
Profitability of Dynamic Spectrum Provision
for Secondary Use

Murat Alanyali
Boston University

Ashraf Al Daoud
German-Jordanian University

David Starobinski
Boston University

Abstract—We characterize policies and prices for sec-
ondary spectrum provision whose profitability is insensitive
to the demand curve. In more explicit terms, the paper
provides a critical price value such that if secondary
access is priced above that value then allowing secondary
access is profitable for the licensee as long as the price
generates secondary demand. Conversely, if the price does
not generate demand then the licensee does not incur
any operational cost due to secondary service. Hence such
characterization serves as a guarantee that a spectrum
licensee can strictly avoid revenue loss due to participation
in spectrum trading.

I. INTRODUCTION

Secondary spectrum markets bear tremendous poten-
tial to increase spectrum utilization by allowing spectrum
ownership to float in response to varying demand and
supply conditions. Realizing this potential entails liq-
uidity of spectrum markets, which in turn requires their
profitability for parties that are endowed with the initial
allocation of spectrum. Profitability relies on multiple
factors, first and foremost on price-demand relationships
that are difficult to predict in emerging markets. This
paper investigates conditions under which secondary-
market transactions are profitable for a spectrum li-
censee, and gives a constructive perspective for spectrum
pricing to achieve profitability.

From the viewpoint of a spectrum licensee, opening a
frequency band to secondary access entails determining
a pricing strategy and a policy under which such access
will be allowed. This pair does not single-handedly
determine the net gain from spectrum sharing; the re-
sulting profit also depends on the relationship between
the stipulated price of secondary access and the demand
it generates. This relationship is coined as the demand
curve. While the demand is typically non-increasing in
price, an exact functional relationship is seldom available
without exhaustive measurements, and it may further be
time-varying due to market conditions.

The illustration of Fig. I helps clarify the generic issue
associated with unknown demand curve. The horizontal
and vertical axes of the figure respectively represent
the stipulated prices and corresponding demand for
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Fig. 1. Graphical illustration of profitability for a generic spectrum
sharing policy: Price r yields positive profit under the solid demand
curve, but not under the dashed demand curve.

secondary spectrum use. Not all price-demand pairs
necessarily guarantee profit since occupancy of spectrum
by secondary users may potentially prevent revenue from
primary use. Thus, for a given secondary access policy,
only a subset of secondary price-demand pairs generate
positive profit for the licensee. We refer to this subset as
the profitability region of secondary spectrum use.

At the boundary of the profitability region the revenue
generated from secondary access balances the oppor-
tunity cost due to forfeited access rights; in turn the
profit is zero. The net effect is typically revenue loss
in the remaining portion of the price-demand plane. If
the demand curve intersects the profitability region then
the policy yields profit provided that secondary access
is priced in a way to render the operating point in that
region. A range of such prices is illustrated in Fig. I. It is
evident that this range generally depends on the demand
curve. For example, for the hypothetical policy of this
figure the price r is profitable under the solid demand
curve, but not under the dashed demand curve.

Our goal in this paper is to characterize policies and
prices for secondary spectrum provision whose prof-



itability is insensitive to the demand curve. In more
explicit terms, the paper provides a critical price value
such that if secondary access is priced above that value
then allowing secondary access is profitable for the li-
censee as long as the price generates secondary demand.
Conversely, if the price does not generate demand then
the licensee does not incur any operational cost due to
secondary service. The critical price obtained here is the
smallest price value with this property.

Existence and characterization of a critical price serves
as a guarantee that a spectrum licensee can strictly avoid
any revenue loss due to participation in spectrum trading.
The decoupling between profitability and demand has
also implications beyond the basic setting considered in
the paper. These include: (i) Competitive environments:
The critical price is an absolute limit on how low a
licensee can price its spectrum; hence it is an indicator
of competitiveness of the licensee, particularly in price-
war scenarios. (ii) Service level agreements: The licensee
can continue to honor any service level agreements with
the primary demand by first pricing secondary access for
profitability and then by rejecting part of the resulting
secondary demand as needed. In effect this amounts
to reshaping the demand curve and has no bearing on
profitability. (iii) Revenue enhancement: The licensee
can enhance its revenue via multiple rounds of secondary
spectrum offerings, at each round pricing above the
critical price that is determined by the demand raised in
prior rounds. These extensions are discussed in further
detail in Section VIII.

A. Overview

As an asset radio spectrum has distinct features that
are shaped by physical, technological, and regulatory
factors. In this paper we study a model that incorporates
the following aspects:

1) Spatial dimension: Spectrum is a spatially dis-
tributed asset that lends itself to sparse reuse.
The sparsity constraint arises due to interference,
which depends on a combination of factors includ-
ing transmission power, frequency, bandwidth, and
modulation.

