
IEEE INFOCOM 2004 1

Scalable Cycle-Breaking Algorithms for
Gigabit Ethernet Backbones

Francesco De Pellegrini, David Starobinski, Mark G. Karpovsky, and Lev B. Levitin

Abstract— Ethernet networks rely on the so-called span-
ning tree protocol (IEEE 802.1d) in order to break cycles,
thereby avoiding the possibility of infinitely circulating
packets and deadlocks. This protocol imposes a severe
penalty on the performance and scalability of large Gigabit
Ethernet backbones, since it makes inefficient use of
expensive fibers and may lead to bottlenecks. In this paper,
we propose a significantly more scalable cycle-breaking
approach, based on the novel theory of turn-prohibition.
Specifically, we introduce, analyze and evaluate a new
algorithm, called Tree-Based Turn-Prohibition (TBTP).
We show that this polynomial-time algorithm maintains
backward-compatibility with the IEEE 802.1d standard
and never prohibits more than 1/2 of the turns in the
network, for any given graph and any given spanning
tree. Through extensive simulations on a variety of graph
topologies, we show that it can lead to an order of mag-
nitude improvement over the spanning tree protocol with
respect to throughput and end-of-end delay metrics. In
addition, we propose and evaluate heuristics to determine
the replacement order of legacy switches that results in
the fastest performance improvement.

Index Terms— Graph Theory, System Design, Simula-
tions.

I. I NTRODUCTION

For many years, Ethernet has been the prevalent local
area network (LAN) technology, offering a wide-range
of services in a simple and cost-effective manner. With
the standardization of Gigabit Ethernet protocols, the
scope of Ethernet has widened even further [1]. A large
number of corporations and service providers are now
adopting Gigabit Ethernet as their backbone technology.
Gigabit Ethernet backbones cope with the increasing
traffic demand resulting from the deployment of high-
speed LANs, home networks, Voice over IP, and high-
bandwidth applications. The key advantage of Gigabit

F. De Pellegrini is with the Department of Information Engineering
at the University of Padova. E-mail: depe@dei.unipd.it.

D. Starobinski, M. Karpovsky, and L. Levitin are with the Depart-
ment of Electrical and Computer Engineering at Boston University.
E-mail: {staro,markkar,levitin}@bu.edu.

The work of the second author was supported in part by the
National Science Foundation under CAREER grant ANI-0132802
and grant ANI-0240333.

Ethernet over alternate technologies, such as ATM, is
to maintain backward-compatibility with the over one
hundred millions Ethernet nodes deployed world-wide
and the large number of applications running on these
nodes [2, 3].

Gigabit Ethernet has the same plug-and-play function-
alities as its Ethernet (10 Mb/s) and Fast Ethernet (100
Mb/s) precursors, requiring minimal manual intervention
for connecting hosts to the network. In addition, Gigabit
Ethernet relies on full-duplex technologies and on a
flow control (backpressure) mechanism that significantly
reduce the amount of congestion and packet loss in the
network [1, 4]. More specifically, the flow control mech-
anism (IEEE 802.3x) prevents switches from loosing
packets due to buffer overflow. This protocol makes use
of Pausemessages, whereby a congested receiver can
ask the transmitter to suspend (pause) its transmissions.
Each Pause message includes a timer value that specifies
how long the transmitter needs to remain quiet.

Currently, the network topology for Gigabit Ethernet
follows the traditional rules of Ethernet. The spanning
tree protocol (IEEE 802.1d) is used to avoid the occur-
rence of any cycle in the networks, thus pruning the
network into a tree topology [5].

The reasons for breaking cycles are two-fold. The first
is to avoid broadcast packets (or packets with unknown
destination) from circulating forever in the network.
Unlike IP, Ethernet packets do not have a Time-to-
Live (TTL) field. Moreover, Ethernet switches must be
transparent, which means that they are not allowed to
modify headers of Ethernet packets.

The second reason is to prevent the occurrence of
deadlocks as a result of the IEEE 802.3x flow control
mechanism [6]. Such deadlocks may occur when Pause
messages are sent from one switch to another along a
circular path, leading to a situation where no switch is
allowed to transmit. The use of a spanning tree precludes
this problem, since deadlocks cannot arise in an acyclic
network [7].

The spanning tree protocol works well in LAN net-
works, which are often organized hierarchically and
under-utilized [8]. However, it imposes a severe penalty
on the performance and scalability of large Gigabit

2 IEEE INFOCOM 2004

Ethernet backbones, since a spanning tree allows the use
of only one cycle-free path in the entire network. As
pointed out by the Metro Ethernet Forum, an industry-
wide initiative promoting the use of optical Ethernet
in metropolitan area networks, this leads to inefficient
utilization of expensive fiber links and may result in
uneven load distribution and bottlenecks, especially close
to the root [9, 10].

One of the current approaches to address this issue is
to overlay the physical network with logical networks,
referred to as virtual LANs [5]. A spanning tree instance
is then run separately for each virtual LAN (or group
of virtual LANs). This approach of maintaining multiple
spanning trees can add significant complexity to network
management and be very CPU-intensive [9].

In this paper, we propose a significantly more scal-
able approach, based on the novel theory ofturn-
prohibition [11, 12], in order to solve the cycle-breaking
problem in Gigabit Ethernet backbones. Turn-prohibition
is much less restrictive than link-prohibition, the ap-
proach employed to construct a spanning tree. The
main idea is to consider pairs of links around nodes,
referred to as turns [13], and show that all the cycles
in a network can be broken through the prohibition of
carefully selected turns in the network (a turn(a, b, c)
around nodeb is prohibited if no packet can be forwarded
from link (a, b) to link (b, c)).

One of the main challenges in making use of the
turn-prohibition approach is to maintain backward-
compatibility with the IEEE 802.1d standard. Our main
contribution in this paper is to propose and analyze
a novel algorithm, called Tree-Based Turn-Prohibition
(TBTP), to address this issue. This algorithm receives
a graph along with a spanning tree, as its input, and
generates a set of prohibited turns, as its output.

