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Abstract—New architectures have recently been proposed
and deployed to support end-to-end advance reservation of
network resources. These architectures rely on the use a
centralized scheduler, which may be unpractical in large
or administratively heterogeneous networks. In this work,
we explore and demonstrate the feasibility of implementing
distributed solutions for advance reservation. We introduce a
new distributed, distance-vector algorithm, called Distributed
Advance Reservation (DAR), that provably returns the earliest
time possible for setting up a connection between any two
nodes. Our main findings in this context are the following:
(i) we prove that widest path routing and path switching (i.e,
allowing a connection to switch between different paths) are
necessary to guarantee earliest scheduling; (ii) we propose a
novel approach for loop-free distributed widest path routing,
leveraging the recently proposed DIV framework. Our routing
results directly extend to on-demand QoS routing problems.

Keywords-Cloud/grid computing; scheduling; routing; per-
formance guarantees;

I. INTRODUCTION

New generations of scientific collaborative applications
require on-line analysis of immense volume of data at
distributed sites spanning wide geographical domains. For
instance, experiments run on the Large Hadron Collider
project at CERN in Geneva [1] will generate up to 40
Terabytes per day that must be immediately distributed to
collaborating research labs around the world for purpose of
storage and analysis. Success of these and other emerging
grid and cloud computing applications relies on high-speed
underlying networks that supports quick transfer of bulk data
to distributed sites.

Networks based on best-effort TCP/IP do not provide
appropriate levels of guarantee and flexibility required by
modern grid applications. Hence, new network architectures
are currently being deployed to provide users with the
ability to reserve in advance dedicated reliable circuits. For
example, ESnet has recently set up the so-called Science
Data Network (SDN) specifically designed to support ad-
vance reservation [2]. SDN as well as other similar advance
reservation architectures are managed centrally, i.e., a central
scheduler performs advance reservations based on knowl-
edge of the entire topology of its domain. Such solutions
do not scale to large network domains or administratively

heterogeneous networks, where network administrators do
not wish to disclose internal topology information.

Motivated by current limitations of centralized ap-
proaches, our goal in this paper is to identify fundamental
constraints and requirements for implementing distributed
advance reservation with guaranteed delay performance. By
distributed, we mean that the calculation of routes and
scheduling of connections are performed by routing nodes
rather than on a central computer. By delay guarantees, we
mean that the time elapsed from the moment the request
is placed until the start of the corresponding connection is
minimized. We refer to such a property as achieving minimal
delay or earliest scheduling. Our objective is to construc-
tively show the feasibility of implementing distance vector
routing, whereby each node only maintains a successor
(best next hop based on some metric) and a corresponding
metric value for each destination and each time slot (a time
slot roughly corresponds to a period of time delineated by
connection set-up or release events; a more precise definition
will be given in Section III).

We divide the task of devising a distributed advance
reservation algorithm into two sub-problems:

1) Scheduling: assuming that every node knows its suc-
cessor and the metric value to all destinations at all
time slots, find and reserve resources at the earliest
time interval that can accommodate a connection sat-
isfying the desired user criteria.

2) Routing: calculate a successor per each destination and
time slot at every node. This way, every node knows
its successor upon the arrival of a request.

Given the constraints imposed by the data structure avail-
able at nodes, our contributions are the following:

1) We show that both widest path routing, i.e., routing
on the path with largest end-to-end bandwidth, and
path switching, i.e., allowing connection to switch be-
tween different paths, are necessary to ensure earliest
scheduling (minimal delay) of connections.

2) We prove that a simple implementation of distributed
asynchronous Bellman-Ford for widest path rout-
ing [3] may suffer from permanent routing loops in
a time-varying network supporting connection set-ups



2

and releases.
3) We propose a distributed loop-free routing module

called the Successor Selection Module (SSM) that
provably computes the widest path for each pair
of nodes and each time slot, leveraging a recently
proposed loop-prevention paradigm called Distributed
Path Computation with Intermediate Variables (DIV)
[4].

4) Based on the principles of widest path routing and path
switching and using the routing information provided
by SSM, we devise an algorithmic solution, called
Distributed Advance Reservation (DAR), that provably
guarantees minimal delay for each arriving request.

The rest of this paper is organized as following. We briefly
review related work in Section II. In Section III, we explain
our notation and assumptions and define the data structure
maintained at nodes. Section IV explains the DAR algorithm
and is divided into two parts: (i) scheduling; and (ii) routing.
In the first part, after analyzing the requirements imposed by
earliest scheduling, we present the DAR algorithm and prove
its properties. In the second part, we first bring negative
results showing the existence of permanent routing loops in
naive implementation of distributed Bellman-Ford for widest
path routing. We then review the DIV loop prevention mech-
anism and judiciously adapt it to our specific problem. We
develop the SSM routing algorithm and prove its theoretical
properties. We conclude the paper in Section V

II. RELATED WORK

Our work relates to several areas, namely algorithms
for advance reservation, distributed QoS routing and loop
prevention. We review each of them next.

Most work regarding advance reservation algorithms fo-
cuses on centrally managed architectures. For example,
Refs. [5] and [6] introduce centralized advance reservation
algorithms that satisfy various multi-criteria optimizations.
Authors in [7] analyze the effect of advance reservation on
the complexity of path selection. The mentioned references
all share a roughly similar time slicing (or time slots)
approach, that we adopt in this paper as well. On the
other hand, there appears to be little work in the litera-
ture on distributed network advance reservation, especially
with guaranteed performance. Some references focus on
the signaling aspects of distributed advance reservation. For
example Ref. [8] discusses possible modification to RSVP
protocol to support advance reservation in ATM networks.

Quality-of-Service is an important aspect for real-time and
streaming work and much work studies QoS routing from
various angles. Most work on QoS routing employs link state
routing, especially when it comes to widest path routing [9].
Ref. [10] investigates the properties that QoS criteria must
possess to allow for hop-by-hop routing and the computation
of optimal paths using a generalized version of the Dijkstra
algorithm.

Ref. [11] studies multi-criteria QoS routing and presents
several combinations of criteria for which the problem is
proved to be NP-complete. Refs. [11, 12] study hop-by-hop
widest path routing based on distance vector structure. The
algorithms are assumed to run synchronously (an assumption
which we do not make) since all nodes must always be at the
same stage of the execution. More critically, their solutions
do not consider how to handle updates resulting from link
bandwidth changes. We show in this work that such updates
can trigger permanent routing loops, unless they are properly
addressed.