2) Coexistence: Multiple types of users can coexist
on the same frequency band as long as they
comply with operational constraints associated
with interference. For example, a cellular network
provider may serve its primary customer base
while offering temporal surplus of its capacity
to secondary users on an opportunistic basis. For
another example, multiple users can coexist under
the private-commons model [1, Section IV.B.2.b]
without using infrastructure of a licensee.

3) Dynamic transactions: Currently spectrum trans-
actions in the US are subject to FCC approval
that may take weeks. A considerable fraction of
these transactions represent transfer of rights for
a duration shorter than the remaining lifetime of
the original license [2]. Hence for the involved
licensees these are dynamic transactions involving
the same spectrum block. FCC’s vision extends far
beyond the present setup and includes per-session
contracts that take place at faster time-scales [1,
Section IV.B.2.a].

We consider spatial properties of spectrum in terms
of a graph where nodes represent geographical locations
and edges represent proximity. It is assumed that the
spectrum cannot be in use in two neighboring locations
simultaneously. On this model we consider a dynamic
demand for spectrum that is composed of spectrum
requests that occur randomly in time at each location.
Each request is for a finite duration which may be
different from request to request.

We refer to the spectrum demand prior to a pricing
decision as primary demand. This demand is subject to
a certain primary price, which is the revenue obtained
per primary request. It is assumed that primary requests
are admitted whenever they do not violate any of the
mentioned interference constraints in G. The alluded
pricing decision concerns opening spectrum to additional
demand at a secondary price. We refer to this demand as
secondary demand. While the secondary price is at the
discretion of the licensee, the licensee has no control
on the generated secondary demand. Furthermore the
licensee does not know the secondary demand that a
given price would raise. Too low a price may generate
high secondary demand and consequently may lead to
revenue loss due to lost opportunities to serve primary
demand; whereas too high a price may not generate any
secondary demand at all.

We provide an explicit characterization of a critical
price value r∗ such that if secondary access is priced
above r∗ then allowing secondary access is profitable
for the licensee as long as the price generates sec-
ondary demand. Profitability of such a price entails rather
nontrivial secondary access policies that impose further
conditions on when to admit secondary requests. We
give an explicit characterization of these policies. The
profitability threshold r∗ is sharp: Any price below this
threshold incurs revenue loss if it generates demand,
regardless of the adopted spectrum sharing policy. The
corresponding profitability region therefore represents an
area delineated by a straight vertical line in the secondary
price-demand plane.

While the obtained policies yield the largest possible
profitability region, neither computational nor opera-



tional requirements of these policies scale well with
the size of the spatial representation. Hence practical
relevance of the optimal profitability region appears
limited to smaller topologies. For larger topologies, we
obtain the profitability region of a complete sharing
policy that imposes no additional admission conditions
on the secondary demand. We provide a critical price
value r∗CS such that if secondary access is priced above
r∗CS then complete sharing is profitable as long as the
price generates secondary demand. r∗CS is the smallest
such threshold for complete sharing; hence it would
raise positive demand if any larger threshold does. The
profitability region of complete sharing is not delineated
by a straight line in general; therefore profitability of
prices below r∗CS depends on the underlying demand
curve. We also illustrate how multiple spectrum offerings
can be employed to increase the revenue further, and
briefly discuss how the service quality of primary traffic
can be protected against high secondary demand.

The paper is structured as follows: The next section
gives an overview of related work. Sections III and IV
specify the adopted spectrum model and profitability
definitions respectively. An analysis of spectrum revenue
under exclusively primary demand is given in Section V.
This revenue serves as a reference value to assess
profitability of secondary access. The two profitability
regions discussed above are established in Sections VI
and VII respectively. Discussions of extensions and com-
putational considerations are included in Section VIII
and in an appendix. The paper concludes with final
remarks in Section IX.

II. RELATED WORK

In contrast to profit maximization, profitability has
received scant attention both in economics and in en-
gineering. Existing work on secondary spectrum mar-
kets predominantly centers on auction mechanisms and
pricing under provision of a centralized broker [3–7].
A notable exception is [8], which studies conditions
for market liquidity in exchange-based spectrum trading.
The authors of the present paper are not aware of a
fundamental analysis of profitability.

Pricing with unknown demand function (curve), with
the goal of maximizing profit, has received more atten-
tion. Ref. [9] devises an on-line method for optimizing a
static (fixed) pricing policy. It assumes a parameterized
demand function and adjusts prices in response to cus-
tomer arrivals. Ref. [10] presents a measurement-based
strategy, called Measurement-based Threshold Pricing
(MTP), for pricing secondary spectrum access. The paper
proves that MTP quickly and provably converges to
optimal profit, while making minimal assumptions about
the structure of the demand function. However, the MTP

framework applies to an isolated cell, and therefore
does not capture the spatio-temporal nature of spectrum
use and the interference constraints that it induces in
general network topologies. A key feature of the model
introduced in our paper is to explicitly capture the
dynamic fluctuations of spectrum usage in both time and
space.