The TBTP algorithm possesses several key theoretical
properties. First, it breaks all the cycles in the networks
and preserves connectivity. Second, itnever prohibits
turns along the given spanning tree. In particular, if
the tree is generated by the IEEE 802.1d protocol, then
legacy switches can gradually be replaced by switches
capable of running turn-prohibition. Third, the algorithm
prohibits at most1/2 of the turns in the network. Thus,
the total number of permitted turns in the network
always exceeds the total number of prohibited turns. This
result is valid for any given graph and spanning tree
on it. Furthermore, it is generalizable to weighted graph
topologies. In this latter case, the algorithm guarantees
that the total weight of permitted turns always exceeds
the total weight of prohibited turns in the network.
We note that the constraint of permitting all the turns
along a given spanning tree is critical for backward-

compatibility. Without this constraint, a tighter bound
on the fraction of prohibited turns can been achieved,
namely1/3 [11, 12].

The rest of this paper is organized as follows. In
Section II, we give a brief overview of the IEEE 802.1d
protocol and discuss related work. In Section III, we
introduce the TBTP algorithm, prove its main prop-
erties, and analyze its worst-case time complexity. In
Section IV, we provide a general framework for main-
taining backward-compatibility in an heterogeneous net-
work composed of both “intelligent” switches, capable
of running turn-prohibition, and legacy switches. We
also propose heuristics to determine the order in which
legacy switches should be replaced in order to achieve
the fastest performance improvement. In Section V, we
present numerical results, comparing the TBTP algo-
rithm with the standard spanning tree algorithm and an
earlier turn-prohibition approach called Up/Down [14].
Through extensive simulations on a variety of graph
topologies, we show that the TBTP algorithm signifi-
cantly outperforms the two other schemes with respect
to throughput and end-to-end delay metrics. The last
section is devoted to concluding remarks.

II. BACKGROUND AND RELATED WORK

A. The Spanning Tree Algorithm (IEEE 802.1d)

The spanning tree algorithm, first proposed in the
seminal paper of [15], is the standard for interconnecting
LANs, according to the IEEE 802.1d protocol.

This algorithm requires a unique identifier (ID) for
every switch and every port within a switch. Using a
distributed procedure, it elects the switch with the small-
est ID as the root. A spanning tree is then constructed,
based on the shortest path from each switch to the root
(switch and port IDs are used to break ties).

Every switch brings the ports connected to its parent
and children into aforwardingstate. All remaining ports
are placed in ablocking state. Ports in the forwarding
state are used to forward data frames, while ports in the
blocking state can only be used for forwarding signaling
messages between switches.

Packet forwarding is based on abackward–learning
process. When a switch receives a packet from a certain
hostS, via one of its active portsP , it assumes that the
same port can be used in the reverse direction to forward
packets to hostS. This way, each switch progressively
constructs a table, maintained in a local cache, that
maps each destination with its corresponding port in
the switch. Note that cache entries are valid only for
a limited amount of time, determined by an associated
timer. If the destination of a packet is unknown, then

IEEE INFOCOM 2004 3

the packet is forwarded over all active ports except the
incoming one. This action is commonly referred to as
floodingor broadcast.

B. Improvements

Several enhancements have been proposed in the lit-
erature in order to mitigate congestion near the root.

The Distributed Load Sharing (DLS) technique en-
ables use of some of the links not belonging to the
tree [16, 17]. Under specific topological constraints, this
technique can provide alternate paths to the spanning
tree, thus helping to relieve local congestion. In general,
however, no guarantee is provided on the overall perfor-
mance improvement of the network.

A recent improvement over the DLS idea is pro-
posed in [18]. This work devises a backward-compatible
scheme, called STAR (Spanning Tree Alternate Rout-
ing), that finds alternate paths shorter than paths on
the spanning tree, for any additive metric. It also in-
troduces optimization techniques to determine which
legacy switches should be candidates for replacement
by new switches. As with previous DLS solutions, the
STAR scheme does not provide bounds on the amount of
prohibited resources in the network and does not address
the problem of deadlocks caused by the IEEE 802.3x
protocol. Readers are referred to [18] for other previous
work related to the STAR protocol.

In [19], a solution, based on the technique of diffusing
computation, is proposed in order to avoid infinite packet
loops. Unfortunately, this solution is not backward-
compatible with the IEEE 802.1d protocol and does not
address the issue of deadlocks.

A scheduling approach, suitable for a lossless Gigabit
Ethernet LAN, is proposed in [6] in order to avoid
deadlocks. Although this solution avoids changes in the
headers of Ethernet frames, it requires the replacement
of all the switches in the network and is inherently
incompatible with the spanning tree approach.

Our contribution substantially differs from previous
work by guaranteeing a provable bound on the amount
of prohibited resources (turns) in the network. Moreover,
the TBTP algorithm that we propose is a general graph-
theoretic approach for breaking cycles in networks. This
algorithm is, thus, application-independent and can be
used to avoid both infinite packet loops and deadlocks.
Finally, our proposed algorithm is purposefully designed
to be backward-compatible, as it relies on the spanning
tree generated by the IEEE 802.1d protocol. Preliminary
ideas leading to this work were presented in [20].

III. SCALABLE CYCLE-BREAKING ALGORITHMS

In this section, we present our main contribution,
the Tree-Based Turn-Prohibition (TBTP) algorithm, for
breaking cycles in a scalable manner in Gigabit Ether-
net Networks. We also briefly review an earlier turn-
prohibition algorithm calledUp/Down [14] and discuss
the theoretical advantages of the TBTP algorithm over
that algorithm. Beforehand, we introduce our network
model and notations, and provide a formal statement of
the problem.

A. Model

We model a Gigabit Ethernet network by a directed
graph G(V,E) where V is a set of nodes (vertices)
representing switches andE is a set of links (edges).
We do not consider end-hosts, since they would just
be leaves on the graph. We restrict our attention tobi-
directional network topologies, that is, networks where
nodes are connected by full-duplex links. It is worth not-
ing that essentially all modern Gigabit Ethernet networks
make use of full-duplex links (in contrast to the original
Ethernet where nodes were communicating over a shared
medium link).

We define a cycle to be a path whose
first and last links are the same, for instance,
(n1, n2, n3, . . . , n`−1, n`, n1, n2). Our goal is to
break all such cycles in the underlying graph in order
to avoid deadlocks and infinitely circulating packets.