Distributed distance-vector routing is notoriously known
to suffer from routing loops in dynamic networks. In the
case of shortest-path routing, such loops may result into the
infamous count-to-infinity problem leading to slow conver-
gence. For the case of widest-path routing, we will show that
the problem is more severe, namely no convergence at all.
Refs. [13, 14] introduce loop-free shortest path algorithms
extended from the Bellman-Ford algorithm [3]. Specifically,
Ref. [13] proposes an algorithm called DUAL which restricts
selection of the successor to a set of neighbors called the
feasible successor set and triggers a synchronous update
procedure called diffusing computation to synchronize a
group of nodes in case of any change. Ref. [14] defines a
pair of invariant conditions called Loop Free Invariant (LFI)
at each node based on its cost to destination and that of its
neighbors. The LFI conditions prevent formation of transient
loops. The update mechanism is similar to that of DUAL.

The previous references considered the specific case of
shortest path routing. Ref. [4] offers a framework called
DIV for loop prevention that can be used in conjunction
with other metrics. DIV is roughly a hybrid of the DUAL
and LFI algorithms. We explain DIV in detail in the sequel.
Here, we outline some of its advantages compared to the
previous references: (i) it supports multi-path routing, (ii)
it has more relaxed feasibility conditions compared to the
DUAL algorithm and hence triggers synchronous updates
less frequently (iii) it can handle multiple overlapping up-
dates simultaneously.

III. MODEL

A. Notation

We consider a weighted undirected network modeled with
a graph G consisting of a set of nodes V and a set of
links E. The graph is dynamic meaning that weights change
over time. Nodes represent hosts and routers and links are
reliable channels connecting the nodes. We denote eij the
link connecting node i ∈ V to node j ∈ V . We denote N(i)
the set of neighbors of node i.

Connection requests arrive randomly over time across
the network. Each request specifies the transmission source
s, the transmission sink d, a desired bandwidth B and a
connection duration T . Users can restrict the connection start
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time to an interval [ta, tb]. Otherwise, ta = tnow and tb = ∞
where tnow is the present time.

Because of advance reservation of connections, there
should exist a common reference time frame throughout the
network. Hence, we assume coarse-grained synchronization
(e.g., on the order of seconds) between clocks at different
nodes to agree on the set-up time and release of connections.
We emphasize however that our routing algorithms, and SSM
in particular, can be run in a fully asynchronous manner.

We associate a weight w[eij ] with each link eij based
on the desired routing optimization criterion. Examples of
link weight are length (denoted l[eij ]) which in our settings
is equivalent to link hop count (equal to 1) and bandwidth
which is the bandwidth available on the link (denoted b[eij ]).

A path from node i to node j consists of an ordered
list of one or more consecutive links that connect i to
j and is denoted Pij . The Path weight is a combination
of weights of links forming the path. If the path weight
is based on bandwidth then the path weight is given by
mineij∈Psd

{b[eij ]} for any given path Psd. If the path weight
is based on length then the path weight is

∑
eij∈Psd

l[eij ] for
any given path Psd. A path with the optimal weight among
all paths from s to d is called the optimal path.

We denote wij the estimated path weight from i to j
by our routing algorithm. Likewise, we denote bij and lij
the estimated path bandwidth and the estimated path length
respectively. The optimal values of the above variables are
denoted w∗

ij , b∗ij and l∗ij .
The successor of node i to destination d on some path

Pid is defined as the immediate next hop of i on the path
and denoted πid. If j = πid then node i is the predecessor
of j. Ancestor of a given node with respect to destination
d is defined as a node that connects to i through a chain of
consecutive successors. If node k is an ancestor of i, then i
is called a descendant of k.

B. Assumptions

The statements proposed in this paper are correct under
the following assumptions:

1) Communication links are reliable.
2) Links never fail.
3) There is no Byzantine behavior at nodes.
4) There are no conflicts between requests over reserva-

tion.
5) Clocks at different nodes are coarsely synchronized.
6) Successor calculations for every destination have sta-

bilized by the time a new request arrives.

This does not imply that there is no way we can resolve or
alleviate these issues but rather that they are commonplace to
all distributed network algorithms. Much work in literature
has addressed them and the solutions are extensible to our
particular case with advance reservation as well [15–17].

C. Node data structures

In this section, we describe the data structures maintained
by nodes and illustrate them with an example. Here, we
detail only part of the data structure at nodes which is
relevant to the performance of the DAR algorithm. This part
is consistent with the usual definition of distance vector
routing. In section IV-B, we add additional variables used
uniquely to prevent formation of loops.

To accommodate advance reservation, every node should
maintain relevant information regarding network state per
all future times. Since the available link bandwidths change
over time because of scheduled set-up or release of con-
nections, the variables maintained by nodes are time de-
pendent. To simplify the analysis, we divide the contin-
uous time axis into discrete slots delineated by transition
instances in the values of the node variables. Therefore, node
variables remain fixed during each time slot. We denote
t
(id)
1 , t

(id)
2 , ..., t

(id)
n the slot transition instances for node i

with respect to destination d, where t
(id)
1 is the present time

(tnow) and t
(id)
n = ∞. Note that the time slots are not neces-

sarily the same for different source destination pairs. They
are not fixed and pre-determined but formed dynamically
with scheduled set-up and release of connections.

Every node i maintains the following state variables per
future time slot for each destination d: (i) a successor for
destination d, denoted πid(t) (ii) an estimate of the optimal
path weight from i to d denoted w∗

id(t) (iii) an estimate
of the optimal path weight denoted w∗

jd(t) from j to d
for all neighbors j ∈ N(i) (iv) the link weight w[eij ](t)
from i to each neighbor j ∈ N(i). The last item does
not depend on the destination. This is consistent with the
standard data structure used in distance vector routing with
the difference that our structure must include future states
to support advance reservation. Note that although all of the
above variables depend on time t, they are fixed during each
time slot.

We show in the next section that given the presented
data structure at each node, the successors must be selected
based on widest path optimization to guarantee the earliest
connection start time.
Example.

Figure 1.a shows a network consisting of four nodes and
four undirected links. Link bandwidths change over time as
depicted in Figure 1.b

Table I depicts the node data structures related to the
network of Figure 1.a. This table shows only the data used
directly by algorithm DAR. Each node maintains for each
destination and time slot its successor, and the estimated
path bandwidth.