Ref. [11] provides on-line pricing algorithms for both
parametric and non-parametric unknown demand func-
tions. The results apply to a different set-up that that
considered in our paper, namely finite horizon pricing of
a single product with a finite initial inventory. Ref. [12]
studies a similar problem, but with competition between
multiple providers. Assuming a linear demand function,
their approach is based on obtaining the least square
estimates of the parameters that define this function.

Our paper stems from extensive work conducted by
the telecommunication policy community in identifying
and articulating challenges faced towards the deployment
of secondary spectrum markets. In a nutshell, [13, 14]
detail the multiple dimensions of radio spectrum (e.g.,
space, time, frequency) that need to be accounted for,
[15] discusses market dynamics and approaches for
generating demand, and [16–18] describe pros and cons
of various spectrum sharing mechanisms (e.g., property
rights and commons). We refer to [19, 20] for a compre-
hensive review of related work in this area.

III. A SPATIO-TEMPORAL MODEL OF SPECTRUM

In this paper we represent spatial properties of spec-
trum sharing via an undirected graph G with n nodes.
In this graphical model each vertex represents a ge-
ographical location. An edge is drawn between two
vertices if the same band of spectrum cannot be utilized
simultaneously at the two locations represented by the
vertices, due to interference. In that case we call the two
vertices (or the two locations) neighbors of each other.

In a cellular service context each node of G may
represent a cell with an associated base station. Fig. 2
illustrates a 32-node hexagonal lattice topology. Alterna-
tively, in a private commons context, G may represent a
suitable discretization of space. In that case the number
of edges per node in G would be increasing with the
resolution of the spatial representation. The analytical
discussion of the paper does not make any assumptions
on the topology of G.

We consider the following dynamic demand model su-
perimposed on G: At each location there are two types of
spectrum requests. Primary requests arrive according to
a Poisson process of rate λ1 > 0 and secondary requests
arrive according to a Poisson process of rate λ2 > 0. We
shall assume that these arrival processes are independent;
furthermore that they are independent across different



Fig. 2. An example of graph G that represents locations and
interference constraints as explained in the text.

locations. If a request at some location i is granted then
it holds spectrum for a random duration, during which
spectrum is not available to incoming requests at i as
well as at neighboring locations of i. We assume that the
holding times of requests are independent and identically
distributed exponential random variables; and without
loss of generality we take the mean holding time as one
unit.

Let us denote the occupancy of each location i by xi,
where

xi =

 1 if there is an active spectrum user
(primary or secondary) at location i

0 else,

and the entire network occupancy by the binary vector
x, where

x = (x1, x2, · · · , xn).

Since neighboring locations cannot be active simulta-
neously, any feasible network occupancy vector needs
to satisfy xixj = 0 for neighbors i, j in G. In the
parlance of graph theory such a vector is coined an
independent set of graph G. We refer to the collection
of all independent sets of G by S so that necessarily
x ∈ S.

For the spectrum provider a granted request generates
revenue r1 > 0 if it is primary, and revenue r2 > 0 if
it is secondary. These values may reflect deterministic
charges per granted request or average charges if, for
example, a granted request is charged based on usage.

We identify primary requests with legacy users of the
spectrum provider and assume that primary requests are
granted whenever possible. That is, a primary request
at location i is granted if at the time of the request
xi = 0 and xj = 0 for all neighboring locations j
of i. Secondary requests, on the other hand, represent
opportunity to increase revenue beyond what can be
obtained from the primary requests. Towards that end

secondary requests may possibly be admitted selectively
according to a spectrum sharing policy.

IV. PROFITABILITY DEFINITIONS

The objective of this paper is to identify secondary
price-demand pairs (r2, λ2) under which sharing the
spectrum with secondary requests is profitable for the
spectrum provider. Profitability of a spectrum sharing
policy is defined relative to the spectrum provider’s long-
term revenue in the absence of any secondary requests.
This reference value is also the revenue of a lock-out
policy that flatly rejects all secondary requests.

Since long-term revenues are likely to increase with-
out bound with increasing term duration, it is more
convenient to work with the rate of revenue generation
per unit time. We shall denote by RLO the rate at
which the lock-out policy generates revenue in the long-
term. The parameters that determine RLO are therefore
the network graph G, primary demand λ1, and primary
price r1. Similarly, the revenue rate of a given spectrum
sharing policy SP is denoted by RSP (r2, λ2). Note that
this value also depends on G,λ1, r1 but this dependence
is suppressed for notational convenience.