Note that the literature in graph-theory typically de-
fines a cycle as a path such that the initial and final nodes
in the path are the same [21]. We refer to this latter
definition as acycle of nodes. A spanning tree breaks all
cycles of nodes in a graph.

Breaking all cycles of nodes is, however, unnecessary
in general. For instance, referring to Figure 1(a), the
path (5, 1, 4, 3, 1, 4) contains a cycle, while the path
(5, 1, 4, 3, 1, 2) does not (although it contains a cycle of
nodes). A cycle is, thus, created only when the same
buffer or port is traversed twice, in the same direction.
In particular, a path may traverse several times the same
node without creating a cycle.

A pair of input-output links around a node is called
a turn. The three-tuple(i, j, k) will be used to represent
a turn from link (i, j) to link (j, k), with i 6= k. For
instance, in Fig. 1(a), the three-tuple(2, 1, 3) represent
the turn from link(2, 1) to link (1, 3) around node 1.

Due to the symmetrical nature of bi-directional graphs,
we will consider the turns(i, j, k) and (k, j, i) to be
the same turn. As shown in the sequel, an efficient
approach for breaking cycles in a network is based
on the prohibition of turns. For example, in Fig. 1(a),

4 IEEE INFOCOM 2004

5 4

12 3

(b)(a)

5 4

12 3

Fig. 1. (a) Example of a graphG. (b) Solution of the Up/Down
algorithm for graphG. Tree-links are represented by solid lines and
cross-links by dashed lines. Arcs represent prohibited turns (six turns
are prohibited in total).

prohibiting the turn(2, 1, 3) means that no packet can
be forwarded from link(2, 1) to link (1, 3) (and from
link (3, 1) to link (1, 2)). Note that turns involving leaves
in the graph can always be permitted, since they do not
belong to any cycle. We will denote byR(G) the set
of all turns in the network. If the degree of each nodei

is di, then |R(G)| = ∑|V |
i=1 di(di − 1)/2.

B. Statement of the Problem

Suppose a spanning treeT (G) = (VT , ET) providing
connectivity for a graphG is givena-priori. We refer to
links belonging to this tree astree-links. Other links are
referred to ascross-links.

Denote a set of prohibited turns byST (G). Our goal
is to determine a setST (G), such that

1) Every cycle in the network contains at least one
turn fromST (G), i.e., all the cycles in the network
are broken.

2) ST (G) contains a minimum number of elements.
3) All the turns between tree-links inT (G) are per-

mitted.

Our problem, therefore, is to determine a minimal
cycle-breaking setST (G) that does not include turns
from T (G). If the tree is generated by the IEEE 802.1d
protocol, then the solution to this problem would allow
us to gradually replace legacy switches by switches
capable of running turn-prohibition. We present, now,
two algorithms to address this problem. For simplicity
of exposition, we first assume that all nodes in the
network areintelligent nodes, that is, nodes capable of
implementing turn-prohibition. We address backward-
compatibility issues with legacy nodes in Section IV.

C. Up/Down

A possible approach for the construction of a cycle-
breaking setST (G), is the so-calledup/down routing
algorithm [14]. In this approach, a spanning treeT (G)
is first constructed. Then, nodes are ordered according

to the level at which they are located on the tree. The
level of a node is defined at its distance (in number of
hops) from the root. Nodes at the same level are ordered
arbitrarily.

Once the nodes are ordered, a link(i, j) is considered
to go “up” if i > j. Otherwise, it is said to go “down”.
A turn (i, j, k) is referred to as an up/down turn if node
if i > j and j < k. Respectively, a down/up turn is
a turn such thati < j and j > k. Clearly, any cycle
must involve at least one up/down turn and one down/up
turn. Therefore, it is possible to break all the cycles
in a graph by prohibiting all the down/up turns. This
means that packets can be transmitted over cross-links
as long as they are not forwarded over down/up turns.
An illustration of the Up/Down algorithm is provided in
Fig. 1(b).

The Up/Down routing algorithm achieves much higher
performance than the simple spanning tree approach
implemented by the IEEE 802.1d protocol, as shown by
our simulations in Section V. However, the performance
of this algorithm depends critically on the selection of
the spanning tree and its root node. In particular, it
has been shown that the fraction of turns prohibited by
this scheme, that is, the ratio|ST (G)|/|R(G)|, can be
arbitrarily close to 1 in some networks [11].

D. The Tree-Based Turn-Prohibition (TBTP) Algorithm

We now introduce a novel cycle-breaking algorithm,
called Tree-Based Turn-Prohibition (TBTP). This algo-
rithm prohibits at most 1/2 of the turns forany given
graph G and spanning treeT (G). This is in contrast
with the Up/Down algorithm that does not provide any
guarantees on the fraction of prohibited turns in the
network.

1) The Algorithm: The TBTP algorithm is a greedy
procedure that receives a graphG and an associated
spanning treeT (G) as its arguments. At each iteration,
the algorithm breaks all the cycles involving some se-
lected nodei∗. Towards this end, the algorithm prohibits
all the turns around nodei∗ (except for turns between
tree-links) and permits all turns of the type(i∗, j, k),
where (i∗, j) are cross-links originating from nodei∗.
All the cross-links connected to nodei∗ are then deleted
and the procedure is repeated until all the nodes have
been selected and no more cross-links remain. Following
is a pseudo-code for the algorithm:
Algorithm TBTP (G,T (G)):

1) For each nodei, that has adjacent cross-link(s),
construct two sets of turns

A(i) = {(i, j, k)|(i, j) ∈ E\ET , (j, k) ∈ E}
P (i) = {(j, i, k)|(j, i) ∈ E\ET , (i, k) ∈ E}

IEEE INFOCOM 2004 5

5 4

12 3

5 4

12 3

5 4

12 3

5 4

12 3

Step 2

Step 3 Final

Step 1

Fig. 2. Successive steps of the TBTP algorithm and final result (five
turns are prohibited in total).

2) Select nodei∗ maximizing|A(i)|−|P (i)| (if there
are multiple such nodes, choose one at random).

3) Add all the turns fromP (i∗) into ST (G).
4) Delete all cross-links(i∗, j) ∈ E\ET , and repeat

the procedure until all the cross-links have been
deleted.