We present a case study regarding node B. There are two
time slots for destination D: πBD(t) = C and b∗BD(t) = 10
Gbit/s for time t from tBD

1 =12:00 am to tBD
2 = 2:00 am

and πBD(t) = D and b∗BD(t) = 20 Gbit/s for time t from
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destination A
- - 12:00-∞

destination B
B 10 12:00-∞

destination C
B 10 12:00-∞

destination D
B 10 12:00-2:00
B 20 2:00-∞

so
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ce
B

destination A
A 10 12:00-∞

destination B
- - 12:00-∞

destination C
C 10 12:00-∞

destination D
C 10 12:00-2:00
D 20 2:00-∞

so
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ce
C

destination A
B 10 12:00 - ∞

destination B
B 10 12:00 - ∞

destination C
- - 12:00 - ∞

destination D
D 10 12:00 - ∞

so
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D

destination A
C 10 12:00-2:00
B 10 2:00-∞

destination B
C 10 12:00-2:00
B 20 2:00-∞

destination C
C 10 12:00-∞

destination D
- - 12:00-∞

Table I
NODE DATA STRUCTURES FOR WIDEST PATH SUCCESSOR SELECTION.
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link eAB
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link eCD

link eBD

time (hours)

Figure 1. The figure shows a network with changing link state: (a)
an undirected graph of four nodes representing a network (b) available
bandwidth on links eAB , eBC , eCD , and eBD over time. Since the graph
is undirected every link can be presented with two formats. For example,
eAB and eBA represent the same link.

tBD
2 = 2:00 am to tBD

3 = ∞. However at the same node B
there is only one time slot for destination C: πBC(t) = C
and b∗BC(t) = 10 Gbit/s for time t from tBC

1 = 12:00 am
to tBC

2 = ∞.

IV. DAR ALGORITHM

Our objective is to devise a distributed algorithm guaran-
teeing that each request is provided with minimal delay. We
divide the problem of devising such an algorithm into two
sub-problems, one for scheduling and one for routing. As
shown next, these two sub-problems are not fully dissoci-
ated.

In the first part, after stating the routing requirements
imposed by delay optimization, we introduce an algorithm
called DAR that provably returns the earliest connection start
time. In the second part, after highlighting the fundamental
problems involved in distributed widest path routing, we
briefly describe a recently proposed approach called DIV
that provides a generic framework to solve loop issues in
distributed routing. One of our main contributions is to
introduce an algorithm called SSM that judiciously selects
adequate optimization metrics for DIV to ensure loop-free
calculation of routes. We conduct a performance analysis of
SSM and prove its correctness. Note that the DAR algorithm
relies on the routing tables computed by SSM.

A. Scheduling

We start this sub-section by mentioning the constraints
imposed on routing because of the earliest scheduling op-
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(a)

A

C

D
B A

C

D
B

widest paths successor tree

A

C

D
B

shortest paths successor tree

(b)

from 12:00 am to 2:00 am after 2:00 am

after 12:00 am

Figure 2. Illustration of various successor selection criteria regarding the
graph of figure 1: (a) successor tree for destination D based on widest
path optimization (b) successor tree for destination D based on shortest
path optimization. Note that successor trees for destinations A, B and C
should be formed separately in a similar way.

timization. For added clarity, we occasionally refer to the
example network of Figure 1 and Table I with concrete
examples.

1) Widest routing requirement: Figures 2.a and 2.b depict
the successor graphs based on widest path optimization and
shortest path optimization respectively for destination D of
the network illustrated in Figure 1.a.

Let us consider a particular example. Assume a request
arrives at 12:00 am for a 10 Gbit/s connection lasting 3 hours
from node A to D.

According to Figure 2.b, the shortest path successors of
A and B toward D are πAD(t) = B and πBD(t) = D at all
times t ≥ 12:00 am leading to path (eAB , eBD). We observe
that it is not possible for a connection requesting 10 Gbit/s
to start at 12:00 am because bandwidth of the mentioned
path is 5 Gbit/s from 12:00 am to 2:00 am. The earliest
time to start the connection is 2:00 am for that path, though
we could have started the connection at 12:00 am using path
(eAB , eBC , eCD). This simple example reflects a restriction
that exists with distributed hop-by-hop routing algorithms in
general. With shortest path successor selection, longer paths
with larger bandwidth are ignored. We prove:

Theorem 4.1: With the given node data structure and hop-
by-hop routing paradigm, widest path routing is required to
achieve earliest scheduling.

Proof: The proof is by contradiction. Consider a net-
work represented with graph G(V,E). All nodes in V store
a successor and the optimal path weight based on some
optimization criteria per every destination and time slot.
Assume a request (s, d,B, T, ta, tb) arrives at a given node
s.

We denote Γ the set of all hop-by-hop routing algorithms
based on the mentioned data structure. Assume the earliest
achievable connection start time among all algorithms in Γ
is t′ ≥ ta. This implies there exists at least one path from s

to d with bandwidth at least B starting at t′. Assume α is
an algorithm in Γ that always returns the earliest connection
start time. Now, unless the selected path between s and d
by α is the widest at any time t ∈ [t′, t′ + T ], one can
always come up with a bandwidth request B that exceeds
the estimated path bandwidth during [t′, t′+T ] by algorithm
α. Thus, the connection start time by algorithm α would be
later than t′ which contradicts our assumption that α returns
the earliest connection start time.

2) Path switching: We reconsider the network of Figure
1.a and the example request from A to D described in
previous sub-section. According to the table, based on the
widest path optimization, we have for t ≥ 12:00 am,
πAD(t) = B and w∗

AD(t) = b∗AD(t) = 10 Gbit/s. Hence it
seems natural to assign the requested connection to the time
interval 12:00 am to 3:00 am. However, according to the
same table, for t ∈ [12:00, 2:00] am, πBD(t) = C and for
t ≥ 2:00 am πBD(t) = D. Thus the successors in table I do
not provide a fixed path for connection during 12:00 am to
3:00 am. This restriction is concealed at node A. Therefore,
A cannot decide to start the connection at 2:00 am to avoid
the inconsistent paths throughout one connection.

We overcome the mentioned restriction with the aid of
path switching. With path switching, a connection is not
restricted to use the same path over all its duration, i.e., it
can switch paths. Hence, we reserve in advance the paths
as well as relevant switching information. The concept of
path switching was first introduced in [5] in the context of
centralized routing with advance reservation.

Back to our example, we see that one can reserve a
connection from 12:00 am to 3:00 am from A to D with
bandwidth of 10 Gbit/s provided that during interval [12:00
am, 2:00 am] the reserved path is (eAB , eBC , eCD) and
during interval [2:00 am, 3:00 am] the reserved path is
(eAB , eBD).