For a given context G,λ1, r1, we shall say that policy
SP is profitable under secondary price-demand pair
(r2, λ2) if

RSP (r2, λ2) > RLO.

The profitability region of policy SP is the set of pairs
(r2, λ2) for which SP is profitable. Finally, the full
profitability region (of spectrum sharing) is the union
of profitability regions of all possible spectrum sharing
policies. Hence a pair (r2, λ2) is in the profitability
region if and only if it is in the profitability region of
some spectrum sharing policy.

V. LOCK-OUT POLICY

The revenue rate of the lock-out policy, RLO, is
a reference value in determining profitability of any
spectrum sharing policy. We start with identifying this
quantity in terms of the context parameters. As each
granted primary request yields revenue r1, determining
RLO hinges on the rate of granted primary requests. In
this section we express this latter value in terms of the
equilibrium distribution of the network occupancy x.

Under the lock-out policy the network occupancy
is a Markov process. State transitions of this process
are governed by the so-called generator matrix Q =
[Qxx′ ]S×S , which has one entry for every pair of
network states x,x′ ∈ S. To fully identify entries of
Q let ei denote the binary vector in S where the only
non-zero entry is at location i. Then off-diagonal entries



of Q are given by

Qxx′ =

 λ1 if x′ = x + ei for some i
1 if x′ = x− ei for some i
0 else,

(1)

and diagonal entries of Q are chosen so as to make the
row-sums zero.

A probability vector π = {π(x) : x ∈ S} is an
equilibrium distribution for the network occupancy if
πQ = 0. It can be verified by substitution that this
equality is satisfied if

π(x) = πλ1(x) =
1

C
λ
∑

i xi

1 , (2)

for any constant C. The right value of this constant is
C =

∑
x∈S λ

∑
i xi

1 , in which case the entries of π sum
to 1 and so πλ1

is indeed a probability vector. We point
out that our choice of annotating the equilibrium distri-
bution with the parameter λ1 is motivated by notational
convenience in the ensuing discussion.

Let Ai be the probability that a given location i can
grant an incoming primary request in equilibrium. Since
primary requests are granted whenever possible, a new
request at location i is granted if and only if the network
state is in the set

S+
i = {x : xi = 0, xj = 0 for all neighbors j of i}.

Therefore,
Ai =

∑
x∈S+

i

πλ1(x).

Since primary requests arrive at rate λ1 at location i and
they are granted with probability Ai, the rate of granted
requests at this location is λ1Ai. Therefore, the location
generates revenue at rate r1λ1Ai per unit time. RLO is
the total rate of revenue generation by all locations in
the network; hence

RLO = r1λ1
∑
i

Ai.

An alternative representation of RLO is obtained via
Little’s law, which asserts that λ1Ai = Eλ1

[xi]. Here
Eλ1

denotes expectation with respect to the distribution
πλ1

. Substituting this equality in the characterization
above yields

RLO = r1Eλ1 [T ]

where
T =

∑
i

xi

is the total network occupancy. We shall find this lat-
ter representation more useful from a computational
perspective. We postpone the discussion computational
complexities to the Appendix and continue in the next
section with characterization of the full profitability
region.

VI. FULL PROFITABILITY REGION

Identifying the profitability region by enumerating
all possible spectrum sharing policies and by taking
the union of their profitability regions is evidently in-
tractable. Here we use the so-called policy improvement
procedure of dynamic programming as a succinct alter-
native.

Policy improvement is a generic iterative technique to
solve dynamic optimization problems. It is based on an
arbitrary reference policy with known performance, and
it seeks an optimal decision to be applied to the first
event at each state, provided that the reference policy
will be followed beyond that decision. Such binding of
a decision for each event at each state amounts to a
policy, and it turns out that that policy is strictly better
than the reference policy unless the reference policy is
optimal. While our goal here is not maximization of an
objective function, we will use policy improvement to
seek a spectrum sharing policy that is strictly better than
the lock-out policy in terms of revenue. Existence of such
a policy would generally depend on the pair (r2, λ2); and
whenever it exists we declare (r2, λ2) as a point within
the profitability region.

As alluded above, carrying out the policy improve-
ment procedure entails knowing the performance of the
lock-out policy, but more detailed knowledge beyond
RLO is needed: Let a(x) be the number of locations that
are eligible for granting new requests at state x. In other
words, a(x) is the cardinality of the set {i : x+ei ∈ S}.
Let us define the row vector g = {g(x) : x ∈ S} by
setting g(x) = r1a(x). That is, each entry g(x) of g is
the instantaneous rate of revenue generation given that
the network is in state x. Finally let h = {h(x) : x ∈ S}
be a (row) vector that satisfies

QhT + gT = 0, (3)

where Q is the generator matrix of network occupancy
under the lock-out policy as defined by (1).