The intuition behind the node selection is as fol-
lows. Each nodei, is associated with a potential set of
permitted turnsA(i) and a potential set of prohibited
turnsP (i). At each iteration, the selected node is the one
that maximizes the difference between the cardinality
of the sets, namely|A(i)| − |P (i)|. We will show in
the sequel that there always exists at least one node
for which this difference is greater or equal to zero.
Thus, this selection strategy guarantees that the algorithm
prohibits at most 1/2 of the turns in the graph.

Figure 2 illustrates the algorithm. At the first step
of the algorithm, the setsA(i) and P (i) are com-
puted for each nodei. For instance, for node 1, these
sets areA(1) = {(1, 5, 2), (1, 5, 4)} and P (1) =
{(2, 1, 5), (3, 1, 5), (4, 1, 5)}. The selected node is node 3
for which |A(3)| − |P (3)| = 2 (either node 2 or 5
could have been selected as well). As a result, turn
(1, 3, 4) is prohibited. The procedure is then repeated,
but without cross-link(3, 4). As shown in the figure,
the procedure continues until no more cross-links re-
main. The final set of prohibited turns isST (G) =
{(1, 3, 4), (1, 4, 2), (1, 5, 2), (1, 5, 4), (2, 5, 4)} (other so-
lutions are also possible). Thus, the algorithm ends up in
prohibiting five turns which is one fewer than Up/Down.

Note that the TBTP algorithm requires each switch to
have full knowledge of the topology. The algorithm can
be implemented in a decentralized fashion as a link-state
algorithm [5], where every switch maintains a global
topology map.

2) Analysis:We now prove the main properties of the
TBTP algorithm.

Theorem 1 The TBTP algorithm preserves network
connectivity.

Proof: The algorithm never prohibits turns between
tree-links. Thus, network connectivity is provided by the
spanning treeT (G).

Theorem 2 The TBTP algorithm breaks all the cycles.

Proof: If any cycle exists, then it must involve at
least one cross-link. Thus, in order to prove the theorem,
we need to show that a turn containing a cross-link
cannot belong to any cycle.

The proof is by induction. The induction hypothesis
is that each iteration of the algorithm, none of the turns
around nodes previously selected, and containing a cross-
link, belong to any cycle. This hypothesis is clearly true
for the first node selected, say nodei1. This is because
the TBTP algorithm prohibits all the the turns of the type
(j, i1, k) around nodei1, where(j, i1) are cross-links.

Now suppose thatn − 1 nodes have already been
selected and none of the turns, containing a cross-link,
around these nodes belong to any cycle. The next chosen
node is, say, nodein. We distinguish between two types
of turns around nodein. First, we consider turns which
contain a cross-link adjacent to one of the previously
selected nodes. These turns have been permitted in one
of the former steps of the algorithm, but can not lead to a
cycle, by the induction hypothesis. Second, we consider
the turns around nodein, containing a cross-link, and
that do not involve a previously selected node. The TBTP
algorithm prohibits all these turns. As a consequence, the
algorithm breaks all the remaining cycles that could have
involved nodein with one of its adjacent cross-links. The
induction hypothesis is thus justified, and the proof of
the theorem is complete.

We now show that the TBTP algorithm prohibits at
most 1/2 of the turns in the network. We first prove the
following lemma:

Lemma 1 At each step of the algorithm, the following
inequality holds

∑

i∈G

(|A(i)| − |P (i)|) ≥ 0

Proof: Each turn(i, j, k), {(i, j) ∈ E\ET , (j, k) ∈
E}, can appear only once as a prohibited turn, namely
in the setP (j). On the other hand, the same turn will
appear as a permitted turn in the setA(i), and possibly
also in the setA(k) if (j, k) ∈ E\ET . Thus, each turn is

6 IEEE INFOCOM 2004

counted once in the set of prohibited turns and, at least,
once in the set of permitted turns, thereby proving the
lemma.

Theorem 3 The TBTP algorithm prohibits at most 1/2
of the turns in the network.

Proof: From Lemma 1, there must exist at least
one nodei for which the difference|A(i)| − |P (i)| is
greater or equal to zero. Since, at each step, the algorithm
selects the nodei∗ that maximizes this difference, it is
guaranteed that the number of permitted turns is greater
or equal to the number of prohibited turns.

It is worth noting that the number of turns permitted
by the TBTP algorithm is actually strictly greater than
the number of prohibited turns. This is because turns
between tree-links are all permitted as well.

3) Algorithm complexity: We next show that the
TBTP algorithm has practical computational complexity.

Theorem 4 The computational complexity of the TBTP
algorithm isO(|V |2d2), whered represents the degree
of graphG (i.e., the maximum degree of any node in the
graph).

Proof: The analysis of the computational complex-
ity can be broken down into the following components:

1) The construction of the spanning treeT (G). This
component has complexityO(|V |d).

2) Computations of the setsA(i) and P (i). Com-
puting the number of permitted/prohibited turns
around any nodei is of the orderO(d2). At
each iteration of the algorithm, this computation
is performed for all|V | nodes in the graph. Since
the number of iterations is at most|V |, we obtain
that the overall complexity of this component is
O(|V 2|d2).

3) The selection of nodei∗. At each iteration, the
node that maximizes the difference|A(i)|− |P (i)|
is selected, which requiresO(|V |) computations.
Since there are at most|V | iterations, the complex-
ity of this component isO(|V 2|).

We therefore obtain that the algorithm complexity is
O(|V |2d2).

Note that the above analysis assumes a straight-
forward implementation of the algorithm. The compu-
tational complexity could be reduced by using advanced
data structures, such as priority queues. Likewise, at each
step of the algorithm, we do not have to repeat the
computations of the setA(i) andP (i) for each nodei,
but only for a subset of the nodes.

4) Extension for Weighted Graphs:So far, we have
only considered the case of unweighted graphs. How-
ever, in switched Ethernet networks, different links may
have different capacity, e.g., 100 Mb/s versus 1 Gb/s.
Consequently, the relative importance of different turns
vary as well.

In order to address this issue, we can extend our results
to weighted graphs. Each turn(i, j, k) in the graph is
associated with a weightw(i, j, k). This weight can be
set according to any metric of interest [12].

