS or DFS [31] requiring an overall
O(|V | + |E|) time. We next describe how to use this data
structure to calculate the distancedist(C,Cj) and the shortest
plain path path(C,Cj) between componentC and every
componentCj in Ĉ as needed in line 8 ofConnectID.

Starting at any codeword of componentC, we run an
optimized two-stage Breadth First Search (BFS). To begin,
we select an arbitrary codeword inC to be the source (with
distance metric 0). In the first stage, we visit and finish all
codewords in componentC without updating our distance
metric. In the second stage, we visit and finish other vertices
not inC as we increment the distances. The motivation behind
a two-stage BFS is to finish all codewords at distance zero
from the source, i.e., codewords inC, before the rest of
the vertices. In order to engineer the BFS in two stages, we
use two BFS queues. The first queue stores the visited but
unfinished codewords inC. The second queue stores the rest
of the vertices that are visited but unfinished.

In the first stage of BFS, when we visit a non-codeword
adjacent to a codeword inC, we insert it into the second queue,
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and we do not extract any vertex from the second queue until
we finish all codewords inC in the first stage, i.e., we empty
the first queue. In the second stage, the BFS continues the
search starting from the non-codewords in the second queue.
All codewords outsideC are considered leaf vertices, i.e., we
do not visit their adjacent vertices. This is because we are
only interested in plain paths. While running the BFS, we
maintain an estimate of the distancedist(C,Cj) betweenC
and every componentCj in Ĉ, initialized to infinity. Every
time BFS visits a codeword, it finds the component to which
it belongs using thefind− set primitive (of the disjoint-
set data structure) and updates the estimate ofdist(C,Cj)
accordingly (i.e., keeping the smaller value seen so far). It also
stores the codeword that achieved the smaller distance since
this will be used to find the shortest plain pathpath(C,Cj)
upon termination. We also maintain the componentC∗ with
minimum dist(C,C∗) during the BFS process. In this way,
there will be no additional processing to find the component
with minimum distance fromC.

Computation of the distances and the shortest plain paths
betweenC and the components in̂C described above is no
more than that of the standard BFS upon which it is based,
i.e., O(|V |+ |E|), since we exercise a constant overhead per
node during the traversal.

E. Complexity analysis

We next consider the worst case running time of
ConnectID. The initialization phase takesO(|E|) time: we
remove all non-codewords and incident edges from the graph,
run connected-components to partition the result, and thenset
up Ĉ (as a linked list) andC. The iteration part of algorithm
ConnectID can run inO(N |E|) time as follows.

The while loop (starting at line 7) iterates at mostN (which
is O(|E|)) times, and at least one component is extracted
from Ĉ per iteration. Within the loop, each iteration requires
the calculation ofdist(C,Cj) and path∗(C,Cj) at line 8
requiresO(|V |+|E|) time as described in Section V-D. Line 9
takes theO(1) needed to delete from a linked list, since we
have already identified the componentC∗. Lines 10 and 15
requireO(|V |) time, since Lemma 5.1 assures only a constant
number of calls to the disjoint-setunionprimitive. Line 11
requires the algorithm to runfind− set (i.e., constant-time)
on all neighbors of vertices onpath∗(C,C∗), of which there
are O(|E|). For each of the components found, aunion
operation is used, giving a net total ofO(|V |) unions over
the life of the iteration loop. Altogether, the computational
complexity of ConnectID is O(N |E|), which is O(|V ||E|)
sinceN ≤ |V |.

VI. N UMERICAL RESULTS

In this section, we evaluate the performance ofConnectID

on two types of random graphs: Erdős-Ŕenyi random graphs
and regular random graphs, i.e., graphs with random arrange-
ment of edges such that every node will have a fixed degree.
It should be noted that even though geometric random graphs
are appropriate for modeling the outdoor communication range
of wireless sensors, they are less practical for indoor or harsh
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Fig. 4. Average number of components of connectivity for the identifying
codes produced byID-CODE [4] and byrID [14] over100-node Erd̋os-Ŕenyi
random graphs and varying average node degree.

environments for which applications of identifying codes have
been proposed [4], and we have thus not included them.
Indeed, geometric random graphs generally do not possess
identifying codes [14], although there are ways to get around
this problem by removing a few indistinguishable vertices
from the graph.

In order to generate an identifying code for a given graph
instance, we use the two existing algorithmsrID [14] and
ID-CODE [4] that we briefly reviewed in Section III-B. As we
will see, the identifying codes generated byrID andID-CODE
are often disconnected.

Our metrics are the following: the number of components of
connectivity for each of the identifying codes, the cardinality
of the identifying codes generated by algorithmID-CODE and
algorithm rID, the cardinality of the connected identifying
codes generated byConnectID for each of the two identifying
codes and the corresponding redundancy ratios. We have mea-
sured the mentioned metrics over at least100 graph instances
and plotted the empirical means and95% confidence intervals.

A. Erdős-Ŕenyi random graphs

We consider two scenarios, either we fix the number of
vertices in the graph and change the average node degree, or
we fix the average node degree and change the graph size (i.e.,
the number of graph vertices). We finally present results for
connected robust identifying codes.

Figures 4, 5 and 6 correspond to random graphs with100
nodes and average node degree ranging from3 to 15.