Since row sums of Q are zero Q is not of full rank.
Therefore, equality (3) has infinitely many solutions in h.
The rank of Q is indeed |S|−1; and while (3) has many
solutions in h the differences h(x)− h(x′) : x,x′ ∈ S
are unique. Hence (3) has a unique solution in h if an
arbitrary entry of h, say h(0) is set to 0. In turn h can
be obtained by inverting a (|S|−1)×(|S|−1) submatrix
of Q.

The vector h has an important interpretation that
provides key insight in determining profitability of sec-
ondary requests [24, Chapter 8]: The difference h(x)−
h(x′) is the difference in the total revenue (over an
infinite time horizon) if the network is started from state
x instead of state x′, and from then on it is operated



under the lock-out policy. Therefore,

h(x)− h(x + ei)

is the opportunity cost of an additional request admitted
at location i when the network state is x. This cost
includes the potential of rejecting primary requests due
to the presence of the admitted request, as well as all
cascading effects of such rejection that propagate in the
network through neighborhood relations.

The policy improvement procedure asserts that admit-
ting a secondary request at location i when the network
state is x would improve the revenue if the immediate
revenue r2 of that decision exceeds its opportunity cost.
Hence for a given secondary price-demand pair (r2, λ2),
with λ2 > 0 so as to avoid trivialities, there exists a
policy that is strictly more profitable than the lock-out
policy if and only if

r2 > h(x)− h(x + ei)

for at least one location i and one state x. It should
be noted that this latter condition involves r2 (and also
r1, λ1, G since these determine h) but not λ2.

We summarize this observation by the following the-
orem:

Theorem VI.1 Let

r∗ = min
i

min
x∈S
{h(x)− h(x + ei)}.

a) If r2 > r∗ then there exists a spectrum sharing policy
that is profitable for any λ2 > 0.
b) If r2 ≤ r∗ then no spectrum sharing policy yields
positive profit, for any λ2.

The theorem asserts that profitability of spectrum
sharing is insensitive to the secondary demand λ2 and
is solely determined by the secondary price r2. If a
secondary price r2 > r∗ generates positive secondary
demand then profitability of spectrum sharing is guaran-
teed by a policy that grants a secondary request at each
location i if at the time of the request the system state
x is such that r2 > h(x)− h(x + ei).

There are two practical impediments to realizing the
full profitability region of spectrum sharing. The first
issue is computational and concerns calculation of h.
As alluded above calculation of h entails inverting a
square matrix of dimension |S| − 1. Recall that |S| is
the number of independent sets of the graph G. While
the matrix inversion has complexity that is polynomial
in |S|, for reasonable topologies of G the quantity |S|
itself is exponential in the number of locations in G. For
example if G is a rectangular grid with n nodes then
|S| = Ω(1.5n) [21]. More specifically |S| = 201030
in the 32 node topology of Fig. 2. Hence calculating

h appears intractable even for topologies with moderate
size.

The second issue is operational and concerns dynamic
requirements of a profitable policy. As described above,
in order to admit or reject a secondary request, such a
policy may require the entire instantaneous state x of
the network. Since each location in a network has its
own requests and terminations, the entire network state
changes at a rate that is proportional to the number of
locations. Hence for large networks availability of instan-
taneous network state to any entity is unrealistic. This
limitation motivates profitability analysis of practical
policies that rely on local information to make decisions
at each location. The next section studies one such
policy, complete sharing, which is appealing for pricing
of spectrum access in the private commons regime.

VII. PROFITABILITY REGION OF COMPLETE SHARING

A complete sharing policy is specified by a subset L+

of locations in G. Within L+ the policy exerts no ad-
mission control on secondary requests; hence secondary
requests are subject to the same admission criteria as
primary requests. The policy flatly rejects all secondary
requests in the remaining locations.

For clarity of exposition, in this paper we analyze the
complete sharing policy when L+ is the entire set of
locations in G.

We first give an expression for the revenue rate of
complete sharing, and then compare that to the reference
value RLO. Since secondary requests behave exactly the
same way as primary requests once they are granted, the
network occupancy under complete sharing (in the entire
network) behaves as it does under the lock-out policy,
but with request rate λ1 + λ2 at each location. Hence
in equilibrium the network occupancy has distribution
πλ1+λ2 . The analysis of Section V then applies to
identify the revenue rate of the complete sharing policy
as

RCS(r2, λ2) =
r1λ1 + r2λ2
λ1 + λ2

Eλ1+λ2 [T ]. (4)

Let us define the function rCS : R+ 7→ R by setting

rCS(λ2) = r1

(
Eλ1

[T ]

Eλ1+λ2
[T ]
− λ1
λ2

(1− Eλ1 [T ]

Eλ1+λ2
[T ]

)

)
.