The TBTP algorithm for weighted graphs remains the
same as for unweighted graphs. We just have to replace
|A(i)| and |P (i)| by the sum of the weight of turns
in the corresponding sets. Moreover, since the proof of
Theorem 3 holds unchanged, we obtain the following
result for weighted graph topologies:

Corollary 1 The sum of the weights of prohibited turns
by the TBTP algorithm is at most1/2 of the sum of the
weights of all turns inG.

As an illustration, consider the example of Fig. 2,
but with the following distribution of weights for
the turns: w(1, 3, 4) = 10 and the weights of all
other turns set to 1. In such a case, the algorithm
would prohibit the following set of turnsST (G) =
{(2, 4, 1), (2, 4, 3), (2, 4, 5), (3, 4, 1), (3, 4, 5), (2, 5, 1),
(2, 5, 4)}. The overall weight of the prohibited turns is 7
which represents 25% of the total weight of the turns in
the network.

IV. BACKWARD–COMPATIBILITY

In the description of the Up/Down and TBTP algo-
rithms in the previous section, we have assumed that
all switches in the network are capable to perform
turn-prohibition. In large networks, however, a massive
replacement of all switches is a major issue and very
unlikely to happen. In this section, we suggest a strategy
for a smooth transition towards a complete replacement.

A. Approach

We consider an heterogeneous network consisting of
both intelligent and legacy nodes. In order to ensure
backward-compatibility, we require intelligent switches
to be able of running both the spanning tree algorithm
(IEEE 802.1d) and turn prohibition.

At the very beginning, all the switches run the dis-
tributed spanning tree algorithm. As a result, every node
belongs to a spanning treeT (G) that is generated by the
IEEE 802.1d protocol.

Next, intelligent nodes send “neighbor discovery”
messages to their directly connected neighbors. As a

IEEE INFOCOM 2004 7

result, an intelligent node knows if it is connected to
another intelligent node or to a legacy node.

Now suppose that two intelligent nodes are connected
by a cross-link. Then use of this link may be possible,
depending on the turn-prohibition algorithm being em-
ployed. However, if a cross-link connects between an
intelligent node and a legacy node, then use of this link
is not possible. This is because the legacy node would
not accept to forward or receive packets over that link.

Therefore, a backward-compatible solution has to ex-
amine each turn(i, j, k), where(i, j) is a cross-link and
both nodesi andj are intelligent, and decide if this turn
can be permitted or not. We now distinguish between the
cases of Up/Down and TBTP.

1) Up/Down: We remind that the Up/Down algorithm
requires nodes to be ordered. This information can
readily be obtained from the IEEE 802.1d protocol, since
each noden knows its distanced(n) from the root. Thus,
each turn(i, j, k) for whichd(i) 6= d(j) andd(j) 6= d(k)
can be resolved. It will be prohibited only if nodej is
farther away from the root than the two other nodes.
Also, turns such thatd(i) = d(j) can be resolved using
the IDs of the switches, that is, if ID(i) > ID(j) then
i > j and vice-versa.

Note that this approach works as well when nodek in
the turn(i, j, k) is a legacy node, because nodej knows
whether nodek is its parent or one of its children (remind
that if nodek is a legacy node, then link(j, k) must be
a tree-link).

2) TBTP: As mentioned in Section III, the TBTP
algorithm requires each node to have global knowledge
of the network topology. This is of course not possible
in an heterogeneous network, since legacy nodes would
not participate in the process of collecting the topology
(e.g., by generating or forwarding link-state packets).

Our solution is to implement the TBTP algorithm
independently for each connected group of intelligent
nodes. We refer to such groups ascomponents of connec-
tivity. Figure 3(a) gives an example of an heterogeneous
network with two components of connectivity, namely
nodes 1,3,4 and nodes 6,7,8.

In each component connectivity, the intelligent nodes
collect the internal topology of that component and run
the TBTP algorithm to decide which turns should be
permitted or prohibited.

In order to show why this approach breaks all the
cycles, consider the following modified topologyG′.
This topology consists of the original topologyG, but
without all the cross-links connected to legacy nodes (on
one or both ends). We now observe that our backward-
compatible solution is equivalent to having run the
centralized version of the TBTP algorithm, described in

1 2

34

5 6

78
(a)

intelligent nodes

legacy nodes

1 2

34

5 6

78
(b)

Fig. 3. (a) An heterogeneous graph,G, composed of legacy
and intelligent nodes. (b) Corresponding modified topologyG′ and
prohibited turns.

Section III, on the topologyG′. Therefore, it follows
from Theorem 2 that all the cycles in the network are
broken. Figure 3 depicts an example of an heterogeneous
graphG and its corresponding modified topologyG′.

B. Packet Forwarding (Routing)

In a turn prohibition-based algorithm, such as
Up/Down or TBTP, several paths may exist between a
source and a destination, as opposed to a spanning tree
where only a single path exists. Thus, there is a need to
deploy a routing algorithm that can determine the “best”
path, according to some appropriate metric, from each
source to each destination.

In [11], we have described one such routing algorithm
that is a generalization of the Bellman-Ford routing
algorithm. In the case of TBTP, the implementation of
this routing algorithm adds little overhead, since every
node knows the full topology.

Similarly to the original Bellman-Ford algorithm,
the generalized version can be implemented in a fully
distributed way. Therefore, when used with Up/Down,
nodes do not need to have global knowledge of the
topology. Furthermore, since the network contains no
cycles, the count-to-infinity problem will not arise.

In the case of heterogeneous networks, the general-
ized Bellman-Ford algorithm is implemented separately
in each component connectivity. In order to maintain
backward-compatibility, intelligent nodes which are di-
rectly connected to legacy nodes must also implement
the backward-learning process of the IEEE 802.1d pro-
tocol. In such a case, when an intelligent node learns
about a certain destination outside its component of

8 IEEE INFOCOM 2004

connectivity, it must inform all the other nodes within
its component.

Finally, each routing entry has an associated time-out,
e.g. 15 minutes. If the entry is not refreshed within this
period of time, then it is removed from the routing table.
As with the IEEE 802.1d protocol, a switch that receives
a packet for an unknown destination will broadcast the
packet along links of the spanning treeT (G).

C. Heuristics for Node Replacement

By implementing turn-prohibition instead of link-
prohibition, the TBTP and Up/Down algorithms clearly
outperform the simple spanning tree algorithm. There-
fore, the gradual replacement of legacy nodes by intel-
ligent node will improve network performance.