3) Presentation of DAR algorithm: Referring to the node
data structure presented earlier, assume that the estimated
widest path bandwidth b∗id(t) from every node i to d is
optimal (widest). Based on this assumption, we want to
automatize the process illustrated above for finding the
earliest connection start time per each arriving request.

We present next the scheduling component of DAR which
provably returns the earliest connection start time and a path
(or sequence of paths in case of path switching).

Upon arrival of a request R = (s, d,B, T, ta, tb), DAR
searches for a point in time tR1 within the time frame
[ta, tb] such that the bandwidth constraint is satisfied, i.e.,
b∗sd(t

R
i ) ≥ B for i = 1, ..., k. Times tR1 and tRk+1 = tR1 + T

correspond to the scheduled start and end time of the
connection respectively. Times tR2 , ..., tRk are the scheduled
path switching instances.

Every node, such as s, must regularly update its time
slot structure t

(sd)
1 , ..., t

(sd)
n since the first element of the list
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must always correspond to the present time tnow. Note that
t
(sd)
i denotes starting time of the ith slot corresponding to

destination d at node s and it not necessarily the same as tRi
which is the scheduled time of ith switching of connection
R. The update process at node s consists of removal of every
time slot k whose start time, t

(sd)
k < tnow and updating the

indices of all remaining time slots so that the first slot is
indexed 1, then setting t

(sd)
1 = tnow. Node s should clear

the data corresponding to every removed time slot.
Algorithm DAR run at node s:
1) Upon arrival of a request R = (s, d,B, T, ta, tb),

a) Initialize connection start time tR1 to ta
b) If b∗sd(t) ≥ B does not hold at all times t ∈

[tR1 , tR1 + T ] then,

i) If tR1 ≥ tb,

• Reject the request

ii) Otherwise,

• Find a slot j with minimum value of j such
that t

(sd)
j > tR1 and set tR1 to t

(sd)
j

• Go back to step 1b

c) If request is admissible, reserve connection:

i) Reserve the requested bandwidths from cor-
responding links and store successors on the
scheduled path(s)

2) Go to step 1

After a request is found feasible, DAR runs the reservation
process at step 1c: we denote Psd(t) the path constructed
by consecutive successors from s to d. Every node situ-
ated on path Psd(tRi ) which is scheduled for [tRi , tRi+1] for
i = 1, ..., k stores its successor for the given time interval
and reserves the requested bandwidth B from the link to its
successor during the same interval.

4) Performance analysis: We next prove the most impor-
tant property of DAR.

Theorem 4.2: DAR provides the earliest connection start
time per arriving request.

Proof: Assume the path Psd(t) constructed by consec-
utive successors from node s to destination d is the widest
path from s to d at every time t (we will prove this in
theorem 4.10).

We consider two cases: (i) If we only consider Psd(t),
then DAR chooses the earliest time tR1 to set up the connec-
tion because according to step 1(b)ii, DAR always investigates
the earliest slot j after ta that is followed by a continuous
duration T with sufficient resources between s and d. (ii)
On the other hand, assume there exists a path P ′

sd(t) from s
to d other than Psd(t), with available bandwidth B or more
during t ∈ [t′R1 , t′R1 +T ] where ta ≤ t′R1 < tR1 . Since Psd(t)
has the largest available bandwidth at any time, bandwidth
of Psd(t) is at least equal to the bandwidth of P ′

sd(t) which
exceeds B for t ∈ [t′R1 , t′R1 +T ]. But in this case DAR would
have selected time t′R1 at step 1(b)ii.

We may improve the performance of DAR by adding a
further selection criterion: we choose the successor that
acknowledges the shortest path length among all widest
path successors. Although this may improve performance
by encouraging shorter paths compared to random widest
path selection, we prove:

Lemma 4.3: Given the presented node structures,
shortest-widest-earliest path optimization is not feasible.

Proof: We prove this lemma with a negative example.
Consider again the example network of Figure 1.a with the
same bandwidth-time plots for links eBC , eCD and eBD

but assume eAB has constant bandwidth of 5 Gbit/s after
12:00 am. If we select the successor acknowledging the
shortest among all widest paths, then πBD(t) = C for
t ∈ [12:00, 2:00] am. We have πAD(t) = B at all times
t ≥ 12 : 00 am since this is the only option. Given
this, PAD = (eAB , eBC , eCD) with bandwidth 5 Gbit/s
from 12:00 to 2:00 am and the shorter path (eAB , eBD)
with the same bandwidth of 5 Gbit/s during the same time
interval is ignored. This proves that using this data structure
selection of the shortest-widest and therefore the shortest-
widest-earliest path is not guaranteed.

B. Pre-computation of routes

In the previous section we have assumed that nodes
know the appropriate successor to every destination per
all future times. We proved that given our particular node
data structure only the widest path to destination guarantees
earliest scheduling.

In this section we present a distributed algorithm for
selection of successors which we refer to as the Successor
Selection Module (SSM). SSM runs at every node independent
of other nodes and DAR. First we explain the challenges of
achieving widest paths given such a data structure. Then we
prove that the paths tentatively constructed by SSM converge
to the widest for every destination. Note that DAR relies on
the steady state results produced by SSM.

Notation: to simplify the presentation, we discard the
time dimension throughout this section and present all algo-
rithms as if they were on-demand. Every algorithm presented
here can be considered as an advance path calculation for
a given time slot and can be directly extended to all future
time slots. Therefore, we eliminate the time argument from
our notation in what follows since node variables remain
unchanged during every slot.

The problem of successor selection for distributed hop-by-
hop routing in networks has been visited frequently in the
literature. The common approach is using a distributed asyn-
chronous version of the standard Bellman-Ford algorithm [3,
15, 18]. However, much of the focus of prior work has been
on shortest path routing rather than any other metric for the
reason explained next.

1) Routing loops: Assume we modify the distributed
asynchronous shortest path Bellman-Ford algorithm for



7

widest path optimization by replacing link lengths and path
lengths by link bandwidth and path bandwidths respectively
and by adjusting the relaxation equation accordingly.