(5)
It can be verified that

RCS(rCS(λ2), λ2) = RLO. (6)

That is, rCS(λ2) is the value of secondary price r2 that
would render secondary demand λ2 neutral in terms of
profit.

Consulting the expression (4) for a fixed value of
λ2 we see that the expectation Eλ1+λ2

[T ] does not



depend on r2 whereas the ratio (r1λ1 +r2λ2)/(λ1 +λ2)
is increasing in r2. Hence RCS(r2, λ2) > RLO, and
therefore complete sharing is profitable, if and only if
r2 > rCS(λ2). In turn rCS(λ2) delineates the profitabil-
ity region of complete sharing.

In contrast to the full profitability region identified by
Theorem VI.1, profitability region of complete sharing
is generally not bounded by a straight vertical line. Yet
an analogous, although looser, insensitivity result can be
established:

Theorem VII.1 Let

r∗CS = max
λ2≥0

rCS(λ2).

a) If r2 > r∗CS then complete sharing is profitable for
any λ2 > 0.
b) If r2 < r∗CS then there exists a value λ2 such that
complete sharing yields lower revenue than the lock-out
policy for the secondary price-demand pair (r2, λ2).

Proof: Part a) follows since if r2 > r∗CS then r2 >
rCS(λ2) for any λ2 ≥ 0. In that case complete sharing
generates strictly higher revenue than the lock-out policy
if the secondary demand λ2 is strictly positive so that
secondary requests actually exist. If r2 < r∗CS then due
to the definition of r∗CS there is a λ2 > 0 such that
r2 < rCS(λ2). This establishes part b).

Fig. 3.a illustrates the profitability curve rCS(λ2) of
complete sharing for the 32-node topology of Fig. 2 with
the primary demand λ1 = 0.1 and primary price r1 = 1.
The maximum value of this curve is 0.3135 and it occurs
at λ2 = 0. Hence any secondary price larger than 0.3135
is guaranteed to be profitable if it generates demand. This
profitability curve also has a minimum value 0.1769,
which occurs in the limit as λ2 → ∞. This implies
that any secondary price less than 0.1769 is guaranteed
to incur revenue loss, provided that it generates demand.
Profitability of price values between 0.1769 and 0.3135
depend on the underlying demand curve.

We also note that since it is possible to incur positive
profit beyond the price value 0.1769, the critical price
r∗ that determines the full profitability region for this
example should satisfy r∗ < 0.1769.

Finally in Fig. 3.b the critical price r∗CS is plotted
against the primary demand λ1, with fixed primary price
r1 = 1. The plot shows that the critical price is always
less than the primary price, though it is increasing in
the primary demand. This behavior can be interpreted
as follows: As the primary demand increases, more
primary requests are rejected due to granted secondary
requests. The increase in the secondary price reflects
compensation for the associated opportunity cost.
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Fig. 3. Profitability region and critical prices for complete sharing in
the topology of Fig. 2. a) The profitability curve rCS(λ2) for primary
price-demand pair r1 = 1, λ1 = 0.1. b) For fixed primary price
r1 = 1 the critical price r∗CS is increasing in the primary demand λ1.

VIII. DISCUSSION

a) Larger prices: It is possible to characterize
other price thresholds that provide the same profitability
guarantee as r∗CS . An example for such threshold is

max
i

max
x∈S
{h(x)− h(x + ei)} (7)

where h(x) is defined in Section VI. Note that if r2 is
above that value then the policy improvement procedure
of Section VI gives completes sharing as the profitable
policy. However, this threshold is overly conservative and
in fact the value of (7) can be much larger than the
primary price r1. Theorem VII.1.b asserts that r∗CS is the
smallest of such thresholds. This property is important
since strict profitability relies on existence of demand,
and if r∗CS does not generate demand then neither would
a higher price.



b) Protecting the primary demand: In some situa-
tions, such as providing secondary service opportunis-
tically in a cellular network, it may be desirable to
enhance the revenue while maintaining a certain quality
of service level for the primary users. For example, the
licensee may aim to grant at least 95% of voice call
requests by primary users. Depending on the underlying
demand curve the generated secondary demand λ2 may
be too large to maintain such a constraint. In that case
the licensee may choose to thin the secondary traffic by
declining a fraction of secondary requests. If thinning
is applied uniformly over the locations then the overall
effect is to reduce λ2 to an appropriate value so that
primary users are protected. Since the secondary price
is not altered, positive profit remains guaranteed as long
as this reduced demand value is positive. If the quality
constraint is satisfied under lock-out policy then there is
a positive λ2 such that it is still satisfied after inclusion
of secondary demand.

c) Iterative spectrum offerings: Insensitivity of the
profit can be leveraged to increase the revenue further,
without the knowledge of the demand curve. Here we
outline an iterative strategy:

Let us consider a secondary-spectrum offering at price
r2 = (1 + ε)r∗CS for some ε > 0 that generates
demand λ2. After the offering, the total (primary plus
secondary) demand on the spectrum will be λ1 +λ2 and
the average revenue per request will be

r1λ1 + r2λ2
λ1 + λ2

.