An interesting question within this context is as to
which legacy nodes should be replaced first in order to
achieve maximum improvement. One simple strategy is
the random one in which a legacy node is picked at
random and replaced by an intelligent node.

We propose here another heuristic. This heuristic relies
on the fact that a random replacement could lead to sets
of intelligent nodes completely isolated, i.e., no cross-
link can be enabled for forwarding. Instead, we propose a
Top-Downapproach whereas the replacement starts from
the root, i.e., replacing the level1 node first, then proceed
with level 2 nodes and so on. This replacement strategy
will guarantee the existence of at most one component
of connectivity in the network. Moreover, it will relieve
congestion from the root. Therefore, we expect that this
heuristic will lead to a faster performance improvement
than the random one. Our numerical results in the next
section confirm this rationale.

D. Reconfiguration

In the case of node/link failures, the spanning tree
T (G) is reconfigured according to the specifications of
the IEEE 802.1d standard or its recently improved ver-
sion, IEEE 802.1w, which supports faster spanning tree
reconfiguration. Once the spanning tree is reconfigured, a
new set of permitted/prohibited turns is determined using
the procedure described above.

V. NUMERICAL RESULTS

In this section, we compare the performance of the
various cycle-breaking approaches described in the pre-
vious sections. In order to obtain comprehensive sets of
results, we make use of bothflow levelandpacket level
simulations.

Flow level simulations are based on fluid models. They
provide fast, qualitative results and can be run over large
number of graphs with different topology properties.

Packet level simulations, on the other hand, model
network dynamics at the granularity of single packets.
They can provide more accurate estimates on quality of
service metrics, such as end-to-end delay and through-
put. Unfortunately, they are computationally intensive,
especially for large graphs.

A. Flow Level Simulations

The goal of our flow level simulations is to compare
the performance of the algorithms as related to different
network topology properties, such as the size of the
network or the degree of the nodes. Another important
objective is to evaluate the heuristics for node replace-
ment discussed in Section IV.

Our simulations are based on random, connected
graphs. Each node has fixed degreed, and the network
size (number of nodes in the network) is|V |. We assume
that all links in the network have the same capacityC
and we setC = 1 Gb/s. All the results presented
correspond to average over 100 graphs with identical
parameters.

Once a random graph is generated, each of the
cycle-breaking algorithms (spanning tree, Up/Down and
TBTP) is run on top of it in order to determine a set
of prohibited links/turns. Routing matrices over a turn-
prohibited graph are computed using the generalized
Bellman-Ford algorithm of [11].

As a reference, we also simulate an ideal scheme when
no turn in the graph is prohibited. We refer to this scheme
asshortest path, since each flow is established along the
shortest path from the source to the destination.

We consider two metrics. The first is the fraction
of prohibited turns in the network, that is, the ratio
|ST (G)|/|R(G)|. A lower value for this quantity is
considered to be better since it implies less unutilized
network resources.

The second metric is throughput. We compute this
metric as follows. We assume a fluid model where flows
are transmitted at a fixed rate. Each node establishes
a session (flow) withk other nodes in the network,
picked at random. In all of our simulations, we set
k = 4. Each flow is routed along the shortest-path
over the turn-prohibited graph (if multiple routes exist,
then one is selected at random). Next, we determine the
bottleneck link, which is the link shared by the maximum
number of flows. The throughput is then defined as the
capacity of the bottleneck link divided by the number of
flows sharing it. In other words, the throughput is the

IEEE INFOCOM 2004 9

maximum rate at which each flow can be transmitted
without saturating the network.

1) Complete Replacement of the Switches:In our
first set of simulations, we compare the performance
of the algorithms assuming that all switches in the
network are intelligent, that is, capable of performing
turn-prohibition.

We first evaluate the performance and scalability prop-
erties of each algorithm as a function of the number of
nodes in the network|V |. We assume the degree of each
node to bed = 8.

Table I shows that the TBTP algorithm prohibits about
10% fewer turns than Up/Down. As expected, the simple
spanning tree approach performs far worse, prohibiting
about 90% of the turns in the network1. These results
are almost insensitive to the network size.

Figure 4 depicts the throughput performance with99%
confidence intervals. The results presented are in agree-
ment with those obtained for the fraction of prohibited
turns. We observe that, for 32 nodes, the TBTP achieves
a throughput approximately 10% higher than that of
Up/Down. Moreover, the relative difference in the per-
formance between these two algorithms increases with
the network size. Another important observation is that
the throughput of TBTP is within a factor of at most1.5
from that of the “shortest-path” scheme. This means that
the cost of breaking all the cycles in the network may
not be too significant in terms of network performance.
This is in clear contract with the spanning tree approach
which achieves an order of magnitude lower throughput.

Next, we evaluate the effect of the graph density on
the performance of the algorithms. We vary the degree
of the nodesd, but keep the number of nodes fixed to
|V | = 120. Table II provides evidence on the scalability
of the turn-prohibition techniques, as compared to the
spanning tree. While the fraction of prohibited turns pro-
hibited by the TBTP and Up/Down algorithms increase
slightly with the degreed, the spanning tree approach
experiences a much sharper increase.

1Although the spanning tree approach prohibits links, it is still
possible to count the fraction of prohibited turns in the network

|V | TBTP Up/Down Spanning Tree

32 0.29 0.31 0.91
56 0.28 0.30 0.91
88 0.28 0.30 0.91
120 0.28 0.30 0.91
152 0.27 0.30 0.91

TABLE I

FRACTION OF PROHIBITED TURNS FOR NETWORKS OF VARYING

SIZE AND FIXED DEGREEd = 8.

Shortest Paths
TBTP
Up−Down
Spanning Tree

Number of nodes

T
h

ro
u

g
h

p
u

t[
M

b/
s]

40 60 80 100 120 1400

100

200

Fig. 4. Throughput versus increasing number of nodes|V |. The
degree of each node isd = 8.

Figure 5 shows the throughput performance of the
various algorithms as a function of the node degree.
We note that increasing the degree of nodes implies
an addition of links in the network. The spanning tree
algorithm is the only algorithm that does not benefit
from this increase. The reason is that a spanning tree
permits the use of only|V | − 1 links in the network,
independently of the topology.