In our presentation below, variable b
(i)
jd for j ∈ N(i) is the

estimate of bjd stored at node i according to the last message
communicated from j to i. In brief, every node i tries to
maintain the largest value of min{b[eij ], b

(i)
jd } among all of

its neighbors j and it elects as successor the neighbor j′

which maximizes this term. Whenever a neighbor j changes
bjd it notifies all its neighbors including i. Then i modifies its
own estimate of bjd by setting b

(i)
jd = bjd. Then i recalculates

bid = maxj∈N(i){min{b[eij ], b
(i)
jd }} and switches successor

if necessary. If link bandwidth b[eij ] changes, a similar
update should take place at i. Once node i changes bid (either
because of a change in a neighbor’s estimated bandwidth
or change in an adjacent link bandwidth) it notifies all its
neighbors.

We model nodes as state machines. Next we present
formally the states, transitions and procedures run at any
node i for calculation of the widest path to any destination
d.

Widest path Bellman-Ford at node i ∈ V :
State variables:

• bid; initialized 0 if i �= d and otherwise ∞.
• πid ∈ N(i) ∪ null; initialized to null.
• b[eij ] for all j ∈ N(i); initialized to full capacity of

link eij .
• b

(i)
jd for all j ∈ N(i); initialized 0 if j �= d and

otherwise ∞.
Transitions:

• if i receives a message regarding change in bjd from
neighbor j:

– i updates its own estimate of node j bandwidth:
set b

(i)
jd = bjd

• if bid �= maxj∈N(i){min{b[eij ], b
(i)
jd }},

– i recalculates its bandwidth estimate: set bid =
maxj∈N(i){min{b[eij ], b

(i)
jd }}

– i updates its successor: set πid =
argmaxj∈N(i){min{b[eij ], b

(i)
jd }}

– if bid changed, i notifies all neighbors about new
bid

In what follows we explain an important performance
failure of the presented algorithm. It is well known in the
context of shortest path routing that asynchronous Bellman-
Ford may create transient routing loops in case of link
failures which slows down its convergence [3]. Besides, if
some node is completely disconnected from the destination,
convergence takes for ever (this phenomenon is known as
the count to infinity problem) [3].

In our case, link states change dynamically because of
scheduled set-up and release of connections according to
step 1c of DAR algorithm. Along with the changes in future

A B C D2 3 3

2 3 1A B C D

time t ≤ 2 am

time t > 2 am

Figure 3. Illustration of permanent loops with widest path routing in a
linear 4-node network: the widest path successors toward destination D are
demonstrated with arrows and the numbers above links show available link
bandwidth in Gbit/s at the given time.

available link bandwidths, the estimated successors and path
bandwidths for future time slots must be updated to remain
consistent.

Lemma 4.4: Distance vector routing based on the dis-
tributed asynchronous widest path Bellman-Ford presented
above suffers from permanent routing loops in dynamic
networks.

Proof: We prove this via an example showing the
formation of a permanent routing loop following a change
in the network state. In Figure 3 we show a linear network
consisting of 4 nodes and 3 links. Assume a 2 Gbit/s
connection from C to D is scheduled in advance starting
from 2:00 am. The figure reflects this event with a change
in link bandwidth b[eCD] at 2:00 am. Since node C knows
about this event in advance, it performs a successor transition
from πCD = D to πCD = B. Then the estimated bandwidth
at C remains bCD = 3 Gbit/s. B keeps C as its successor
πBD = C with bBD =3 Gbit/s instead of 1 Gbit/s. Assuming
no further change in link states, the loop πBD = C and
πCD = B runs for ever.

We proved in sub-section IV-A that given our node data
structure it is impossible to guarantee shortest-widest-earliest
path optimization because construction of shortest-widest
path by successors is not guaranteed. Here, we show that
selecting at each node the shortest length among all widest
path successors does not help to prevent formation of loops
either.

We show this by an example based on the same figure 3.
We assume every node selects the successor with smaller
estimate of path length in case of a tie regarding path
bandwidth. Then, after 2:00 am we have at C, πCD = B
and again at B, πBD = C since C falsely offers B a
wider path than A does. The estimated path lengths at B
and C keep increasing in a loop without a bound because
C sets lCD = lBD + 1 (lCD denotes estimated length of
a path from C to D) and vice verse for B. Soon we will
have lBD > lAD. However this loop never breaks because
invariably C offers a wider path than A, i.e. bBD > bAD.

The two previous examples show whenever routing op-
timization criterion is path width, formation of permanent
loops is inevitable using the straight-forward extension of
the shortest path Bellman-Ford. This explains why distance
vector routing with widest path QoS is not explored in the
literature, while shortest path QoS or link-state strategies
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are very well studied. Loops are less likely with link state
strategies since every node maintains a copy of the network
topology.

On the other hand, re-initializing estimated state variables
at all nodes after every change in current or future state of
a single link is not a scalable solution because of excessive
messaging overhead.

The literature offers practical methods for preventing
formation of loops in distributed algorithms without having
to re-initialize the whole network [13, 14]. However, most of
the offered solutions are particularly based on shortest path
(or minimum delay) routing optimization and either do not
apply to or need a lot of modification to fit our scenario.

2) Loop prevention: We exploit a recently proposed algo-
rithm called Distributed Path Computation with Intermediate
Variable (DIV) to prevent formation of loops [4]. The DIV
has the advantage that it decouples routing optimization from
loop prevention process and this makes DIV applicable to
various routing algorithms or successor selection criteria.
The authors in [4] present it as a generic framework that
can be adjusted to any distributed distance vector routing
algorithm not limited to shortest path routing.

The DIV prevents loop formation using the concept feasi-
ble successor set defined per every destination at all nodes.
The feasible successor set of i per every destination is a sub-
set of N(i). Successor to each destination is selected from
the feasible successor set based on the routing optimization
criteria.

In order to use DIV in our routing computations we must
modify the data structure at nodes presented in sub-section
III-C. Other than the path bandwidth and successor which
are essential information for route calculation, every node
must store intermediate variables called values which are
solely added to determine the feasible successor set at every
node for loop prevention purpose. Using the intermediate
variables every node can track its own value and that of its
neighbors.

Each value has the format val(i; j|k) which represents the
value of node i known by node j based on the last update
received from i and stored at node k (authors in [4] use the
notation V (i; j|k)). Hence, in addition to the data structure
described in sub-section III-C, every node i stores for each
destination:

1) The value of i as known to itself and stored at i,
val(i; i|i)

2) The value of neighbor j as estimated by node i based
on the last update from j and stored at i, val(j; i|i)
for j ∈ N(i)

3) The value of i as estimated by neighbor j and then
transferred to and stored at i, val(i; j|i) for j ∈ N(i)

The first and third variables are not equal in general for
a given neighbor j but in steady state, DIV ensures that
val(i; i|i) = val(i; j|i) = val(i; j|j) for every j ∈ N(i).