Although λ2 is unknown prior to the offering it can
be measured once spectrum sharing takes place; hence
both values are known to the licensee after the offering.
These values can now be interpreted as primary load and
primary revenue respectively, leading to a new critical
secondary price r∗(2)CS . In turn a second round of spectrum
offering can be made at price r(2)2 = (1 + ε)r

∗(2)
CS . Since

part of the potential demand is collected at the first
offering, the second offering may be subject to a different
demand curve. Yet this new offering will increase the
revenue if it generates demand, and will have no adverse
effect otherwise.

Following the second offering the spectrum will be
carrying demand λ1 at price r1, demand λ2 at price r2,
and some demand λ(2)2 at price r(2)2 . New values of total
demand and average per-request revenue can be easily
calculated and adopted in the next iteration of the same
procedure. At each iteration revenue is enhanced further
if the offering raises additional demand. A block diagram
of this approach is given in Fig. 4.

Fig. 5 gives the revenue for several rounds of spectrum
offerings on the 32-node graph in Fig. 2. Here we have

    !"#$%&#'(   

)* +,#-%,. /%&0(1 

  2*-+0)( 

3(%10,( 4(-%"4 

Fig. 4. A block diagram for the iterative procedure to enhance the
profit. The goal of the procedure is to raise further demand at each
iteration while maintaining strict guarantees on profitability.

made the following choices in modeling the demand
curve (it should be noted that the model is used only
to determine the demand for an already decided-upon
price): It is assumed at each round k the secondary
demand generated by price r is given by

λ
(k)
2 (r) =

∫ ∞
r

fk(x)dx

for a non-negative function fk(x). For the initial round
f1(x) can be interpreted as the density of users for whom
spectrum access has value x; hence these users will take
price r if r ≤ x. The above integral for k = 1 indicates
that the demand generated by price r consists of such
users. Assuming that all users with valuation at least r2
are cleared in the first round, we take

f2(x) =

{
f1(x) if x < r2
0 else

for the second round. More generally, if we represent
the secondary price at the ith offering by r(i)2 ,

fk(x) =

{
f1(x) if x < min{r(1)2 , r

(2)
2 , · · · r(k−1)2 }

0 else

for the kth round. To illustrate also the robustness of
the outlined procedure against variations in the demand,
Fig. 5 gives revenues under two different kernels for the
demand curve. The first choice is f1(x) = 1 if 0 ≤ x ≤ 1
and f1(x) = 0 otherwise, thereby reflecting a uniform
distribution of spectrum valuation among potential users.
The second choice is f1(x) = e−x, reflecting an expo-
nential distribution of spectrum valuations. We point out
that the average valuation of spectrum is respectively 0.5
and 1 for these two kernels; so the latter case should be
expected to yield higher revenue.

In obtaining the numerical values the primary price-
demand values are taken as r1 = 1, λ1 = 0.1;



Round k
1 2 3 4

price r(k)2 0.3762 0.3612 0.3610 0.3610
demand λ(k)2 0.6238 0.0150 0.0002 0

overall revenue 2.6819 2.6891 2.6892 2.6892

(a)

Round k
1 2 3 4

price r(k)2 0.3762 0.3614 0.3613 0.3613
demand λ(k)2 0.6864 0.0102 0.0001 0

overall revenue 2.7186 2.7232 2.7233 2.7233

(b)

Fig. 5. The revenue values obtained by the iterative procedure of
Fig. 4 applied on the topology of Fig. 2. The primary price and demand
are respectively r1 = 1 and λ1 = 0.1. The resulting reference value
that determines profitability is RLO = 2.1227. A different demand
curve is assumed at each iteration as explained in the text. Considered
spectrum-valuation densities are: a) f1(x) = 1 for 0 ≤ x ≤ 1. b)
f1(x) = e−x.

consequently the reference revenue for profitability is
RLO = 2.1227. We have also chosen, somewhat arbi-
trarily, ε = 0.2. It should perhaps be noted that eventual
revenue may be smaller or larger depending on the value
of ε and also the underlying demand curve, though the
monotonic nature of generated revenues is invariant.

IX. CONCLUSION

This paper investigates economic feasibility of sec-
ondary spectrum provision in spatio-temporal settings.
Its main contribution is existence and characterization
of pricing guidelines that guarantee profitability irre-
spective of the underlying relationship between price
and demand. More specifically we identify critical prices
above which positive profit is achieved as long as there is
demand. This conclusion may be reassuring for licensees
that face challenges due to volatility of market demand.
We have also devised a mechanism for spectrum offering
that leverage this insensitivity to improve profit.