Figure 5 also depicts the performance of the Turn-
Prohibition (TP) algorithm developed in [11]. This algo-
rithm prohibits at most1/3 of the turns in any network,
but is not backward-compatible with the IEEE 802.1d
protocol. We observe that the performance of the new
TBTP algorithm lies in-between those of the TP and
Up/Down algorithms. Moreover, the performance of
TBTP gets closer to TP as graphs become denser. Thus,
the TBTP algorithm shows a good trade–off between the
performance of the TP approach and the constraint im-
posed by permitting all the turns along a given spanning
tree.

2) Partial Replacement of the Switches:We now
evaluate and compare the heuristics for node replacement
described in Section IV. Simulations are run for random

d TBTP Up–Down Spanning Tree

4 0.23 0.25 0.74
6 0.27 0.29 0.86
8 0.28 0.30 0.91
10 0.28 0.31 0.93
12 0.29 0.31 0.95

TABLE II

FRACTION OF PROHIBITED TURNS FOR NETWORKS OF FIXED SIZE,

|V | = 120, AND NODES OF VARYING DEGREEd.

10 IEEE INFOCOM 2004

Top Down Replacement
Random Replacement

(a)
Number of intelligent nodes

T
h

ro
u

g
h

p
u

t[M
b/

s]

0

20

40

60

80

100

120

20 40 60 80 100 120

Top Down Replacement
Random Replacement

(b)
Number of intelligent nodes

T
h

ro
u

g
h

p
u

t[M
b/

s]

0

20

40

60

80

100

120

20 40 60 80 100 120

Fig. 6. Throughput versus number of intelligent nodes (total number of nodes is fixed at|V | = 120): (a) TBTP (b) Up–Down.

Shortest Paths
TP
TBTP
Up−Down
Spanning Tree

Node degree

T
h

ro
u

g
h

p
u

t[M
b/

s]

4 6 8 10 12

20

80

140

200

Fig. 5. Throughput versus increasing degreed, for |V | = 120 nodes.

graphs of |V | = 120 nodes and degreed = 8. For
each graphG, a spanning treeT (G) is first constructed.
Then legacy nodes are replaced according to one of the
heuristics, that is, either the random or the Top-Down
approach.

Figure 6(a) plots the throughput as a function of the
number of intelligent nodes in the network, for each of
the two heuristics. The results depicted in that figure
are for the case where intelligent nodes implement the
TBTP algorithm. As expected, the figures shows that
the Top-Down heuristic leads to a faster improvement
in performance than the random heuristic. For instance,
when 60 out of the 120 network nodes are intelligent,
Top-Down achieves a throughput roughly 50% higher
than that obtained by the random approach. For both
heuristics, the marginal gain in the throughput increases

with the number of intelligent nodes.
Figure 6(b) shows similar results when intelligent

nodes implement the Up/Down algorithms, though the
difference between the two heuristics is less significant
in this case.

B. Packet Level Simulations

In this section, we present packet level simulation
results obtained with the NS2 simulator [22]. These
simulations allow us to estimate the average end-to-end
delay of packets as a function of the traffic load, for each
of the cycle-breaking methods.

We consider two sample topologies. The first one,
referred to as graphG1, is similar to that adopted for
the flow level simulation and consists of a randomly
generated graph with32 nodes of degree8. The second
graph, G2, has also 32 nodes. It is generated using
the BRITE topology generator [23], based on the so-
called Barab́asi–Albert model [24]. This model captures
the power-law node degree distribution that has been
observed in a variety of networks.

Our traffic model is as follows. Each node establishes
an UDP session (flow) with four other nodes, picked at
random in the network. Each UDP session generates traf-
fic according to an exponential ON–OFF source model.
The average ON and OFF periods are 460 ms and 540
ms, respectively. The average traffic rate (in bit/s) is a
simulation parameter and denoted byλ. The size of each
packet is 600 bytes long. Each link has a propagation
delay of 0.5 ms and capacity of 1 Mb/s. Note that due
to memory and computation constraints, we could not
simulate gigabit links. We conjecture, however, that the

IEEE INFOCOM 2004 11

TBTP
Up−Down
Spanning Tree

(a)

0

0.05

0.1

20 40 60 80 100 120 140 160 180
Offered load per session[Kb/s]

A
ve

ra
ge

e
n

d
–

to
–

e
n

d
d

e
la

y[s
]

TBTP
Up−Down
Spanning Tree

(b)

0

0.04

0.08

0.12

0.16

20 40 60 80 100 120 140 160 180
Offered load per session[Kb/s]

A
ve

ra
ge

e
n

d
–

to
–

e
n

d
d

e
la

y[s
]

Fig. 7. Average end–to–end delay versus offered loadλ, (a) Sample graphG1 (b) Sample graphG2.

simulation results would have been qualitatively similar
to those presented here.

The results for the end-to-end delay are presented in
Figure 7. The results obtained for the two sample graphs
are similar. We observe that the average end-to-end delay
incurred with the spanning tree algorithm is always
higher than with the two turn-prohibition approaches.
Moreover, the maximum sustainable throughput, i.e., the
traffic rate valueλ at which the end-to-end delay starts
to diverge, is increased by a factor of about five when
the turn-prohibition techniques are employed. The TBTP
algorithm achieves a higher throughput than Up/Down,
as the latter prohibits a larger number of turns.

Finally, it interesting to compare Figures 4 and 7, for
the case of|V | = 32 nodes. We observe that flow level
simulations predict well how each scheme performs one
with respect to the other (we remind that the flow-level
simulations use 1 Gb/s links). This result validates the
use of flow level simulations as a fast and reliable method
to predict network performance.

VI. CONCLUSION

In this paper, we have addressed the problem of
breaking cycles in a scalable manner in Gigabit Ethernet
networks. This problem has gained particular importance
recently with the emergence of large metropolitan area
networks (MANs), based on the Gigabit Ethernet tech-
nology. Toward this goal, we have proposed, analyzed
and evaluated a novel cycle-breaking algorithm, called
Tree-Based Turn-Prohibition (TBTP). This polynomial-
time algorithm guarantees the prohibition of at most1/2
of the turns in the network, while permitting all the

turns belonging to a pre-determined spanning tree. We
have shown that the algorithm can be generalized to
the case where turns are assigned non-uniform weights
(these weights can be set according to any metric of
choice). In that case, the TBTP algorithm prohibits at
most 1/2 of the total weight of turns in the network.
This generalization is especially useful for networks with
links of non-uniform capacity.