Throughout the paper, if we mention value of node i without
specifying stored or known by whom, we refer to val(i; i|i).
Adapting DIV to our case. val(i; j|k) is a generic variable
which the DIV framework does not define it specifically. For
our particular purpose, we define it as a two dimensional
vector val(i; j|k) = 〈val1(i; j|k), val2(i; j|k)〉. For any
given node i, the first component val1(i; j|k) inversely
relates to the estimated path bandwidth from i to d, bid and
the second component val2(i; j|k) relates to the estimated
path length from i to d, lid. We will prove that val1(i; i|i)
converges to −b∗id and val2(i; i|i) converges to l∗id in steady
state. The intuition behind this choice of values is that the
first component accounts for widest routing optimization.
Thus, we give it the higher priority. The second component
is required to satisfy the DIV constraints. Its role is to break
the uniformity between neighboring node values with the
same path bandwidth estimate; according to an invariance
that we present later, every node must have a strictly larger
value than its successor. With path bandwidth alone, it is
not always possible to satisfy this invariance. In that case,
some nodes could have no successor.

We set the following relation between the path bandwidth
estimate bid at any given node i and the value of its
successor as known by i: bid = min{b[eij ],−val1(j; i|i)}
where j = πid and the following relation between the
estimated path length lid and value of i: lid = 1+val2(j; i|i)
where j = πid.

Although the value of every node i, has to eventually
be consistent with bid and lid, the values are restricted
to satisfy certain invariant conditions. The invariances are
responsible for preventing formation of loops. Our invariant
conditions are very similar to those presented in [4] with the
difference that we replace the standard comparators with the
lexicographic comparators ≺L and �L defined below. Thus,
val(i1; j1|k1) �L val(i2; j2|k2) implies:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1. val1(i1; j1|k1) < val1(i2; j2|k2)
or

2. val1(i1; j1|k1) = val1(i2; j2|k2),
and val2(i1; j1|k1) ≤ val2(i2; j2|k2)

This does not change the results presented in [4].
1) val(i; i|i) �L val(i; j|i) where j ∈ N(i).
2) j is in the feasible successor set of i if and only if

val(i; i|i) �L val(j; i|i).
The first condition sets a bound on the choice of value.
Every node has to keep its value below or equal to the
estimate of its value communicated by its neighbors. This
implies that if a node wants to increase its value, it should
first notify its neighbors. The second condition defines the
feasible successor set which restricts selection of successors
only to neighbors that offer a better (lexicographically lower)
value. This condition is set to prevent creation of routing
loops.
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The first invariance requires use of a special technique to
update values. Communication between nodes is through
three types of DIV messages: Update::Inc, Update::Dec and
ACK. Update::Inc is a message that a node sends to its
neighbors before it increases its value. Update::Dec is a
message that a node sends to its neighbors after it decreases
its value. ACK is sent in response to Update::Inc (only to
the sender) after the appropriate actions are performed at the
receiver of Update::Inc. For more details on the structure of
these messages we refer the reader to [4].

When a given node i wants to increase its value it will
first notify its neighbors before the actual increase. In turn,
the neighbors that precede i will notify their own neighbors,
etc. The recursive updates will finally extend to all ancestors
of i. Every node that receives an Update::Inc and does
not have to change its own value responds with an ACK
immediately. Node i will eventually increase its value once
it receives ACK from its neighbors. When a node needs
to decrease its value it performs the decrease and then
issues an Update::Dec to its neighbors (pretty much like
the standard Bellman-Ford).

The DIV uses the following semantics for handling out of
order messages:

1) A node ignores an update message that comes out of
order.

2) A node ignores ACK messages after issuing an Up-
date::Dec message.

Since Update and ACK messages have sequence numbers
nodes can know the order. The two mentioned semantics rule
out old messages in favor of the more recent ones leading to
less messaging overhead and faster convergence. Regarding
the second semantic, the receiver of the ACK ignores it
which means it does not not increase its value as specified
in the receipt of an ACK procedure explained below, but if
the node has received an Update::Inc from some neighbor
earlier, it should still send an ACK to the neighbor which
issued the Update::Inc.

3) Presentation of SSM: In the following, we describe our
algorithm SSM for selection of successors. Next, we prove
that the tentative paths constructed by SSM (by concatenation
of successors) converge to the optimal (widest) paths.

As mentioned earlier, we present only the subroutines and
states at node i per one destination d and for one particular
time slot. The SSM must be repeated independently per every
destination and for all future time slots at every node i. In
our presentation ∞ denotes a sufficiently large number.

On the high level, SSM is a combination of the asyn-
chronous widest path Bellman-Ford and the DIV. Again,
nodes are modeled as state machines. After listing the state
variables and their initial settings at any given node i, we
detail four events and the state transitions and actions they
trigger.

To simplify the presentation, we assume no message re-
ordering has happened but in that situation the two semantics

of DIV must be considered.
state variables:

• bid; initialized 0 if i �= d and otherwise ∞.
• πid ∈ N(i) ∪ null; initialized to null.
• b[eij ] for all j ∈ N(i); initialized to full capacity of

link eij .
• 〈val1(i; i|i), val2(i; i|i)〉; initially set to 〈0,∞〉 if i �=

d. Otherwise if i = d we set 〈−∞, 0〉.
• 〈val1(j; i|i), val2(j; i|i)〉 where j ∈ N(i); initially

set to 〈0,∞〉 if j �= d. Otherwise if j = d we set
〈−∞, 0〉.

• 〈val1(i; j|i), val2(i; j|i)〉 where j ∈ N(i); initially set
to 〈0,∞〉 if i �= d. Otherwise if i = d we set 〈−∞, 0〉.

First, we introduce the DecreaseV module. Whenever a
node x wants to decrease its value it performs a certain set
of tasks explained below. Assume y is the chosen successor
of x and d the destination. Then, x decreases its value,
the estimated value of x as known by any neighbor z and
x’s estimated path bandwidth bxd based on the parameters
of successor y. Then x will send Update::Dec message to
notify all its neighbors.