As opposed to profit-maximization, profitability of dy-
namic resource sharing has not been studied comprehen-
sively in literature. There seem to be two complementary
directions that warrant further study in the context of
dynamic spectrum access: The first one concerns impli-
cations of the insensitivity property, particularly financial
instruments that leverage it. The second direction is more
technical and aims to exploit structural properties of the
profitability region to mitigate the computational effort
required for determining critical prices.

APPENDIX

Obtaining the revenue rates of both the lock-out and
the complete sharing policies, and in turn the curve
rCS(·), entails computation of expectations Eλ[T ] for
some λ > 0. Since T =

∑
i xi, this expectation is

Eλ[T ] =
∑
x∈S

(
∑
i

xi)πλ(x).

Hence in principle Eλ[T ] can be computed by first
determining the distribution πλ and then by computing
the above summation. Although it is rather standard,
this approach has computational and storage require-
ments that grow exponentially with the network size:
Firstly, computation of the normalizing constant C in
the expression (2) for πλ is NP-hard [22]. Secondly, as
alluded earlier, the number of states |S| of x is typically
exponential in the number of locations n [21]; hence,
even if C is computed, storing πλ requires memory
whose size is exponential in n.

In this section we describe an alternative approach that
provides significant complexity advantages by exploiting
the structure of πλ. Towards that end we work with
the moment generating function M(s) of T : For each
number s, the value of this function is defined as

M(s) = Eλ[esT ] =

∑
x∈S λ

T esT∑
x∈S λ

T
.

Let us define
Z(s) =

∑
x∈S

esT (8)

so that

M(s) =
Z(s+ lnλ)

Z(lnλ)

and

Eλ[T ] =
dM(s)

ds
|s=0 =

Z ′(lnλ)

Z(lnλ)
. (9)

Here Z ′ represents the derivative of the function Z.

For a given graph G define the vector m =
(m0,m1,m2, · · · ,mn) by setting

mk = number of independent sets of size k in G.

The total number of independent sets is then |S| =∑n
k=0mk. Note that mk is the number of states x for

which T =
∑
i xi = k. Each such state contributes esk

to the summation in (8) so

Z(s) =

n∑
k=0

mke
sk.

In turn by relation (9)

Eλ[T ] =

∑n
k=0 kmkλ

k∑n
k=0mkλk

.



Hence Eλ[T ] can be computed with O(n) arithmetic
operations once the vector m is obtained. Note that the
size of m is at most (n + 1) because an independent
set is a subset of the locations and largest independent
cannot have size more than n. So, in contrast to πλ, the
memory requirement of storing m scales linearly with
the number of locations n. An additional advantage of
this approach is that the same vector m can be used to
compute Eλ[T ] for any value of λ; whereas computing
Eλ[T ] via πλ requires a separate and highly complex
calculation for the constant C for each value of λ.

To best of the authors’ knowledge counting the num-
ber of independent sets of a given size has received scant
attention in the literature, although there are results that
suggest that it entails exponential complexity in the num-
ber of nodes [23]. Here we provide a recursive procedure
to compute m2,m3, · · · ,mn (note that m0 = 1 and
m1 = n). The worst case complexity of this procedure
over all graphs G is exponential in n, yet each recursion
step is rather simple.

Proposition A.1 Let mk(G) be the number of indepen-
dent sets of size k in graph G. For a given node i of G, let
G− i be the subgraph obtained by deleting node i (and
all incident edges), and let G − N(i) be the subgraph
obtained by deleting i and all neighbors of i (and all
incident edges). Then

mk(G) = mk(G−i)+mk−1(G−N(i)), k = 1, 2, · · ·
(10)

with the initial values m0(G) = 1 and mk(∅) = 0 for
k = 1, 2, · · · .

Proof: Let us fix an arbitrary node i in G. If
an independent set x of G contains i then it cannot
contain any neighbors if i. Therefore, if x has k elements
(including i) then the remaining elements of x after
excluding i must constitute an independent set of size
k−1 in the subgraph G−N(i). Since mk−1(G−N(i))
is the number of such independent sets, it is also the
number of independent set with size k in G containing i.
On the other hand, if x does not contain i, then it must be
an independent set of size k in G−i. The number of such
independent sets is mk(G−i). The recursion (10) reflects
that mk(G) is the sum of the number independent sets
that include i and the number of independent sets that
do not include i. The boundary condition m0(G) = 1
indicates that the only independent set with 0 nodes is
the empty set (equivalently x = 0), and mk(∅) = 0 for
k = 1, 2, · · · indicates that a degenerate graph with no
nodes does not possess independent sets other than the
empty set.
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