We have also presented a general framework for incre-
mentally deploying TBTP-capable switches in a way that
is backward-compatible with the existing IEEE 802.1d
standard. Since several paths may exist between any
source-destination pair, we have described a method to
perform packet forwarding (routing) in an heterogeneous
networks consisting of intelligent and legacy switches.

The performance of the proposed algorithm was thor-
oughly evaluated using both flow-level and packet-level
simulations. The simulation showed that the TBTP al-
gorithm achieves a throughput that is about an order
magnitude higher than that obtained with the spanning
tree standard. Furthermore, for a wide range of topology
parameters, the performance of the TBTP-algorithm dif-
fers only by a small margin from that of shortest path
routing (which achieves the highest possible throughput
in theory, but does not break cycles).

Finally, we have proposed a heuristic, called
Top/Down, to determine the order in which legacy
switches should be replaced. This scheme proceeds by
first replacing the root node, then nodes at level 1, and
so forth. We have shown that Top/Down replacement
outperforms a scheme where legacy nodes are replaced
at random, achieving a throughput 50% higher in some

12 IEEE INFOCOM 2004

cases. An interesting open research area is to investigate
whether this strategy might be further improved and
devise other possible replacement schemes.

REFERENCES

[1] H. Frazier and H. Johnson, “Gigabit Ethernet: from 100 to 1,000
Mbps,” IEEE Internet Computing, Vol. 3, No. 1, pp. 24–31,
Jan./Feb. 1999.

[2] H. Frazier, “The 802.3z Gigabit Ethernet Standard,”IEEE
Network, Vol. 12, No. 3, pp. 6–7, May/Jun. 1998.

[3] D. Clark, “Are ATM, Gigabit Ethernet Ready for Prime Time?,”
IEEE Computer, Vol. 31, No. 5, pp. 11–13, May 1998.

[4] W. Noureddine and F. Tobagi, “Selective Backpressure in
Switched Ethernet LANs,” in the proceedings ofGlobecom ’99,
Vol. 2, pp. 1256-1263, Dec. 1999.

[5] R. Perlman,Interconnections,Addison-Wesley, 2000.
[6] M. Karol, S. Golestani, and D. Lee, “Prevention of Deadlocks

and Livelocks in Lossless, Backpressured Packet Networks,”
in the proceedings ofINFOCOM 2000, Vol.3, pp. 1333-1342,
March 2000, Tel Aviv, Israel.

[7] J. Duato, “A Necessary and Sufficient Condition for Deadlock–
Free Routing in Cut–Through and Store–and–Forward Net-
works,” IEEE Transactions on Parallel and Distributed Systems,
Vol. 7, No. 8, pp. 841-854, August 1996.

[8] M. Soha and R. Perlman, “Comparison of Two LAN Bridge
Approaches,”IEEE Network, Vol.2 No 1, pp. 37–48, January
1988.

[9] “Metro Ethernet Networks–A Technical Overview,” Metro Eth-
ernet Forum White Paper, July 2002. Available online at:
http://www.metroethernetforum.org/

[10] L. Bosack and C. Hedrick, “Problems in Large LANs,”IEEE
Network, Vol.2 No 1, pp. 52–56, January 1988.

[11] D. Starobinski, M.G. Karpovsky and L. Zakrevski “Applica-
tion of Network Calculus to General Topologies using Turn–
Prohibition,” IEEE/ACM Transactions on Networking, Vol. 11,
No. 3, pp. 411-421, June 2003.

[12] L.B. Levitin, M.G. Karpovsky, “Deadlock Prevention in Net-
works Modeled as Weighted Graphs,” in the proceedings of
ICINSAT–2002, pp. 42-47, 2002.

[13] C. Glass and L. Ni, “The Turn Model for Adaptive Routing,”
Journal of ACM, Vol. 41, No. 5, pp. 874–902, September 1994.

[14] M. Shoreder et al., “Autonet: A High-Speed, Self–Configuring
Local Area Network Using Point–to–Point Links,”IEEE Jour-
nal on Selected Areas in Communications, Vol. 9, No. 8, pp.
1318–1335, October 1991.

[15] R. Perlman, ”An Algorithm for Distributed Computation of a
Spanning Tree in an Extended LAN”, in the proceedings of
Ninth ACM Data Communications Symposium, Vol. 20, No. 7,
pp. 44–52, September 1985, New York, USA.

[16] J. Hart, “Extending the IEEE 802.1 MAC Brige Standard
to Remote Bridges,”IEEE Network, Vol.2 No 1, pp. 10–15,
January 1988.

[17] Perlman et al., “Utilization of redundant links in bridged
networks,” United States Patent Number 5,150,360, September
22, 1992.

[18] K. Lui, W. C. Lee, K. Nahrstedt, “STAR: a transparent spanning
tree bridge protocol with alternate routing,”ACM SIGCOMM
Computer Communication Review, vol. 32, no. 3, pp. 33–46,
July 2002.

[19] T.L. Rodeheffer, C.A. Thekkath, D.C. Anderson, “SmartBridge:
A Scalable Bridge Architecture,” in the proceedings ofACM
SIGCOMM 2000, September 2000, Stockholm, Sweden.

[20] D. Starobinski and M. Karpovsky, “Turn Prohibition-
based Packet Forwarding in Gigabit Ethernets,” in
the proceeding of the Gigabit Networking Workshop
(GBN 2001), Anchorage, Alaska, April 2001.
http://www.comsoc.org/tcgn/conference/gbn2001/staro-
presentation.pdf

[21] T. Cormen, C. Leiserson, and R. Rivest,Introduction to algo-
rithms, McGraw–Hill, 1990.

[22] The Network Simulator - ns-2, available online at
http://www.isi.edu/nsnam/ns/.

[23] Boston University Representative Topology Generator - BRITE,
available online at http://www.cs.bu.edu/brite/.

[24] A.-L. Barab́asi and R. Albert, “Emergence of Scaling in Ran-
dom Networks,”Science,No. 286, pp. 509-512, 1999.