Module DecreaseV(x, y, d):
1) set −val1(x;x|x) and −val1(x; z|x) and bxd equal

to {min{b[exy],−val1(y;x|x)}} and set val2(x;x|x)
and val2(x; z|x) equal to val2(y;x|x) + 1 for all z ∈
N(x)

2) send Update::Dec to all neighbors z of x with the
content val(x;x|x)

When node i receives Update::Inc message with content
〈V1, V2〉 from a neighbor j′′, this is a notification that
j′′ wants to increase val(j′′; j′′|j′′) according to 〈V1, V2〉.
If j′′ is the successor of i, this triggers an increase in
value of i. To increase its value, i will send an Up-
date::Inc message containing the value that i wants to
have (〈−min{b[eij′′ ],−V1}, V2 + 1〉) to all of its neighbors
including j′′ and then waits for an ACK response from
neighbors (node transition after reception of ACK will be
explained separately). If j′′ is not the successor of i, then
i will just respond with an ACK since it does not need to
increase its value.

receipt of an Update::Inc with the desired value,
〈V1, V2〉 from neighbor j′′:

1) if j′′ is successor of i then,

a) send an Update::Inc with
〈−min{b[eij′′ ],−V1}, V2 + 1〉 to all neighbors
j ∈ N(i)

2) else if j′′ is not successor of i,

a) set val(j′′; i|i) equal to 〈V1, V2〉
b) send to j′′ an ACK holding val(i; i|i) which is

unchanged and val(j′′; i|i) which equals 〈V1, V2〉
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If i receives an Update::Dec message from neighbor j′′

with content 〈V1, V2〉 this indicates j′′ wants to decrease
val(j′′; j′′|j′′) according to 〈V1, V2〉. If j′′ is i’s successor,
i decreases its value by performing DecreaseV. If j′′ is
not the successor of i, then i decreases its value only
if j′′ becomes the new successor again by performing
DecreaseV.

receipt of an Update::Dec with the desired value,
〈V1, V2〉 from neighbor j′′:

1) set val(j′′; i|i) = 〈V1, V2〉
2) if j′′ is successor of i then,

a) decrease value of i by calling
DecreaseV(i, j′′, d)

3) else if j′′ is not successor of i then,

a) set J = argmaxj∈N(i){min{b[eij ],−val1(j; i|i)}}
where j is in the feasible successor set of i. If
πid /∈ J then i switches successor:

i) set πid = j′ for any j′ ∈ J
ii) decrease value of i by calling

DecreaseV(i, j′, d)

If i receives an ACK message from j′′, it will first update
its estimate of the value of j′′ and then its own value
can increase according to the invariances 2. Note that ACK
message must contain the value of its generator j′′ and
because it is triggered in response to an Update::Inc issued
earlier by i, it must contain the value that i has requested
to increase to. If the increase in value of i is because of an
Update::Inc message i has received earlier from a neighbor
j∗, i will modify val(j∗; i|i) as well. After i increases its
value and bid, it can search for a better successor and in
case of a successor switch, i will decrease its value by
performing DecreaseV. Finally, i must send an ACK if it
has received an Update::Inc (i must have stored the content
〈V1, V2〉 of Update::Inc in its memory).

receipt of an ACK with content val(j′′; j′′|j′′) and
val(i; j′′|j′′) from neighbor j′′:

1) set val(j′′; i|i) = val(j′′; j′′|j′′)
2) set val(i; j′′|i) = val(i; j′′|j′′)
3) increase val(i; i|i) as much as possible as long as

val(i; i|i) �L val(i; j|i) holds for all j ∈ N(i)
4) if i has received an Update::Inc with 〈V1, V2〉 from a

neighbor j∗ which is not acknowledged yet,

a) set val(j∗; i|i) = 〈V1, V2〉
b) set bid = min{b[eij∗ ],−val1(j∗; i|i)}

5) i can now search for a better successor: set J =
argmaxj∈N(i){min{b[eij ],−val1(j; i|i)}} where j is
in the feasible successor set of i

6) if πid /∈ J , i switches successor:

a) set πid = j′ for any j′ ∈ J
b) decrease value of i by calling

DecreaseV(i, j′, d)

7) if i has received an Update::Inc with 〈V1, V2〉 from
a neighbor j∗ which is not acknowledged yet, (i) set
val(j∗; i|i) = 〈V1, V2〉 (ii) send an ACK to j∗ holding
val(i; i|i) and val(j∗; i|i)

Inconsistency between bid and
maxj∈N(i){min{b[eij ],−val1(j; i|i)}} may happen if
bandwidth of a link adjacent to i changes or right after
initialization. In either case, i can immediately update its
successor if needed. Whether or not the successor changes
bid must be re-calculated. If bid changes, i needs to update
its value according to the DIV update rules mentioned
earlier.

inconsistency between bid and
maxj∈N(i){min{b[eij ],−val1(j; i|i)}}:

1) set πid = j′ for any j′ ∈ J and J =
argmaxj∈N(i){min{b[eij ],−val1(j; i|i)}} where j is
in the feasible successor set of i

2) set bid = {min{b[eij′ ],−val1(j′; i|i)}}
3) if val(i; i|i) ≺L 〈−bid, val2(j′; i|i) + 1〉,

a) send an Update::Inc with the desired value for
i, 〈−bid, val2(j′; i|i) + 1〉, to all neighbors j ∈
N(i)

4) else if val(i; i|i) �L 〈−bid, val2(j′; i|i) + 1〉,
a) decrease value of i by calling

DecreaseV(i, j′, d)

4) Performance analysis: In this section, first we analyze
the worst case memory complexity at nodes. Then, we prove
the time elapsed from issuing an Update::Inc message until
receipt of corresponding ACK is finite. Based on this we
prove that bid and −val1(i; d|d) converge to the bandwidth
of the optimal path for every i and d. Using this and the
loop-freedom property from [4], we prove that the paths
constructed by SSM between every pair of nodes converge
to the widest. Our analysis is based on the assumptions
from section III-B. Hence, request inter-arrival time is long
enough to allow for convergence of SSM path computations,
there is no Byzantine behavior at nodes and links are
reliable.

Theorem 4.5: The memory complexity at nodes is
O(Dmax.|V |.R) where Dmax is the maximum node degree
and R is the number of pending requests in the system.

Proof: Every node stores:
1) a path bandwidth estimate, successor and value of

itself per destination and per future time slot (mem-
ory complexity: number of destinations multiplied by
number of time slots)

2) bandwidth of all its adjacent links per future time
slot (memory complexity: node degree multiplied by
number of time slots)

3) estimated value of all of its neighbors and its neigh-
bor’s estimate of its own value per destination and
per future time slot (memory complexity: node degree
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multiplied by number of destinations multiplied by
number of time slots)

The third item has the dominant memory complexity.
Hence, we only consider it. Total number of slots at any
node is in the worst case equal to 2R + 1 (if user specifies
an arbitrary connection window [ta, tb]). This happens if the
node senses a successor or path bandwidth change per every
set up or tear down of a connection throughout the network.
For example this can happen in the line network of figure
3 at node A regarding destination D. Thus the worst case
memory complexity is O(Dmax.|V |.R) since the maximum
number of destinations is |V |.