Figure 4 shows the average number of components of the
identifying codes produced byID-CODE and byrID. We expect
lower redundancy with fewer components. If there is a single
component, the identifying code is connected. We observe
that algorithmrID produces fewer components of connectivity
than algorithmID-CODE on average. We also observe that the
average number of components decreases as the average node
degree increases and equals about 2 when the average node
degree equals15. This is reasonable since the connectivity
between vertices (and codewords) increases with the average
node degree.
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Fig. 5. Average redundancy ratio of the connected identifying codes
generated byConnectID for input identifying codes fromID-CODE [4] and
from rID [14] over100-node Erd̋os-Ŕenyi random graphs and varying average
node degree.
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Figure 5 shows the average redundancy ratio ofConnectID,
when the input identifying codes are generated byID-CODE
and by rID. As one can expect, based on the results of
Figure 4,rID leads to a smaller redundancy ratio than that of
ID-CODE. In both cases, the average redundancy ratio decreases
as the average node degree increases and approaches a value
quite close to 1 for an average node degree of15. The average
redundancy ratio achieves its highest value (i.e., slightly above
1.25) for ID-CODE and an average node degree of3.

Figure 6 compares the cardinality of the connected iden-
tifying codes generated byConnectID with the cardinality
of identifying codes generated byID-CODE and by rID. As
previously shown in Figure 5, we observe that the cardinality
of the connected identifying code is far smaller than twice
that of the input identifying code. We also observe that
the cardinality of all four identifying codes decreases with
the average node degree. We conclude that for Erdős-Ŕenyi
random graphs, algorithmrID not only generates a smaller
identifying code compared toID-CODE to begin with, but also
its resulting connected identifying code is significantly smaller
for all examined average node degrees.
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Fig. 7. Average redundancy ratio of the connected identifying codes
generated byConnectID for Erdős-Ŕenyi random graphs of increasing size
and the input identifying codes fromID-CODE [4] and from rID [14]. The
average degree of the graphs is kept fixed to four.
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underlying graphs are100-node Erd̋os-Ŕenyi random graphs. All curves with
diamond markers are almost overlapping.

Figure 7 depicts the average redundancy ratio for graphs
with average node degree of 4 and number of vertices rang-
ing from 20 to 150. According to the figure, forrID, the
redundancy ratio of the connected identifying code decreases
(at least initially) with the size of the graph. The redundancy
ratio does not change significantly forID-CODE.

Figure 8 depicts the redundancy ratios for connected iden-
tifying codes fromConnectID when the input identifying
code is 0-robust, 1-robust, 2-robust or 3-robust. The graphsize
is fixed to 100 vertices and the average node degree varies.
Except for the case of 0-robust input, we obtain redundancy
ratios of about one. This implies that robust identifying codes
are often connected for Erdős-Ŕenyi random graphs.

B. Regular random graphs

Next, we evaluate the performance ofConnectID over
regular random graphs with 100 nodes and changing node
degrees. Figure 9 depicts the redundancy ratios for connected
identifying codes fromConnectID when the input identifying
code is 0-robust, 1-robust, 2-robust or 3-robust. As for Erdős-
Rényi random graphs, we observe that robust identifying codes
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for regular random graphs tend to be connected.

VII. C ONCLUSION AND FUTURE WORK

In this work, we addressed the problem of guaranteeing the
connectivity of identifying codes, a problem relevant to joint
monitoring and routing in sensor networks. We showed, by
reduction from the identifying code problem, that the decision
problem regarding the existence of a connected identifying
code is NP-complete. We introduced algorithmConnectID
that produces a connected identifying code by adding code-
words to any given identifying code for an arbitrary graph.
The cardinality of the resulting connected identifying code is
upper bounded by2|I| − 1 where|I| is the cardinality of the
input identifying code. We proved that the mentioned bound is
tight and proposed an efficient implementation forConnectID

with polynomial time complexity that grows as the product of
the number of edges in the graph and the number of vertices
in the graph.

Motivated by the application of robust identifying codes in
monitoring harsh environments where sensors may fail and
the connectivity is unreliable [4], we extended our analysis
to the case where the input identifying code toConnectID
is r-robust which leads to a connectedr-robust identifying
code. By applying the theory ofr-error correcting codes,
we derived upper bounds on the cardinality of the resulting
connected identifying code that depend on the robustnessr and
the cardinality of the input identifying codes|I|. Our results
prove that asr becomes large, the redundancy ratio tends to
one, meaning that robustness implies connectivity.

We numerically evaluated the redundancy ratio of
ConnectID. Our simulation results for Erd̋os-Ŕenyi random
graphs and regular random graphs showed that this quantity
is generally far below the theoretical bound of two. When the
input identifying code is robust, the redundancy ratio is close
to one (i.e., the input identifying code is connected or almost
connected).

This paper opens several directions for further research.
For instance, one could explore different approaches for con-
structing a connected identifying code. Thus, instead of first

constructing an identifying code and then connecting it, once
could try to build connected identifying codes from scratch.
Also, rather than bounding the redundancy ratio as done in this
paper, one could devise algorithms that provide performance
guarantees on the minimum number of redundant vertices
(codewords) needed, e.g., using Steiner tree heuristics [32, 33].
That said, the results of our paper show that one cannot expect
much gain if the input identifying code is robust. Finally,
one could investigate extensions of our work to the problem
of constructing connected identifying codes with robustness
not only in identification but also in connectivity, i.e., the
generated identifying code remains connected in the event of
failure of a bounded number of graph vertices.
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