We borrow the following lemma from [4]. Its proof can
be found therein.

Lemma 4.6: The successor graph is a directed acyclic
graph (DAG) or a collection of DAGs at all times [4].
The proof is similar to the one in [4]. Because our ini-
tialization respects the two invariances of DIV they will
always remain valid. The only difference is the replacement
of regular inequalities with lexicographic ones.

We present the following two lemmas without proof due
to space constraint.

Lemma 4.7: The worst case time from the moment a node
issues an Update::Inc until it receives the corresponding
ACK response is finite.

In the case of Update::Dec there are no ACK messages
and the decrease happens immediately at the initiating node.

Next, we prove using the following lemma and corollary
that a network whose nodes are initialized according to SSM,
will eventually reach a steady state even if a finite number of
links change bandwidth. By steady state, we mean all node
variables remain fixed.

Lemma 4.8: Assuming network is in steady state, the
total number of update messages after a bandwidth change
on any link is finite.

Corollary 4.9: Assuming network is in steady state, the
total number of messages triggered by any finite number of
link changes is finite.

We infer from corollary 4.9 that assuming the network
state is initialized according to SSM and bandwidth on a
finite number of links changes afterwards, the network will
eventually stabilize. To understand this, first assume that
there will be no link bandwidth change in the network after
initialization. In this case, all nodes will keep decreasing
(improving) their value because except for d, all nodes are
initialized with the largest (worst) possible value and there
is no link bandwidth decrease to trigger an increase in node
values. The process of decreasing value is no different
than the standard Bellman-Ford update procedure and its
convergence in an unchanging network is provable according
to [3].

Now, assume some link bandwidths change after initial-
ization. In this case, we have a superimposition of update
traffic due to initial conditions and update traffic due to link

changes. Again, using the same reasoning used for corollary
4.9, the total number of messages will be finite.

Next, we prove the paths resulting from SSM are optimal:
Theorem 4.10: The path constructed by consecutive suc-

cessors from every node i to any given destination d con-
verges to the widest among all paths connecting i to d.

Proof: We prove by contradiction.
According to corollary 4.9 the network will eventually

reach steady state. We assume the network has reached
steady state. According to lemma 4.6, the path constructed
from every node i by consecutive successors is loop-free: so
either it is a simple path connecting i to d or it is a simple
path that does not connect i to d and terminates at some
node j �= d. We denote such path Pij in either case where
in the first case j = d.

The proof consists of two parts:
Part 1. First we prove bid and −val1(i; i|i) for ev-

ery node i equal the bandwidth of the path Pij , i.e.
minexy∈Pij

{b[exy]}.
Again the proof is by contradiction. Assume

−val1(i; i|i) �= minexy∈Pij
{b[exy]} at steady state. Starting

at node j, moving on predecessors one by one on Pij , we call
k the first node on the path with inconsistent −val1(k; k|k)
and path bandwidth. Assume πkd = h and according to
our assumption −val1(h;h|h) = minexy∈Phj

{b[exy]}. At
steady state, we have val(h; k|k) = val(h;h|h) because
after every decrease in value of h, h should have updated
k and before every increase val(h; k|k) is set to the new
value even before val(h;h|h) was updated.

Therefore, we have min{b[ekh],−val1(h; k|k)} =
minexy∈Pkj

{b[exy]}. If we assume bkd is not equal to
min{b[ekh],−val1(h; k|k)}, according to the inconsistency
procedure, k has to update bkd and this contradicts the node
steady state assumption. So, we conclude that bkd equals
bandwidth of path Pkj .

But at steady state we also know that −val1(k; k|k) =
bkd because otherwise k has to update its value by issuing
update messages. So, we conclude that both −val1(k; k|k)
and bkd equal bandwidth of path Pkj . Therefore, by recursive
reasoning we conclude the same is true for i.

Part 2. Next, we prove by contradiction that if all nodes
are at steady state, path Pij must be an optimal path
connecting i to d. At all times, we have for j′ = πid, bid =
min{b[eij′ ],−val1(j′; i|i)} which equals the bandwidth of
path Pij formed by consecutive successors at steady state. If
Pij is not the widest possible path from i to d, because of the
inconsistency between maxj∈N(i) min{b[eij ],−val1(j; i|i)}
and bid, i has to update its successor according to the
inconsistency procedure. This contradicts the steady state
assumption.

Also we note that according to the first part of the proof,
if Pij does not connect i to d, then bid = 0. Therefore, as
long as there exists some path with positive bandwidth from
i to d, we must have j = d.



12

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we investigated feasibility and requirements
to implement end-to-end advance reservation with delay
guarantees based on a distance-vector approach. Our anal-
ysis revealed the importance of proper choice of the path
optimization criterion. We proved that earliest scheduling
requires widest path routing and showed that both shortest-
earliest and shortest-widest-earliest routing are infeasible
given our node data structure. We highlighted the possible
emergence of routing loops with widest path distance-vector
routing (which may explain the absence of distance-vector
QoS algorithms in the literature). We addressed this problem
using the very recent DIV loop-prevention algorithm that
lends itself to various routing optimization metric. Specifi-
cally, we defined the intermediate variables of DIV structure
(called values) to be two-element tuples. The first element
reflects path bandwidth and the second element, which has
a lower priority than the first, reflects path length. The
rationale behind our choice is that we first consider path
bandwidth because of widest path routing and then path
length to break uniformity of values (loop-prevention of
DIV requires that the value of every node is larger than that
of its successor).

We proved that our loop-free routing module SSM, based
on DIV, converges to widest routing within finite time. Our
proof is based on induction and uses the property of loop-
freedom resulting from DIV. The DAR algorithm uses the
route tables computed by SSM to find the earliest schedule
for connections.

This work opens several new interesting direction for
research. For instance, one problem is how to deal with situ-
ations where routing results of SSM are not stabilized by the
time a new request arrives. Another problem is to deal with
the fact that path switching does not occur instantaneously.
Hence, in future work, we should consider the possibility of
disconnection periods as part of our scheduling algorithm.
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